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Abstract- This paper presents a novel Model Reference Adaptive 
System (MRAS) speed observer for induction motor drives based on 
stator currents. The measured currents are used as reference model 
for the MRAS observer to avoid the use of a pure integrator. A two-
layer Neural Network (NN) stator current observer is used as the 
adaptive model which requires the rotor flux information. This can 
be obtained from the voltage or current model but instability and dc 
drift can downgrade the overall observer performance. To overcome 
these problems another off-line trained multilayer feedforward NN 
is proposed here as a rotor flux observer. Speed estimation 
performance of the MRAS scheme using the three different rotor 
flux observers is studied and compared when applied to an indirect 
vector control induction motor drive. Promising results have been 
obtained when using the NN flux observer with less sensitivity to 
parameter variation and stability in the regenerating mode of 
operation. 

 
 

I. INTRODUCTION 

Several techniques have been proposed for rotor speed 
estimation in sensorless induction motor drives based on the 
machine model. These strategies make use of the instantaneous 
values of stator voltages and currents to estimate the flux linkage 
and the motor speed. The block diagram of a model based 
sensorless indirect vector control scheme is shown in Fig.1. 
Model Reference Adaptive Systems (MRAS) offer simpler 
implementation and require less computational effort compared 
to other methods and are therefore the most popular strategies 
used for sensorless control [1]. Various MRAS observers have 
been introduced in the literature based on rotor flux, back EMF 
and reactive power [2-4]. Rotor flux MRAS, first proposed by 
Schauder [3], is the most popular MRAS strategy and a lot of 
effort has been focused on improving the performance of this 
scheme. This scheme suffers from stator resistance sensitivity 
and pure integration problems which may cause dc drift and 
initial condition problems [4]. These problems may limit the 
performance at low and zero speed region of operation [2]. Low-
Pass Filters (LPF) with low cut-off frequency have been 
proposed to replace the pure integrator [5]. This introduces phase 
and gain errors and delays the estimated speed relative to the 
actual, which may affect the dynamic performance of the drive in 

addition to inaccurate speed estimation below the cut-off 
frequency [4, 6]. To overcome this problem, Karanayil et al [6] 
introduces a programmable cascaded low pass filter (PCLPF) to 
replace the pure integration by small time constant cascaded 
filters to attenuate the dc offset decay time. Nonlinear feedback 
integrators for drift and dc offset compensation have been 
proposed in [7]. Moreover, Neural Networks (NN) have been 
proposed to replace the conventional adaptive model used in 
rotor flux-MRAS [5]. To avoid the problems associated with 
rotor flux schemes, back EMF and reactive power schemes have 
been proposed [2]. Back EMF schemes avoid using a pure 
integration in the reference model but are sensitive to stator 
resistance variation and may have stability problems at low stator 
frequency [1]. A reactive power technique has been proposed 
offering robustness against stator resistance variation while 
avoiding pure integration [4]. However, this scheme suffers from 
instability at some operating conditions.  
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Fig.1 Sensorless indirect vector control scheme 

Recently, a stator current MRAS scheme has been introduced 
for stator resistance identification for induction motor drives [8]. 
In this scheme the reference model comprises the measured stator 
current components. This makes the reference model free of pure 
integration problems and insensitive to motor parameter 
variations. A two layer linear NN stator current observer is used 
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as an adaptive model where the stator resistance is one of the 
neural network weights. A backpropagation learning algorithm is 
used to train the NN online to update the value of the stator 
resistance. A conventional current model is used for rotor flux 
estimation.  

In this paper, the NN based MRAS observer proposed in [8] is 
used for online motor speed identification instead of stator 
resistance estimation. The NN weight corresponding to motor 
speed is updated online using the backpropagation learning 
algorithm in such a way as to minimize the error between the 
measured and estimated currents. Rotor flux is needed for the 
stator current estimation in the adaptive model and 
conventionally a current model flux observer has been employed. 
However as will be shown, the use of such a model gives 
instability in the regenerating mode of operation. Therefore the 
paper suggests an off-line trained multi-layer feedforward NN 
which estimates the rotor flux from present and past samples of 
terminal voltages and currents. By using this NN the flux 
estimation is independent of the rotor speed and does not require 
the use of pure integration. Superior results have been obtained 
from the NN flux observer scheme in terms of stator resistance 
sensitivity and stability over the whole speed control range. 

II. ARTIFICIAL NEURAL NETWORKS 

Artificial Neural Networks are based on the basic model of the 
human brain with the capability of generalization and learning. 
They can be used as universal function approximators to 
represent functions with weighted sums of nonlinear terms [9].  
This is useful when representing some systems which do not 
have an accurate mathematical model. The unit of structure of 
ANN is the neuron which consists of a summer and an activation 
function as shown in Fig. 2. The commonest type of ANN is the 
multilayer feedforward neural network which consists of layers; 
each layer consists of neurons [5, 9].  
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Fig.2 Structure of the artificial neuron 

Multilayer feedforward neural networks have shown a great 
capability to model complex nonlinear dynamic systems [10]. 
Various attempts to model machine flux from measured 
quantities such as stator voltages, currents and motor speed have 
been discussed [9, 10].  

A training process is performed to enable the NN to understand 
the model to be represented. A set of input/ target data is used to 

train the neural network. The neural network output is compared 
with the target value and a weight correction via a learning 
algorithm is performed in such a way to minimize the error 
between the two values. This is an optimization problem in 
which the learning algorithm searches for the optimal weights 
that can represent the solution to the approximation problem [10]. 
Neural Networks can be trained online or off-line. For online 
training, the NN weights are continuously updated during 
operation rather than being constant as for off-line training.   

 

III. NN STATOR CURRENT MRAS SCHEME 

The basic concept of MRAS used in this paper is the presence 
of a reference model which determines the desired states and an 
adaptive model which generates the estimated values of these 
states. The error between reference and estimated states is fed to 
an adaptation mechanism to generate the estimated value of the 
rotor speed which is used to adjust the adaptive model. This 
process continues till the error between two outputs tends to zero 
[4]. Block diagram of a MRAS scheme is shown in Fig.3. For the 
stator current MRAS observer, the reference model will consist 
of the actual stator currents [8], and hence the induction motor 
itself will work as a reference model. This has the advantages of 
avoiding pure integration and the estimator is less sensitive to 
parameters. A stator current observer can be represented by a 
linear two layer NN where the motor speed is expressed as one of 
its weights. A backpropagation learning algorithm is used in 
order to minimize the error in current estimation and hence 
generating the estimated speed.  
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Fig.3 Block diagram of a MRAS scheme 

The stator current equations of the induction motor can be 
written as [8]: 

)1()1(ˆ)1(ˆ)1(ˆ)(ˆ 4321 −+−+−+−= kvwkwkwkiwki sdrqrdsdsd ψψ     (1)     

)1()1(ˆ)1(ˆ)1(ˆ)(ˆ 4321 −+−−−+−= kvwkwkwkiwki sqrdrqsqsq ψψ     (2)       
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where T is the sampling time for the stator current observer and σ 
is the leakage coefficient given by: 
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  Equations (1) and (2) can be represented by a two layer linear 
NN with weights as defined in equations (3)-(6) [8]. This NN 
will represent the adaptive model for the MRAS scheme where 
w3 is adjusted online in such a way as to minimize the error 
between actual and estimated currents. 

To derive the weight adjustment law of the NN stator current 
observer, define the energy function E to be minimized: 
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To obtain a minimum squared error between actual and 
estimated stator current the weight adjustment has to be 
proportional to the negative of the error gradient with respect to 
the weight as: 

3
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The weight adjustment law can be written as: 
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where η is a positive constant called the learning rate. Large 
values of η may accelerate the NN learning and consequently fast 
convergence but may cause oscillations in the network output 
whereas low values will cause slow convergence. Therefore, the 
value of η has to be chosen carefully to avoid instability.    
The new weight can be written as: 

)()1()( 333 kwkwkw ∆+−=                            (12) 
To ensure accelerated convergence, the last weight change is 
added to the weight update as [5]: 

)()()1()( 3333 kwkwkwkw ∆+∆+−= α              (13) 
where α is a positive constant called the momentum constant. 
The motor speed can be estimated from the weight w3 as: 
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IV. ROTOR FLUX ESTIMATION BASED ON THE CURRENT MODEL 

Since rotor flux estimation is required for the stator current 
MRAS scheme, voltage model and current model flux observers 
can be used. 

The voltage model (VM) flux estimator is based on the stator 
equations which estimates the rotor flux from the monitored 
stator voltages and currents [3, 4]: 

{ }iivψ sssr LR
L
L

ss
m

r σ−−=  (15) 

The main drawback associated with voltage model (VM) 
implementation is the use of a pure integration which can cause 
dc drift, sensitivity to machine parameter variation, accurate 
stator voltage and current acquisition.  

The current model (CM) can also be used to avoid these 
problems but as it will be proved it shows poor stability margins. 
This model is based on the rotor equations where the rotor flux 
components are expressed in terms of stator current components 
and the rotor speed. The rotor flux components obtained from the 
adaptive model are given by [3, 4]: 
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The block diagram of the NN-based stator current MRAS 
scheme using CM rotor flux observer is shown in Fig. 4.  
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Fig.4 Neural Network based stator current MRAS speed observer using current 

model flux observer  
 

V. NN ROTOR FLUX ESTIMATION 

As will be shown in the next section the use of a current model 
to estimate the rotor flux causes instability at the regenerating 
region. To overcome this problem another way to estimate rotor 
flux needed for the stator current MRAS scheme is proposed here 
which uses an offline trained NN. To estimate the rotor flux 
components in the stationary reference frame an 8-25-2 
multilayer feedforward NN is proposed. To obtain good 
estimation accuracy, the inputs to the network are the present and 
past values of the d-q components of the stator voltage and 
current in the stationary reference frame. The number of neurons 
in the hidden layer is chosen by a trial error technique as a 
compromise between computational complexity, if a larger 
number is selected, and approximation accuracy, if a smaller 
number is selected [10]. The output layer consists of two neurons 
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representing the rotor flux components in the stationary reference 
frame. Since a nonlinear function is being approximated, 
tansigmoid activation functions will be used in both hidden and 
output layers.  

To obtain the training data, the vector control drive is run with 
different operating conditions in the low speed region (100 rpm 
to -100 rpm) at various load levels. The present and past samples 
of the d-q components of the reference stator voltages and output 
stator currents  are obtained: vsd(k), vsd(k-1), vsq(k), vsq(k-1), isd(k), 
isd(k-1), isq(k), isq(k-1) which will be used as inputs to the NN. 
Outputs from the rotor flux current model ψrd(k), ψrq(k) are 
obtained from stator currents components and actual speed and 
are used as target values for the neural network. 5000 
input/output patterns are used to train the NN. The training is 
performed off-line using the Levenberg-Marquardt algorithm 
which is faster than gradient descent back propagation [10]. After 
the training the Mean Squared Error (MSE) between targets and 
neural network outputs decays to 0.000317 after 2200 epochs. 
Once trained, the NN will be suitable for generalization with a 
fast execution speed due to their parallel processing [10]. The 
offline trained NN is proposed for rotor flux estimation in the 
stator current MRAS observer shown in Fig. 5. 
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Fig.5 Neural Network based stator current MRAS speed observer with Neural 
Network flux observer 

  
VI. RESULTS AND DISCUSSION 

To test the NN-based stator current MRAS observer 
performance, a 7.5 kW, 415V induction machine with parameters 
given in Table1 is simulated using Matlab-Simulink. The drive is 
running under indirect vector control with different reference 
speed and various loading levels. The stator current MRAS 
scheme using three rotor flux observers, VM, CM and NN, is 
tested for sensitivity to stator resistance variation for reference 
speed changes and load torque application. Furthermore, speed 
estimation performance is investigated at different operating 
conditions in the low speed region of operation including the 
regenerating mode. In this mode of operation, the machine is 
subjected to positive load torque when running at negative speed. 
The sampling time for the NN stator current observer is 1/5000 

sec with η=0.0005 and α=0.001. Selected simulation results for 
the tests are shown in the following section.  
A. Sensitivity to stator resistance variation  

 The purpose of this test is to compare the speed estimation 
performance of the MRAS observer for motor parameter 
variation. The vector control drive is run with a 25% increase in 
the motor stator resistance and subjected to a reference speed 
change from 5 rad/s to 7 rad/s at no load at t=5s followed by a 
25% load torque application at t=8s. The speed estimation 
performance using the three different rotor flux observers is 
shown in Fig. 6.  
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Fig.6 NN stator current MRAS speed estimation performance at 25% increase in 
Rs Actual speed solid, estimated speed dashed (a) Voltage model flux observer (b) 
Current model flux observer (c) Neural Network flux observer 
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Due to the presence of Rs in the stator current observer 
equations, speed estimation for all schemes is affected by the 
variation in Rs. The effect of Rs variation on the VM is more 
serious and causes oscillations in the estimated speed due to the 
presence of Rs in the flux estimation equation as well. Although 
Rs is not present in the CM observer equation, the flux estimation 
is still affected since the model makes use of the estimated speed 
which deviates from the actual. The NN flux observer shows less 
sensitivity to Rs variation compared to VM without being 
dependent on the estimated speed and therefore shows good 
speed estimation performance close to that obtained when using 
CM.  
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Fig.7 Rotor flux estimation performance during disturbance rejection at 25% 
increase in Rs Actual flux solid, estimated flux dashed (a) Voltage model flux 
observer (b) Current model flux observer (c) Neural Network flux observer 

The rotor flux estimation performance of the three observers 
during load torque disturbance rejection is shown in Fig. 7. As 
can be seen the VM is the most affected by Rs variation compared 
to the CM and NN observers.  

B. Stability in the regenerating mode 
In this test the stability of the scheme is tested in the 

regenerating mode of operation. In this region of operation the 
motor is running in the negative speed region with a positive load 
torque applied. Therefore the drive is subjected to a speed 
reversal command from 5 rad/s to -5 rad/s at 25% load torque 
with nominal machine parameters. The speed estimation 
performance of the MRAS observer using CM and NN rotor flux 
observers is shown in Fig. 8.  
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Fig.8 NN stator current MRAS speed estimation performance in the regenerating 
region of operation actual speed solid, estimated speed (a) Current model flux 
observer (b) Neural Network flux observer 

 
Since rotor flux estimation using CM depends on the estimated 

speed, any deterioration in the speed estimation is fed back to the 
flux observer causing instability in the regenerating mode of 
operation. Using NN for rotor flux estimation show stable speed 
estimation performance in the regenerating mode since flux 
estimation is independent of the estimated speed. Rotor flux 
estimation performance using the two observers, CM and NN, is 
shown in Fig. 9.     
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Fig.9 Rotor flux estimation performance in the regenerating region of operation 
Actual flux solid, estimated flux dashed (a) Current model flux observer (b) 
Neural Network flux observer 

  
 

VII. CONCLUSION 

In this paper a NN based stator current MRAS is used for 
speed estimation in sensorless induction motor drives. Rotor flux 
estimation is required for the speed observer. Using a voltage 
model for rotor flux estimation causes problems at low speed due 
to stator resistance sensitivity and the pure integration for flux 
which may cause DC drift and initial condition problems. A 
current model can be used instead to estimate the rotor flux from 
the measured stator currents and the estimated speed, which 
shows less sensitivity to stator resistance variation. However, the 
MRAS scheme using the current model flux observer shows 
instability in the regenerating mode of operation. A multilayer 
feedforward NN is proposed to overcome this problem for rotor 
flux estimation from present and past samples of the stator 
voltage and current. Using the NN flux observer gives less 
sensitivity to stator resistance variation compared to the voltage 
model and since the flux estimation is independent of the rotor 
speed, stable operation has been obtained for regeneration.    

  
TABLE I 

Induction motor parameters 
Machine 
parameter Value Machine 

parameter Value 
Rated Power 7.5 [kW] Rr  0.703 [Ω] 
Rated 
Voltage 415 / 239 [V] Ls  107.73 [mH] 
Rated 
frequency 50 [Hz] Lm 103.22 [mH] 
Rs 0.7767 [Ω] Lr  107.73 [mH] 
Pole number 4 J  0.22 [Kg/m2 ] 
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