
Designing Control Logic for Counter
ow Pipeline Processor UsingPetri Nets �A. YakovlevDepartment of Computing ScienceUniversity of Newcastle upon Tyne, NE1 7RU EnglandMay 3, 1995AbstractThis paper approaches the problem of implementing an asynchronous control for a stage of theSproull Counter
ow pipeline processor (CFPP) as an exercise in combining two synthesis techniquesrecently developed for Petri nets. We �rst synthesise a number of Petri net models of the CFPPstage control from its original \�ve-state-�ve-event" description due to C. Molnar. Secondly, weimplement these net models in asynchronous circuits, using two-phase and four-phase components.The latter stage involves synthesising circuits with arbitration elements from behavioural descrip-tions with internal con
icts. This exercise appears to be quite instructive in the sense that it helpsto estimate the scope and power of formal methods and today's automatic tools in assisting theprocess of asynchronous design.Keywords: arbitration, asynchronous circuit, counter
ow pipeline processor, design automa-tion tool, event-based signalling, micropipeline, Petri net, signal transition graph, synthesis.1 IntroductionAsynchronous design technology is getting more mature both in actual designing industrial strengthcircuits and developing design tools. Two recent processor design projects, the Amulet1 micropro-cessor [1] and Sproull's counter
ow pipeline processor (CFPP) [2], have drawn attention of a muchwider audience than what used to be a traditionally small \asynchronous club". On the tools front,there has also been much progress in the last �ve years. Amongst at least a dozen of existingsoftware packages are such systems as Tangram [3], supporting syntax-driven design from high-level programming speci�cations, and SIS [4] and FORCAGE [5], supporting circuit synthesis frominterpreted Petri nets and their \close relative", Change Diagrams. The FORCAGE system alsoprovides tools for veri�cation of speed-independence conditions in asynchronous designs.There is still much to be done for the tools to enable practical circuit designers bene�t fromthem in their everyday experience. The major shortcomings of the existing tools are following.Firstly, they are usually good in simple routine operations, such translating high-level behaviouraldescriptions into specially structured circuits, e.g., converting Tangram CSP-like expressions intointerconnections of handshake components. The resulting circuits can often be ine�cient, bothin speed and in size. Secondly, the synthesis-oriented tools are capable of synthesising only from�Supported by EPSRC grant GR/J52327 1



speci�cations which are special classes of state-graphs (semi-modular) and Petri nets (free-choiceand safe, or non-choice) and of a fairly limited size. For example, today's tools do not allow thedesigner to synthesise circuits with arbitration unless the designer uses special \tricks", combiningtwo approaches, partly manual and partly automated.There has been some initial work on the methods that extend the class of speci�cations, to allowdesigning circuits with arbitration components [6]. This work (a) needs further formalisation andautomation, and (b) it is limited to a particular modelling framework, all transformations must becarried out at the Petri net level. Both these issues can be resolved independently, and the latterone can possibly bene�t from the recent developments in the area of automated synthesis of Petrinets from state-based models.Indeed, as can be seen in the model of a CFPP stage control circuit, devised by Charles Mol-nar [2], the designer may �nd it easier to de�ne the behaviour in a state-transition form. The stagecontrol model is the one with an essential arbitration paradigm. Originally, it looked doubtful thatcircuit synthesis techniques available for Petri nets [6] could be directly applied to it. The wayfrom the speci�cation to the circuit, as outlined in [2], was paved by manual e�ort. For example,the most crucial part of this design was a structural decomposition of a stage into an inter-stagearbiter (called \cop") and the remaining stage circuitry. That has obviously been one of the ways(apparently a very successful one!) to pursue the design. It would however probably be desirableto use a more formal technique that would allow a set of transformations at the behavioural level,in which this design would be a natural option from the synthesis process. Such a wish creates themajor goal of this paper.The paper demonstrates the combined use of the following constituents:1. Equivalent transformations at the state-transition level, which are aimed at obtaining a stategraph in such a form that can be converted into a behaviourally equivalent Petri net.2. Synthesis of a Petri net from the state graph [7]; the net must satisfy the requirements ofsubsequent circuit synthesis [6].3. Synthesis of a circuit in one of the two potential technologies. The �rst one is a two-phasecircuit consisting of special (micropipeline) elements. Such a circuit can often be obtainedby a relatively straightforward conversion of the Petri net (almost similar to a syntax-drivenapproach of Tangram). The second possibility, quite a challenge for today's synthesis tools, isto re�ne the net into a Signal Transition Graph (using the so-called \signalling expansion" [8])and perform logic synthesis using one of the STG-based tools (e.g., SIS).These steps are not fully automated as yet but there is a good indication that design exampleslike this one with CFPP create a very good motivation and provide guidance for further workon tools. For example, a new tool, called petrify, whose original version has been developed byJordi Cortadella on the ideas of [7], already supports synthesis of Petri nets from state graphs andequivalent transformations at the Petri net level. In fact, the most recent version of petrify hashelped to obtain the Petri net models shown in Figure 4, c and d, which lead to the circuit shownin Figure 11. Those synthesised originally by hand had some redundant places and arcs.Hopefully, petrify will eventually provide an important link between circuit compilation tools(e.g., TANGRAM) and circuit synthesis and veri�cation tools (e.g., SIS and FORCAGE).The paper is organised as follows. Section 2 introduces the description of the CFPP stagecontrol circuit and formulates the problem. Section 3 describes the procedure to synthesise Petrinet speci�cations from state-based models. Section 4 demonstrates the application of this procedure2



to the state-based description of the CFPP stage control. Section 5 presents implementations ofthe Petri net models of the CFPP stage control. Finally, Section 6 outlines directions of futurework and draws conclusions.2 CFPP stage control circuit. Original descriptionFor a complete description of the CFPP architecture we refer the reader to [2]. Here, we would liketo abstract away from the details of instruction execution in the CFPP, and only concentrate onthe issue of the behavioural speci�cation of control in a basic stage of the CFPP.The overall organisation of control in a CFPP is as follows. There are two mutually synchronisedpipelines, one for instructions and the other for results, where the results are used by instructionsand may be produced or updated by them. These pipelines allow instructions and results topropagate in opposite directions, each of them operating as an ordinary pipeline with data itemspassing between any pair of adjacent stages if one of the stages is empty and the preceding stagesholds a datum. Here, the role of data items is played by instructions, in the instruction pipe, andby results, in the result pipe.Mutual synchronisation between the two pipes is essential for the functionality of the CFPP.The following important requirement is imposed on such a synchronisation: for every instructionI, entering the instruction pipe from the bottom (by convention, instructions 
ow \bottom-up"),and every result R, entering the pipe at the top (results 
ow \top-down") while the instruction Iis already in the pipe, there must be an opportunity to match in one of the stages (the matchingprocess, including potential execution if the address of the operand in I matches the one in R, iscalled garnering).Abiding by the above requirement, instructions and results happenning to cohabit in the coun-ter
ow pipeline must never miss each other. This requirement is met by organising the pairs ofadjacent stages in such a way that the states of control in these stages prevents certain items fromadvancing along their pipes until the garnering process has been accomplished.Figure 1 shows Molnar's state diagram of a pipeline stage control. The states have the followingmeaning:E: Empty. Neither instruction nor result is present.I : Instruction. Only an instruction is present.R: Result. Only a result is present.F : Full. Both instruction and result have arrived.C: Complete. The CFPP execution rules [2] have been enforced, and both instruction andresult are free to move on 1.The transitions in this state graph that involve motion of instructions and results are labelledAI (accept instruction from below), PI (pass instruction upward), AR (accept result from above),PR (pass result downward), and G (perform garnering, which is either executing the instruction ifits operand matches the result or release both instruction and result).Observing the state graph, we may note that there are two states in which dynamic arbitrationmay take place. First, this is state I , where either instruction may be passed before a result may1As was noted in [2], in practice this state might be divided further to allow the result to advance while theinstruction is being executed. We, however, abstract away from such distinctions in this paper.3



PI

AI

AR

PR

G

G

E

F

PR PI

AIAR

ARAI

PI PR

R I

C

(b)
(a)

Stage
Control ExecutionFigure 1: Counter
ow pipeline stage control: (a) structural view, (b) state diagramarrive in the stage or result may arrive before instruction is allowed to leave the stage. Similarly,in state R, either result may be passed before an instruction may arrive in the state or instructionmay arrive before result is allowed to leave the stage.The presentation in [2] \jumped" from de�nition of this state diagram directly to its structuraland circuit implementation. Our task here is to demonstrate the process of deriving the speci�cationin the form of a Petri net with signal events represented uniquely , which would be more amenable toformal transformations. The latter would bring us to a circuit solution, or a set of solutions, withstandard arbitration elements (e.g., a 2-way mutual exclusion element), following the techniquedescribed in [6].First, we need to review some important results on synthesis of Petri nets from transitionsystems (i.e., state graphs). The major theoretical background can be found in [9]. The adaptationof those results to a practical procedure of synthesising nets from state-based models was madein [7].3 Synthesis of Petri nets from transition systemsLabelled Petri nets. The target of our speci�cation synthesis is a labelled Petri net. We assumethat the reader is familiar with the basic terminology of Petri nets [12], and give here only a briefoutline of the most relevant issues.A Petri net (PN) is a directed graph consisting of two types of vertices, places and transitions ,connected by arcs, called 
ow relation, in such a way that arcs between places or between transitionsare not allowed 2. In a marked net, a special subset of places, marked with tokens (black dots),is called the initial marking of the net. A transition is enabled in a marking if all its input placesare marked. An enabled transition may �re, producing a new marking (this marking is said tobe directly reachable from the previous one) with one less token in each input place and one moretoken in each output place of the transition. The set of all markings reachable (ordinary transitiveclosure of the direct reachability) from the initial one is called the net's Reachability Set. Thegraph whose vertices are the net's markings and arcs correspond to the direct reachability relationis called the Reachability Graph of the net.2We shall sometimes abuse this standard notation by allowing two transitions to be connected by an arc directly{ this arc would stand for a place with exactly one input and one output arcs in a standard form. The \overloaded"arc thus becomes a carrier for tokens. 4



A labelled PN is a PN in which every transition is labelled with a symbol, called label , from agiven alphabet. In the case of unique labelling , i.e., if no two transitions have the same label, eachtransition in the net can be uniquely identi�ed by its label. In such a case we can use the label asthe transition's name.A PN is called safe if no more than one token can appear in a place. A PN is called pure ifno pair of a place and transition are connected by mutually opposite arcs (bi-directional arcs areoften used to represent such self-loops in PNs). A PN is called simple if no two transitions havethe same sets of input and output places.Transition systems. A transition system (TS) is a directed state graph in which every arcconnecting a pair of states is labelled with a name of an event from a speci�c event alphabet. Sucha labelled arc is called transition. One state is marked as the initial state. Any TS must satisfythe following basic conditions [9]:A1. No self-loops, that is no transition may begin and end in the same state.A2. No multiple arcs between a pair of states.A3. Every event must have some occurrence.A4. Every state is reachable from the initial state.The basic intuitive idea behind the construction of a Petri net whose behaviour is equivalent 3to the original TS is a correspondence between subsets of states, called regions , and places in thesynthesised net. This allows a 1-1 correspondence between states of a region and markings of thePetri net in which the place corresponding to the region has a token.More speci�cally, a region is a subset of states with which all transitions labelled with the sameevent e have exactly the same \entry/exit" relationship. Namely, we say that a subset of states r isentered by event e if for every transition labelled with e the source state does not belong to r whilethe destination state is in r. Similarly, r is exited by e if for every e-labelled transition the sourcestate is in R while the destination is outside r. In the remaining cases, e is said to be non-crossing ,either internal or external , event for a region. Thus, to become a region, a subset r must satisfyexactly one of the three cases for every event e: (i) r is entered by e, (ii) r is exited by e, and (iii)r is not crossed by e.A region r is a pre-region (post-region) of an event e if r is exited (entered) by e.Figure 2 illustrates a pair of regions, r1 = fE;Rg and r2 = fI; F; Cg, in the TS of the CFPPstage control. Note that r1 is a pre-region for event AI and a post-region for PI whereas r2 is apre-region for PI and a post-region for AI . Both regions are not crossed by AR and PR. Finally,G is an external event for r1 and internal for r2.It is known from [9] that in order to generate a Petri net whose reachability graph is isomorphicto a given TS, the TS must be elementary . The elementarity conditions , additional to the abovefour basic conditions, are as follows:A5. State separation property, which means that for any two di�erent states there must exist aregion which contains one of the states and does not include the other.3We basically use a strong notion of equivalence, isomorphism between the given transition system and thetransition system which is obtained from the reachability graph of the Petri net. E�ectively, the synthesis techniqueof [7] supports a weaker form, bi-simulation. 5



G

E

F

PR PI

AIAR

ARAI

PI PR

R I

C

r1

r2Figure 2: Illustration of regionsA6. Forward closure property, which states that, for every state s and every event e, if the setof pre-regions of e is included in the set of regions such that each of them contains s, then emust be enabled in s (i.e., there must be a transition from s labelled with e).Following [9, 7], for any elementary TS there exists a safe, pure and simple PN such that: (1)each PN transition is labelled with an event of the TS; (2) no two transitions are labelled with thesame event label; (3) the reachability graph of the PN is isomorphic to the TS.The basic procedure, from [9], to produce a PN from an elementary TS is as follows:1. For each event e a transition labelled with e is built in the PN;2. For each region r a place named r is generated;3. Place r contains a token in the initial marking i� the corresponding region r contains theinitial state of the TS;4. The 
ow relation is built according to the relationship between pre-regions and events, andevents and post-regions.A PN synthesised by this procedure is called a saturated net, since all regions are mapped intothe corresponding places. A saturated net is canonical but has a lot of redundancy. As shownin [10], it is su�cient to consider only regions which are not sub-regions of other regions (suchregions are called minimal). The net constructed from all minimal regions is also a canonical formand is called aminimal saturated net. Even the latter can be redundant to produce the ReachabilityGraph isomorphic to the TS. The method described in [7] performs additional optimisation andproduces an irredundant net with minimal regions (the idea is somewhat similar to an irredundantcover of prime implicants in logic minimisation [11]).It has also been shown in [7] that the elementarity conditions can be checked by means of amore practically e�cient structural property of a TS, called \Excitation Closure". It is based onthe notion of excitation regions for events.A set of states is a generalised excitation region for event e, denoted by GER(e), if it is amaximal set of states such that in every element of this set event e is enabled. Excitation Closurerequires that for every event e the intersection of pre-regions of e is equal to GER(e).In our TS of Figure 2, the Excitation Closure property does not hold for several events. Forexample, GER(PI) = fI; Cg but the only pre-region of PI is region r2 = fI; F; C; g; GER(G) =fFg but the set of pre-regions of G is empty. This TS is therefore not elementary.6



The synthesis technique of [7] allows a number of modi�cations to the basic construction idea,including extensions to the class of elementary TSs.It is possible to convert any TS to a PN by means of the so-called label splitting . Label splittingis the procedure that incrementally 4 distinguishes between the original labels (by enumeratingtheir occurrences in di�erent transitions of the TS) in such a way that the TS gradually becomeselementary with respect to the new (enumerated) alphabet. The convergence of this process isguaranteed by the fact that any TS with all transitions labelled uniquely can produce a state-machine net [12] whose structure and behaviour would be isomorphic to the original TS.In order to synthesise non-pure PNs, the above Excitation Closure condition is generalised toallow the so-called self-loop pre-regions to be involved in the intersection of pre-regions for an event.A region r is a self-loop pre-region for event e if it is not a pre-region but the GER(e) is containedin r. Including a place corresponding to such a region into the set of input and output places doesnot restruct the enabling conditions for an event unnecessarily. Yet it often allows to \trim" theintersection of pre-regions to such an extent that the given event is not enabled in the states notincluded in its excitation region.Non-pure nets appear to be very useful in practice when modelling arbitration circuits andbehaviour in which one event asymmetrically disables another event. The latter takes place, forexample, in the models where an input signal disables an output signal (e.g., see the model of aTransparent Latch in [6]).In a similar way, the Excitation Closure condition has been extended further, to allow inhibitorpre-regions. A region r is called an inhibitor pre-region for event e if its intersection with theGER(e) is empty. This extension allows one to generate inhibitor nets. Such nets (e.g., for thecase of safe nets) are known to be representable by ordinary PNs using the so-called complementaryplaces. A place is called complementary to another place if it is marked in those and only thosemarkings where the other place is unmarked. It is clear that a place and its complementary placecorrespond to a region and its complementary region (the latter is obtained by subtracting theformer from the total set of states in the TS).It is also noted in [7] that sometimes it is useful to include non-minimal regions to enforceExcitation Closure.The class of TS, properly including elementary ones, which satis�es the Excitation Closure prop-erty extended in the above ways (self-loop and inhibitor pre-regions), is called quasi-elementary [7].Finally, one can use the idea of including dummy events and corresponding transitions into theTS. Being \silent", such events do not change observational equivalence between the original TSand the modi�ed one. Yet they allow to split some states of the original TS and construct newregions capable of satisfying the Excitation Closure condition.To summarise, a number of techniques, some of which are computationally hard, can be appliedin order to generate Petri nets from non-elementary transition systems. Below, we demonstratethe use of such techniques in practice, for the original TS model of the CFPP control, which is notelementary.4 Deriving a Petri net for CFPP stage controlWe are now ready to revisit our TS model of the CFPP stage control and transform it to such aTS that would would generate a PN using the above technique.4Some useful heuristics are presented in [7] for label splitting.7



G

E

F

C

PR PI

AIAR

ARAI

PI PR

R I

E

F

AIAR

ARAI
R I

PR PI

r

PIPR

AR AI
PRPI

c

i

G/1

G/2 G/3
C

I’ R’

(b)

(a)

E’Figure 3: One way of separating the \diamonds": (a) original TS, (b) transformed TSIt should be pointed out that the application of the label splitting method, albeit possible,does not satisfy our requirement about the unique representation of all arbitrating events . A PNproduced by label splitting is isomorphic to the TS and has multiple transitions labelled with labelsAI; PI; AR and PR.The main obstacle in satisfying the Excitation Closure condition, even in its extended form(using self-loop pre-regions and/or inhibitor pre-regions) comes with the event G, for which wedo not have appropriate pre-regions and post-regions. In order to help solving this problem, weslightly restructure the TS by introducing dummy transitions. Such dummies are added withoutchanging the behavioural (bi-simulation and trace equivalence) semantics of the TS.Intuitively, and this is one of the heuristics of the dummy insertion method, we need to establishproper \diamond" structures in the TS, re
ecting the potential concurrency between pairs (AI;AR)and (PI; PR). For this, two ideas can be applied: \symmetric" and \asymmetric" approach.4.1 \Symmetric" approachThis approach, eventually leading us to a circuit solution similar to the one found by C. Molnar [2],uses the idea of separating the two \state-transition diamonds", one for the pair of events (AI;AR)and the other for the pair (PI; PR). Complete separation of these diamonds could be performedby unfolding the TS into two similar sub-graphs, as shown in Figure 3.The new TS contains three dummy events, labelled i; r and c, and three transitions with splitlabelling of G. This TS satis�es the requirements of the Excitation Closure and can give us anappropriate PN.It is however possible to make a more \economical" separation of the diamonds, with only onedummy event and event G left unsplit. This solution is shown in Figure 4, b, where states I andR are shared between the diamonds and the only dummy event is labelled with d. This dummyplays the same role for the (PI; PR) diamond as G for the (AI;AR).The TS is not elementary in its basic form but is a quasi-elementary one since it satis�es theextended Excitation Closure condition (applied with self-loop and inhibitor regions). It gives theinhibitor net shown in Figure 4, c. The regions giving rise to the places of this net are as follows:r1 = fE; I;E 0g; r2 = fE;R;E0g; r3 = fR; F; Cg; r4 = fI; F; Cg; r5 = fE; I; Cg; r6 = fE;R;Cg.The reader may check the pre-regions, self-loop pre-regions and inhibitor pre-region for all events8



(a) (b) (c) (d)

PR

AI PI

AR

G dr6 r5

r4

r2

r1

r3

PR

AI PI

AR

G d

r4

r2

r1

r3

r5r6
r6’

G

E

F

PR PI

AIAR

ARAI

PI PR

R I

C

G

F

R I

C

AR

PR

AI

PI

PI

ARAI

PR

E

E’

dFigure 4: A better way to separate the \diamonds" and its synthesis result: (a) original TS, (b)transformed TS, (c) inhibitor net, (d) ordinary PN
G

E

F

C

PR PI

AIAR

ARAI

PI PR

R I

G

E

F

C

PR PI

AIAR

ARAI

PI

R I

G

E

F

C

PR PI

AIAR

AI

PI PR

R I

(a) (b) (c)Figure 5: \Asymmetrisation" of TS: (a) original TS, (b) removing PR, (c) removing ARby tracing them back from the net's arcs.If we also consider an extra region r60 = fI; E 0; Fg, which is complementary to r6, we canreplace our inhibitor pre-region interconnections with ordinary pre-region relations, and thus obtainan ordinary PN shown in Figure 4, d. The reader may construct the reachability graph for thisnet and verify its isomorphic conformance to the TS in Figure 4, b. The latter is in its turnbehaviourally equivalent to the original speci�cation.Later, we shall demonstrate how this net model is further used to produce a circuit implemen-tation.4.2 \Asymmetric" approachAnother way to transform the TS to its quasi-elementary form is slightly more liberal as far asthe conformance to the original description is concerned. We may notice that it is possible toreduce the degree of concurrency in the original speci�cation on one of the above-mentioned pairsof events. Namely, we can either \asymmetrise" the diamond formed by (AI;AR) or the one formedby (PI; PR), as shown in Figure 5.Either of these transformations of the original TS restricts the trace semantics of the speci�-cation. We should therefore be able to demonstrate that the new TS is still consistent with theoriginal requirements imposed on the CFPP interstage synchronisation. To do this, we have veri�ed9



RE EI

ER RI IE

EFRR FE II

RF EC CE FI

RC IR CI

FR IF

CR FF IC

CF FC

CC

EE
AR1 AI2

IR
AI2

AR1

IAI2

AI2

AR1

AR1
G1G2

G2

PR2

PR2

PI1

PI1

AI2

AI2

G1

I

I

R

G1

G2

G2

PR2

AR1 AI2

PI1

PR2 PI1

G1 G2

PI1

PI1

PR2

PR2

PI1

PI1

PR2

PR2

AI2

F

C

E

F

C

E

G1 G2

PI1

AI1=PI2=I

AI2

AR1

PR1=AR2=R

PR2

PI1PR1
AI1AR1

AI1

PR1PI1

R I R I

PI2
AI2

AI2

AR2

PR2

PI2 PR2

AI2

AI2 G1Figure 6: Composition of TSs of two adjacent stagesa composition of TSs of several stages and formally checked that the original requirements, outlinedin Section 2, are satis�ed.The validity of such a check is intuitively clear from the following consideration. A simplerversion of such a composition built for two adjacent stages, each modelled by the TS option shownin Figure 5,c (with AR deleted), is shown in Figure 6. This composition is a parallel compositionof stage 1 and stage 2 with a \rendez-vous" type of synchronisation on the corresponding pairs ofevents, denoted as AI1 = PI2 = I and AR2 = PR1 = R.Although the composed TS may appear somewhat complicated, one can check the crucial syn-chronisation cases by examining groups of traces in it. For example, it clearly shows that the systemis deadlock-free. The requirement of an instruction and result entering the pipe to never miss eachother is seen from the following observation. Whenever both AR1 (result enters the pipe) and AI2(instruction enters the pipe) have occurred, the system always passes through the states in whichit performs garnering. It either happens in stage 1 (event G1) or in stage 2 (event G2).Similar sort of analysis can be performed for the composition of TSs shown in Figure 5,b (withPR deleted).Now, in order to produce PNs, both reduced TSs need a dummy event (�) to be inserted inthem, which brings no further semantical constraints. The corresponding quasi-elementary TSs arerespectively shown in Figure 7, a and Figure 8, a.10



F

E

ε

C

r2

r1

r3

r4

r5

AR PR

AI

G

PI

ε

PIAIPR
AR

PI

R I1

I2

r4

AI

r1

AR

G

r6 = r2 U r4

r6 r2

r5

r3

(a) (b)Figure 7: Petri net synthesis from asymmetric TS: (a) quasi-elementary version for TS shown inFigure 5, b; (b) Synthesised Petri net
F

E

ε

G

C

r6 = r2 U r5

r2

r1

r3

r4

r5

AR PR

AI

G

PI

ε

PIAIPR
AR

PI
PR

R I1

I2

r4

r2
AI r3

r1

r6

r5

(a) (b)Figure 8: Petri net synthesis from asymmetric TS: (a) quasi-elementary version for TS shown inFigure 5, c; (b) Synthesised Petri net 11



The PNs derived from these two TSs are respectively shown in Figure 7, b and Figure 8, b. Notethat in order to enforce the Excitation Closure in both these cases, we have to use non-minimalregions, denoted by r6, to become self-loop pre-regions for AR and PR, respectively. These self-loop pre-regions guarantee that AR and PR are not enabled in the states I2 and F in Figure 7, aand Figure 8, a, respectively.We could, of course, derive inhibitor nets based only on minimal regions, using the fact that r6is complementary to r5 in Figure 7, a, and r6 is complementary to r4 in Figure 8, a.5 Circuit implementations for CFPP stage control5.1 The overall approachIn this section, we �rst brie
y review the general approach to circuit implementation of speci�ca-tions with internal con
icts, originally presented in [6]. This approach would allow us to make anappropriate re�nement of the PN models obtained in the previous section. The nets, as can beeasily observed from their Reachability Graphs, exhibit con
icts in the form of disabling of sometransitions by others.More formally, a PN that reaches a markingm in which a pair of transitions t1 and t2 is enabled,and by �ring one of them, say t1, a marking m0 is reached such that t2 is not enabled, is callednon-persistent with respect to t2.For example, the net shown in Figure 8, b is non-persistent with respect to transitions AR andPR. Either of these can be disabled by �ring AI .Why is persistency crucial for circuit synthesis ?As shown in [6], logic synthesis procedures, in particular those operating from the Signal Tran-sition Graph (STG) re�nements of Petri net models [8], can produce hazard-free implementationsonly for speci�cations without con
icts on non-input signals (so called output-persistent STGs).Obviously, the abstract events AR; PR;AI; PI in our speci�cations encapsulate transitions of bothinput and output signals { the former arrive in the stage while the latter are produced by the stage.Therefore, non-persistency with respect to, say, AR means that the logic synthesis techniques, suchas those of [4], cannot be applied to deriving the logic for such output signals. The method de-scribed in [6] proposes to treat such signals separately, by \factoring them out" of the speci�cationand associating them with standard arbitration components, such as a four-phase two-way mutex(ME) element or a two-phase RGD-arbiter , depending on whether a four-phase or two-phase circuitimplementation is obtained [8].The overall procedure [6] for implementing PNs and STGs with non-persistency with respectto non-input signals can be summarised as follows:1. determine a set of non-input signals whose transitions make the PN non-persistent;2. insert an appropriate set of semaphore actions, making semantic-preserving transformationsat the PN level;3. associate each semaphore with an appropriate ME element or an RGD-arbiter, depending onwhether a four-phase or two-phase circuit is synthesised (if the semaphores are multi-way, useappropriate decompositions of multi-way mutex components to 2-way ME's or 2-way RGD's,respectively);4. factor the semaphore implementations (the \mutex part") from the circuit, making theiroutputs to be additional inputs to the circuit, which should now be output-persistent;12



handshake
with lower

stage

AI?

r2 r4

r6’r6

pi?

pi!=AI!

AI

r6 r6’

r2 r4
AI?

AI!

r2 r4

RI

GI

r6’

DI

pi?

pi!
signal(me)

r6
me

wait(me)Figure 9: Action re�nement5. synthesise the \logical part" of the circuit by the existing (e.g., STG-based, if the speci�cationhas been re�ned to the event level of rising and falling edges of signals, alternatively usesyntax-directed methods to derive logic from PNs);6. combine the \mutex part" with the \logical part" by interconnecting the ME's or RGD's andthe gate network through the set of request-acknowledgement handshakes.5.2 Towards the circuit implementation of \symmetric solution"We shall now illustrate how this technique is used to obtain a two-phase implementation for our\symmetric case", that is the PN shown in Figure 4, d.First of all, we need to re�ne this net to re
ect the idea of input and output signal actions in astage. Figure 9 shows such a re�nement for action AI ; similar re�nements can be obtained for theremaining three abstract actions AR; PR and PI .Here, we �rst split AI into four events to represent two pairs of handshake signals. One pairis AI? and AI !, which is produced within the current stage. Here, AI? stands for a signal whosemeaning is a query \I am ready to accept an instruction from the lower stage, can I accept it?";the meaning of AI ! is \You can accept an instruction from the lower stage". The other pair pi?and pi! models the handshake interface with the lower stage. Here, pi?, stands for a query \I amready to pass an instruction, are you ready to receive it?" (which is an input signal to the currentstage), and pi!, meaning \The instruction has been received (and latched 5 in a register) by me!"(which is an output signal from the current stage to the lower stage). It is obvious that events AI !and pi! can be produced simultaneously, hence, to avoid cluttering of multiple arcs, we use a singlePN transition pi! = AI ! at this step.Since the pi! = AI ! transition is now the cause of non-persistency (place r6 is a place throughwhich the transition can be disabled by a corresponding transition in the results pipe model), weassociate a semaphore denoted by me (to further become a two-way mutex element implemented byan RGD-arbiter) with place r6. The second step of re�nement inserts explicit semaphore actions(wait(me) and signal(me)), protecting the pi! = AI ! transition. These actions are represented bythe signal transitions of an RGD arbiter implementing this semaphore, namely RI (request fromthe instruction pipe), GI (grant to the instruction pipe), and DI (done from the instruction pipe).Finally, when both actions pi! and AI ! are protected by the me we can split them into twoseparate transitions assuming that they will further correspond in the circuit to two di�erent wiresforking out of a single grant output from the RGD-arbiter.5We try to avoid describing the structure of the CFPP data path in this paper but in some cases it seems impossibleto at least mention some actions on data path, such latching instructions and results within a CFPP stage.13



RI AI?

GI AI!

PI?

PI!

RI

GI

GR

RR

PR!

PR?

AR!

AR?

GR

RR

Stage Automaton
Lower
Stage

Lower
Cop

Upper
Cop

Upper
Stage

pi?

pi!

ai?

ai!

ar!

ar?

pr!

pr?

me1 me2

AI PI

PR AR

G d

E

D

r6

r6’ r5

r3 r1

r4r2

dual-rail
selector

Figure 10: Petri net used for direct two-phase circuit implementationWe can now re�ne all four actions in a similar manner, that is followed by a trivial PN leveltransformation:� adding two auxiliary transitions E (standing for \Execute") and D (meaning \Done");� both \Done" events DI and DR, for both semaphores me1 and me2 can be combined intosingle \Done" (D) transition, to be implemented by one internal signal.This transformation does not change the behaviour of the net with respect to its original semantics.The resulting net is shown in Figure 10. It is easy to notice structural resemblance of this netto the organisation of the control, based on stage control circuits and inter-stage \cops", proposedin [2]. This is re
ected in the dotted boxes.We can now apply a direct transformation technique (similar to the one used in [8], whichessentially adopted Patil's approach [13]) to obtain a two-phase circuit implementation:� the mutex signal transitions are implemented by two RGD-arbiters; note that we may usea modi�ed version of the RGD-arbiter, with a single \Done" signal [2] (sometimes calledSequencer);� both pairs of transitions RI and RR can be implemented by C-elements;� the \merging" place r60 can be implemented by XOR;� transition E produces an event-based signal to activate selection between G and d whereasits D counterpart is a simple fork after an XOR standing for a place which is input-incidentto D; 14



C

C
C

C

r1

dr2

r1

r2

rgd

PII

AI?
PI?

PR! AR!

PR?

AI!

AR?

pi?

pi!

ai?

ai!

pr!

pi?

ar!

ar?

RI

RI

RR
RR

GI

GR

GI

GR
rgd

g1

g2 g2
d

g1

Lower Cop Stage Automaton Upper Cop

C

D

C

D

garnering

D

Empty Full
Inst Pipe Res Pipe

2-rail sel

delay

E

d G

Figure 11: Two-phase circuit implementation of \symmetric" solution� �nally, G and d require a special circuit component, which is e�ectively a dual-rail Selector,with one event-based input E, two event-based outputs for G and d, and two level-basedsignals f and f , forming the boolean condition (dual-rail encoded) for this selector. The lasttwo signals are logically \built" from the outputs from the RGD-arbiters. They have themeaning of marked places r3 (the results part is �lled with an item) and r2 (the instructionpart is empty).The analysis of this net shows that the trickiest part of the circuit is the interface betweenthe handshake signals of both pipes and the dual-rail selector. It can in fact be re�ned in a moststraightforward way. Indeed, at the time when signal associated with transition E is produced, themarking of places r1; r2; r3 and r4 would either be r1 = r2 = 0; r3 = r4 = 1 or r1 = r2 = 1; r3 =r4 = 0. The former corresponds to the case of generating the \Garner" control signal, while thelatter is the case of a \skip" signal. The skipping means that either instruction or result is passingthrough the stage without interaction with its counterpart. To implement these conditions in logicwe can use for example two XOR's (one with inverted output) to produce level-based signals fand t, used to control the Selector. Each such XOR would stand for the boolean condition \theinstruction (result) part is empty (�lled with an item)".The main circuit diagram is shown in Figure 11 while the internal structure of Selector is inFigure 12. Here, L is a Transparent Latch, whose generic logic equation is: Q = DC + (D+ C)Q.In this simple implementation, which is not purely speed-independent, we must guarantee, toavoid glitches in the Selector, that the delay with which signal E is applied to the Selector's inputx is large enough compared to that of the XORs forming the dual-rail inputs f and t. If necessary,an extra delay element should be inserted in wire E to make sure that this signal does not arrivebefore the level-based control has reached its valid state.This circuit, at such a modular level, looks very much like the one described in [2], except thatthe latter does not show the Full-Empty detector of the Stage Automaton while we \hide" the fact15



L

L

x

y0

y1

f

tFigure 12: Circuit implementation for dual-rail Selectorthe \Done" signal (input d) to each RGD-arbiter is in fact formed by joining two \Done's" of thetwo adjacent stages (as shown by dotted C-elements and extra connections in Figure 11). Plus, inthis paper, this circuit has been obtained from the initial speci�cation on a formal basis.It would also be possible to make a di�erent signalling expansion of the PN shown in Figure 4, d,using the four-phase approach. The circuit could then be built of ordinary four-phase ME elementsand standard logic gates, whose boolean functions would be obtained from an automatic tool, suchas SIS. We do not present this alternative here for the \symmetric" case but it will be shown forthe \asymmetric" one.5.3 Towards the circuit for \asymmetric solution"We have two potential speci�cations to take up for further re�nement and implementation, one is inFigure 7, b and the other in Figure 8, b. They basically produce the same e�ect on the results pipe,and di�er mainly in the way the handshake in the instruction pipe is synchronised with garnering.It is quite easy to notice however that executing each action AI or PI involves (see the AIre�nement in the previous section) synchronisation of handshake signals of two adjacent stages,where the role of AI in the upper stage is similar to that of PI in the lower one. We can thereforeconclude that both models would e�ectively yield the same performance { the critical cycle in theinstruction pipe always involves an execution (garnering or skip) and two inter-stage transfers (notesequence r2! AI ! r4! Gj�! r5! PI).What matters however is the way we synchronise two adjacent stages. Note that the mutuallyexclusive place r2 in the model of one stage can play the part of p6 in the adjacent stage. Henceone possible way of synchronising two stages could be to merge such places into one which willcontrol the border between the two stages.Such an approach is shown in Figure 13, where place labelled me2 is the merger of r2 and r6for the composition of two stages of Figure 7, b. The meaning behind this model is as follows. Assoon as an instruction enters the right hand side stage (\lower" stage in the terminology of [2]),having passed through semaphore place me1, it acquires the grant from the me2 semaphore, whichcontrols the border between the stages. Only after both semaphores are held with the instructionpipe it can perform execution, that is either garnering or skipping the instruction, depending onthe state of the results part. After completing the execution phase, the instruction pipe releasesthe me1 semaphore (token is returned back to place me2) and both instruction and result (or onlyinstruction) can move further to their corresponding next stages.Figure 14 shows a re�nement of the above two-stage PN model, in which we separated actions16



AR

G

PI

ε

PR

AI

G

ε

PR=AR

AI=PI

me3 me1

me2Figure 13: Model of two stages with merged \semaphore" places
pr?

pr!

RR3

GR3 AR!

DR3

PR!

RR2

GR2 AR! PR! GR1

RR1 ar?

ar!

GI1

RI1

pi!

pi?

AI!GI2

RI2

PI!GI3

RI3

DR2 DR1

ai!

ai?

DI1DI2

e G Ge

AI!

DI3

PI!

AR PR=AR PR

AI

me3 me2 me1

PI

wait(me3)

signal(me3)

wait(me2)

signal(me2)

wait(me1)

signal(me1)

wait(me2)
wait(me1)

signal(me3) signal(me2) signal(me1)

AI=PI

wait(me3)Figure 14: Re�ned model of two stages with merged \semaphore" placeson semaphores and handshake signal transitions to suit the two-phase signalling approach. Thisnet can now be used for direct implementation by a two-phase circuit.Figure 15 shows the corresponding circuit, which is \compiled" from the PN in the same wayas in the \symmetric" solution. Note that due to asymmetry of the control organisation, the toppart and the bottom part of the result and instruction pipes, respectively, are \non-standard".Similar sort of circuit solution, based on \asymmetrisation" of the CFPP control, has been recentlypresented by J. Ebergen [16].It can be observed from the PN model that in this circuit two adjacent stages always performexecution (garnering or skipping) sequentially. That is, two instructions, in adjacent stages cannotbe garnered in parallel. This constraint stems from the fact that the new execution in the lowerstage can only begin if the upper stage has completed its execution and released the correspondingsemaphore. This is an obvious disadvantage of our �rst approach to synchronise two adjacent stagesby means of merging their mutual exclusion places r2 and r6 according to Figure 13. In such anorganisation, the merger place, say me2, plays not only the role of mutual exclusion between theresult and instruction pipes but also restricts concurrency between events in the instruction pipe.It may appear possible to increase parallelism between the stages by allowing the upper stageto produce its acknowledgement to the lower stage before the execution in it begins, say after it17



r1

r2

rgd1

d1
g1

g2
d2

r1

r2

rgd1

d1
g1

g2
d2

CC

C C

r1

r2

rgd1

d1
g1

g2
d2

skip
0

1 garnering

C

sel

skip
0

1 garnering

C

sel

PI?

PI!

AR!

AR?

me1me2me3

PR?

PR!

Upper Stage Lower Stage

Top of Result
Pipe

Instruction

pipe bottom

AI!

AI?Figure 15: Two-phase circuit implementation of two adjacent stages
AR

G

PI

ε

r4

r2

r3

r1

r5

PR

AI

G

ε

r4

r3

r1

r6

r5

r6 r2

PR=AR

AI=PIFigure 16: Model of two stages with unmerged \semaphore" placeshas gained the grant from the next mutex element. But, in order to start the execution in thelower stage, we need to unlock the current mutex element, by also generating \Done" to it beforethe execution in the upper stage. This has its inevitable e�ect on unlocking the result pipe, whichmust not be allowed since the execution needs that pipe to be in stationary state.We shall now try to avoid constraining concurrency by a di�erent means, namely, by composingtwo stages preserving both mutex places r2 and r6 between them. The PN composition is shownin Figure 16. Here, as a building block we have taken the stage model of Figure 8, b.It is easy to observe that this net allows execution to take place in both stages at the same time.Indeed the following simple sequence of events brings the net to a marking in which both placesr4 have a token: AI; �; AI = PI; AI . Had the sequence AR; PR = AR;AR preceded the previoussequence, we would have had both garnering actions G enabled in the above-mentioned marking.This net is however slightly more di�cult to implement. Note that events labelled PR = AR andAI = PI are atomic in the sense that they change the marking of both mutex places simultaneously(additionally, the instruction pipe's action AI = PI also consumes a token from the next r2). Firstof all, we need to re�ne this net to such a form where the mutually exclusive places are associatedwith semaphore actions. Furthermore, we must be careful in such a re�nement since, if we want touse standard 2-way mutex elements to implement semaphores, we need to split the above-indicatedatomicity { such splitting often leads to a solution with a deadlock.Luckily, we can observe in this net that place r2 is always decremented �rst in the instructionpipe. This pipe must therefore hold this token until it has seized a token from r6 and further18



C PR?

PR!

r1

r2

rgd1

d1
g1

g2
d2

r_i

g_i

AI!

PI?

r_i

AR?

AR!

PR=AR

skip

sel
0

1 garnering

C
AI?

g_i

 dw

AI=PI

PI!

Implements
place r6Implements

place r2

Figure 17: Two-phase circuit implementation for unmerged \semaphore" placesfrom the next r2. If we adopt the same order of acquisition, �rst r2 and then r6, for the resultpipe (action PR = AR) we can guarantee that the net does not get into a deadlock. Indeed, theonly place for which both pipes e�ectively arbitrate is r2. Place r6 thus plays the role of a passivesynchroniser between the stages, so it need not be associated with a semaphore (and an arbiter inthe circuit) at all.For this stage of our report, we omit the phase of PN re�nement as it seems now rather tediousto go through. The circuit (for a single stage inside the CFPP) obtained in a way similar to theprevious solutions is shown in Figure 17.Note that this circuit really bene�ts from the fact that the mutex place r6 is not an arbitrationone. Instead of taking an extra RGD-arbiter, we can use a simpler block, a 2-by-1 Decision-Wait(originating from Join [15]), which is another standard two-phase circuit element (we also need anXOR to realise the \token-merging" functionality of place r6). Note also that, although signal PI ! isproduced to the next stage only after the instruction execution, we generate both acknowledgementAI ! and a \Done" for the RGD-arbiter earlier, to enable the lower stage to process its followinginstruction.Let us now look at an alternative way to implement our basic PN models. Instead of derivinga two-phase circuit directly from the re�ned PN description we shall try to make use of automatictools, e.g. SIS, which can synthesise logic from an STG expansion of the PN [8]. It should bereminded that the ME elements must be factored out so that the synthesis tool will only need toproduce boolean equations for \persistent" signals.As an example, let us take the PN from Figure 8, b. In order to obtain an STG expansionof this net we need to represent explicitly all signal events in the form of falling and rising edges(AI+; AI�; PI+; : : :). Additionally, we must insert semaphore actions, in the form of falling andrising edges on the request grant pairs to the appropriate ME elements. The result of such an19



r1r+r1r+

g1r+ g1r+

PR+PR-

r1r- r1r-

g1r-g1r-

r1i+

g1i+

AI+

r2i+

g2i+

AI-

r2i+

g2i+

g1i+

r1i+

r2r+ r2r+

g2r+ g2r+

AR- AR+

r2r-r2r-

g2r- g2r-

r1i-

g1i-

PI+

r2i-

g2i-

PI-

r1i-

g1i-

r2i-

g2i-

S+G-S-S+G- G+ S-G+

me1

me2

G0 S0

G1 S1

to all

Full

Empty

to all
S+,S-

G+,G-

Figure 18: An STG expansion of PN shown in Figure 8, bexpansion is shown in Figure 18. This STG describes the behaviour of a single (internal) stage ofthe CFPP. Here, signal S represents the \skipping" case of the instruction execution; G still standsfor the signal activating garnering.Although it looks quite cluttered with arcs (some of which are only sketched for being quiteobvious, while those connecting the mutex places are shown by dashed lines), this STG is stillsu�ciently clear to re
ect its correspondence to the PN it originates from. To avoid further clut-tering we do not split control events AI+; : : : into their actual handshake pairs AI?+; AI !+; : : :,presuming that it would be rather clear to trace them in the circuit representation.This STG involves 14 signals. The actual synthesised version was slightly bigger, 17 signals. Ithad, for example, a couple of internal signals that were included to assist unique state encoding. Itwas run through SIS on a fairly powerful workstation and produced results in a few minutes:r1i = (G� S � PI)r2i = (PI � ai)r1r = PR � d1rr2r = AR� d2rAR = d2r g2r+ AR(d2r+ g2r)PR = d1r g1r+ PR(d1r+ g1r)ai = AI PI + ai(AI + PI)PI = ai g1i+ PI(g1i+ ai) 20



d1r = AR g1r+ d1r(AR+ g1r)d2r = PR g2r+ d2r(PR+ g2r)G = g2i(AR� PR)(ai� S) + G((ai� S) + (AR� PR) + g2i)S = g2i (AR� PR) + (ai� G) + S((ai� G) + (AR� PR) + g2i)Note that this STG, models only one stage and its logic implementation provides only a partialview of the entire circuit. It was believed that to have a complete logic, all synthesised by atool, would give us a more trustworthy implementation rather than deriving only some parts of itthrough such reduced STG's with extra \logic glueing" done by hand. Indeed, in this asymmetricsolution, one stage is, for example, responsible for setting a request to an ME element while theresetting is done by the adjacent stage. More complex STG's, describing three adjacent stages,were also attempted. Some of them were still within the limits of a signal count allowed by SIS(currently 32 variables are allowed for the SUN workstation version [17]) but the largest possible\approximation" of the circuit has been obtained for an STG with 25 signals. This STG has beenfor three stages but had other \reductions" compared to the one shown here.The only di�culty in using the above equations for obtaining the �nal circuit is in the actualimplementation of the signals setting the ME elements from the instruction pipe. In order to obtainthis implementation we should bear in mind that the actual setting of the r1i, for example, is doneby the previous stage of the instruction pipe. The current stage has control only over the resettingof the request signal r1i in its ME element; it however also controls the setting of the requestsignal r2i in the ME element of the following stage. Therefore, we can use the r1i logic to formthe resetting part of the ME request signal, while the setting part could be obtained from the r2ilogic. Such a \glueing" actions allows us to optimise the overall logic, exploiting also the separationbetween the request and acknowledge pairs of the handshakes AI and PI .The circuit is shown in Figure 19. Some logical parts of it are represented as L (TransparentLatch) element, whose generic logic equation is: Q = DC + (D + C)Q, where D is a data inputand C is a latching input. It should be pointed out that the decomposition of the complex gatesfor Full/Empty Selector into simpler elements can be easily traced from their equations. Thisdecomposition however puts certain constraints on delays of these elements to avoid hazards.6 Further work and conclusionsWe have formally derived circuits for CFPP stage control from the initial state-based speci�cationpresented in [2]. This required combining two methodological approaches. One [7] is targetted ata Petri net model synthesised from the Transition System description. The other [6] synthesizingan asynchronous circuit from a Petri net description of its behaviour with internal con
icts.Some interesting lessons have been learned from this exercise as to the scope and power of thestate-of-the-art synthesis tools.There are some stages in this derivation at which model transformations may involve participa-tion of the designer. Firstly, it is the transformation of the Transition System to a quasi-elementaryform, to allow the Petri net to represent labelled events by means of unique net transitions. Theuniqueness requirement is crucial for those events that correspond to the transitions of outputsignals which are involved in behavioural con
icts. This is a requirement of the method in [6].Another place of possible active involvement is the signalling expansion, that is the re�nement ofthe Petri net into a Signal Transition Graph. A large number of alternative re�nements can be21



L

me2 me1

L

L

L

L

PI?

PI!

C

C

PR?

PR!

g1

r1
g2

r2 AI!

AI?

AR!

AR?

r2r

r2r

g2r

g2i

r1r g1r

r1i g1i

Full/Empty Selector

S

G

d1r
Result Full

ai

Lower

Stage

Upper

Stage

Reset(me2)

Set(me2)

Reset(me1)

Set(me1)

Figure 19: Circuit for PN shown in Figure 8, b, obtained through STG-based synthesis
22



built [8], all di�erent in performance and size. The designer thus has to be able to make importantdecisions at the STG level. Due to the size constraints imposed by the synthesis tool, the designermay need to split the speci�cation into parts and synthesise logic for them separately. Then, the�nal \glueing" is done at the logic implementation level. Here, an important role to be played isthe veri�cation at the circuit level as one can never guarantee that the dynamic behaviour of thecomposed circuit would be correct after such a glueing.Note that veri�cation is also needed at an earlier phase, to verify the legitimacy of transforma-tions of the original speci�cation, such as those reducing the set of possible execution sequences. Wemay also need to verify composition of Petri net models of individual modules. In this example, wehad di�erent alternatives to interconnect CFPP stages, to yield di�erent performance and circuitsize. The results of re�ning net models with abstract transitions into those with semaphore actionsmay also need checking for deadlock-freedom, especially if the structure of con
icts between nettransitions involves several mutually shared places.To summarise, we can state that both synthesis and veri�cation steps are closely linked in thisdesign process as some transformations are hardly mechanisable. Our asynchronous design toolsshould therefore provide an e�cient interface between these steps, to allow the designer to interfereinto this process at various stages.In this report, we have not mentioned anything about actual evaluation of performance of theobtained circuits. Similarly, analysis of timing constraints for their hazard-free implementation(e.g., in simple logical gates) should not be missed out. Some recently proposed methods to solvethese problems can be found for instance in [18, 19, 20].AcknowledgementsThe author would like to thank Jordi Cortadella, Mike Kishinevsky and Luciano Lavagno for fruitfulcollaboration on the topic of synthesising Petri nets from state-based descriptions. Many thanks toLuciano Lavagno for useful discussions about constructing a Petri net model of the CFPP exampleand his kind help with using SIS. I also highly appreciate help of Alex Semenov and his softwaretools in verifying the numerous Petri net models produced in the course of this work.References[1] S. Furber, P. Day, J.D.Garside, N.C. Paver, J.V. Woods. AMULET1: A micropipelines ARM. InProceedings of VLSI'93 , Grenoble, France, Sept. 1993, Best Paper Award.[2] R.F. Sproull,I. Sutherland and C.E. Molnar. The Counter
ow Pipeline Processor Architecture. IEEEDesign and Test of Computers, Fall 1994, pp. 48 { 59.[3] K. van Berkel, J. Kessels, M. Roncken, R. Saejis and F. Schalij The VLSI-programming languageTangram and its translation into handshake circuits In Proc. EDAC'91, pp. 384 { 389, 1991.[4] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R.K. Brayton and A. Sangiovanni-Vincentelli. SIS: A System for Sequential Circuit Synthesis Universityof California at Berkeley, UCB/ERL M92/41, May 1992.[5] M. Kishinevsky, A. Kondratyev, A. Taubin, V. Varshavsky. Concurrent Hardware: The Theory andPractice of Self-Timed Design. John Wiley and Sons, London, 1993.[6] J. Cortadella, L. Lavagno, P. Vanbekbergen and A.Yakovlev. Designing asynchronous circuits frombehavioural speci�cations with internal con
icts. In Proceedings of Int. Conf. on Adv. Res. in Asynch.Circ. and Syst., Salt Lake City, Utah, November 1994, pp. 106 { 115.23



[7] J. Cortadella, M. Kishinevsky, L. Lavagno and A. Yakovlev. Synthesizing Petri Nets from State-BasedModels Universitat Politecnica de Catalunya, RR 95/09 UPC/DAC, April, 1995.[8] A. Yakovlev, A.M. Koelmans and L. Lavagno. High level modelling and design of asynchronous interfacelogic. IEEE Design and Test of Computers, Spring 1995, pp. 32 { 40.[9] M. Nielsen, G. Rozenberg and P.S. Thiagarajan. Elementary transition systems Theoretical ComputerScience, Vol. 96, pp. 3 - 33, 1992.[10] L. Bernardinello, G. De Michelis, K. Petruni and S. Vigna. On Synchronic Structure of TransitionSystems. Universita di Milano, 1994.[11] R. Brayton et al. Logic Minimisation Algorithms for VLSI Synthesis. Kluwer Academic Publishers,Hingham, MA, 1984[12] T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE, April, 1989,pp. 541 { 580.[13] S.S. Patil and J.B. Dennis. The description and realization of digital systems. In Proceedings of theIEEE COMPCOM , 1972, pp. 223 { 226.[14] I. E. Sutherland. Micropipelines. Communications of the ACM, June 1989, Turing Award Lecture.[15] R.M. Keller. Towards a theory of universal speed-independent modules. IEEE Transactions on Com-puters, C-32(1), June 1974, pp. 21 { 33.[16] J. Ebergen, Personal Communication, March 1995.[17] L. Lavagno, Personal Communication, April 1995.[18] H. Hulgaard and S.M. Burns. Bounded delay timing analysis of a class of CSP programs with choice.In Proceedings of Int. Conf. on Adv. Res. in Asynch. Circ. and Syst., Salt Lake City, Utah, November1994, pp. 2 { 11.[19] T.G. Rokicki. Representing and Modeling Digital Circuits. Ph.D. thesis, Stanford University, 1993.[20] C.J.Myers and T.H.-Y. Meng. Synthesis of timed asynchronous circuits. IEEE Transactions on VLSISystems, 1(2): 106 {119, June 1993.
24


