
Designing Control Logic for Counter
ow Pipeline Processor UsingPetri Nets �A. YakovlevDepartment of Computing ScienceUniversity of Newcastle upon Tyne, NE1 7RU EnglandMay 3, 1995AbstractThis paper approaches the problem of implementing an asynchronous control for a stage of theSproull Counter
ow pipeline processor (CFPP) as an exercise in combining two synthesis techniquesrecently developed for Petri nets. We �rst synthesise a number of Petri net models of the CFPPstage control from its original \�ve-state-�ve-event" description due to C. Molnar. Secondly, weimplement these net models in asynchronous circuits, using two-phase and four-phase components.The latter stage involves synthesising circuits with arbitration elements from behavioural descrip-tions with internal con
icts. This exercise appears to be quite instructive in the sense that it helpsto estimate the scope and power of formal methods and today's automatic tools in assisting theprocess of asynchronous design.Keywords: arbitration, asynchronous circuit, counter
ow pipeline processor, design automa-tion tool, event-based signalling, micropipeline, Petri net, signal transition graph, synthesis.1 IntroductionAsynchronous design technology is getting more mature both in actual designing industrial strengthcircuits and developing design tools. Two recent processor design projects, the Amulet1 micropro-cessor [1] and Sproull's counter
ow pipeline processor (CFPP) [2], have drawn attention of a muchwider audience than what used to be a traditionally small \asynchronous club". On the tools front,there has also been much progress in the last �ve years. Amongst at least a dozen of existingsoftware packages are such systems as Tangram [3], supporting syntax-driven design from high-level programming speci�cations, and SIS [4] and FORCAGE [5], supporting circuit synthesis frominterpreted Petri nets and their \close relative", Change Diagrams. The FORCAGE system alsoprovides tools for veri�cation of speed-independence conditions in asynchronous designs.There is still much to be done for the tools to enable practical circuit designers bene�t fromthem in their everyday experience. The major shortcomings of the existing tools are following.Firstly, they are usually good in simple routine operations, such translating high-level behaviouraldescriptions into specially structured circuits, e.g., converting Tangram CSP-like expressions intointerconnections of handshake components. The resulting circuits can often be ine�cient, bothin speed and in size. Secondly, the synthesis-oriented tools are capable of synthesising only from�Supported by EPSRC grant GR/J52327 1



speci�cations which are special classes of state-graphs (semi-modular) and Petri nets (free-choiceand safe, or non-choice) and of a fairly limited size. For example, today's tools do not allow thedesigner to synthesise circuits with arbitration unless the designer uses special \tricks", combiningtwo approaches, partly manual and partly automated.There has been some initial work on the methods that extend the class of speci�cations, to allowdesigning circuits with arbitration components [6]. This work (a) needs further formalisation andautomation, and (b) it is limited to a particular modelling framework, all transformations must becarried out at the Petri net level. Both these issues can be resolved independently, and the latterone can possibly bene�t from the recent developments in the area of automated synthesis of Petrinets from state-based models.Indeed, as can be seen in the model of a CFPP stage control circuit, devised by Charles Mol-nar [2], the designer may �nd it easier to de�ne the behaviour in a state-transition form. The stagecontrol model is the one with an essential arbitration paradigm. Originally, it looked doubtful thatcircuit synthesis techniques available for Petri nets [6] could be directly applied to it. The wayfrom the speci�cation to the circuit, as outlined in [2], was paved by manual e�ort. For example,the most crucial part of this design was a structural decomposition of a stage into an inter-stagearbiter (called \cop") and the remaining stage circuitry. That has obviously been one of the ways(apparently a very successful one!) to pursue the design. It would however probably be desirableto use a more formal technique that would allow a set of transformations at the behavioural level,in which this design would be a natural option from the synthesis process. Such a wish creates themajor goal of this paper.The paper demonstrates the combined use of the following constituents:1. Equivalent transformations at the state-transition level, which are aimed at obtaining a stategraph in such a form that can be converted into a behaviourally equivalent Petri net.2. Synthesis of a Petri net from the state graph [7]; the net must satisfy the requirements ofsubsequent circuit synthesis [6].3. Synthesis of a circuit in one of the two potential technologies. The �rst one is a two-phasecircuit consisting of special (micropipeline) elements. Such a circuit can often be obtainedby a relatively straightforward conversion of the Petri net (almost similar to a syntax-drivenapproach of Tangram). The second possibility, quite a challenge for today's synthesis tools, isto re�ne the net into a Signal Transition Graph (using the so-called \signalling expansion" [8])and perform logic synthesis using one of the STG-based tools (e.g., SIS).These steps are not fully automated as yet but there is a good indication that design exampleslike this one with CFPP create a very good motivation and provide guidance for further workon tools. For example, a new tool, called petrify, whose original version has been developed byJordi Cortadella on the ideas of [7], already supports synthesis of Petri nets from state graphs andequivalent transformations at the Petri net level. In fact, the most recent version of petrify hashelped to obtain the Petri net models shown in Figure 4, c and d, which lead to the circuit shownin Figure 11. Those synthesised originally by hand had some redundant places and arcs.Hopefully, petrify will eventually provide an important link between circuit compilation tools(e.g., TANGRAM) and circuit synthesis and veri�cation tools (e.g., SIS and FORCAGE).The paper is organised as follows. Section 2 introduces the description of the CFPP stagecontrol circuit and formulates the problem. Section 3 describes the procedure to synthesise Petrinet speci�cations from state-based models. Section 4 demonstrates the application of this procedure2



to the state-based description of the CFPP stage control. Section 5 presents implementations ofthe Petri net models of the CFPP stage control. Finally, Section 6 outlines directions of futurework and draws conclusions.2 CFPP stage control circuit. Original descriptionFor a complete description of the CFPP architecture we refer the reader to [2]. Here, we would liketo abstract away from the details of instruction execution in the CFPP, and only concentrate onthe issue of the behavioural speci�cation of control in a basic stage of the CFPP.The overall organisation of control in a CFPP is as follows. There are two mutually synchronisedpipelines, one for instructions and the other for results, where the results are used by instructionsand may be produced or updated by them. These pipelines allow instructions and results topropagate in opposite directions, each of them operating as an ordinary pipeline with data itemspassing between any pair of adjacent stages if one of the stages is empty and the preceding stagesholds a datum. Here, the role of data items is played by instructions, in the instruction pipe, andby results, in the result pipe.Mutual synchronisation between the two pipes is essential for the functionality of the CFPP.The following important requirement is imposed on such a synchronisation: for every instructionI, entering the instruction pipe from the bottom (by convention, instructions 
ow \bottom-up"),and every result R, entering the pipe at the top (results 
ow \top-down") while the instruction Iis already in the pipe, there must be an opportunity to match in one of the stages (the matchingprocess, including potential execution if the address of the operand in I matches the one in R, iscalled garnering).Abiding by the above requirement, instructions and results happenning to cohabit in the coun-ter
ow pipeline must never miss each other. This requirement is met by organising the pairs ofadjacent stages in such a way that the states of control in these stages prevents certain items fromadvancing along their pipes until the garnering process has been accomplished.Figure 1 shows Molnar's state diagram of a pipeline stage control. The states have the followingmeaning:E: Empty. Neither instruction nor result is present.I : Instruction. Only an instruction is present.R: Result. Only a result is present.F : Full. Both instruction and result have arrived.C: Complete. The CFPP execution rules [2] have been enforced, and both instruction andresult are free to move on 1.The transitions in this state graph that involve motion of instructions and results are labelledAI (accept instruction from below), PI (pass instruction upward), AR (accept result from above),PR (pass result downward), and G (perform garnering, which is either executing the instruction ifits operand matches the result or release both instruction and result).Observing the state graph, we may note that there are two states in which dynamic arbitrationmay take place. First, this is state I , where either instruction may be passed before a result may1As was noted in [2], in practice this state might be divided further to allow the result to advance while theinstruction is being executed. We, however, abstract away from such distinctions in this paper.3
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ow pipeline stage control: (a) structural view, (b) state diagramarrive in the stage or result may arrive before instruction is allowed to leave the stage. Similarly,in state R, either result may be passed before an instruction may arrive in the state or instructionmay arrive before result is allowed to leave the stage.The presentation in [2] \jumped" from de�nition of this state diagram directly to its structuraland circuit implementation. Our task here is to demonstrate the process of deriving the speci�cationin the form of a Petri net with signal events represented uniquely , which would be more amenable toformal transformations. The latter would bring us to a circuit solution, or a set of solutions, withstandard arbitration elements (e.g., a 2-way mutual exclusion element), following the techniquedescribed in [6].First, we need to review some important results on synthesis of Petri nets from transitionsystems (i.e., state graphs). The major theoretical background can be found in [9]. The adaptationof those results to a practical procedure of synthesising nets from state-based models was madein [7].3 Synthesis of Petri nets from transition systemsLabelled Petri nets. The target of our speci�cation synthesis is a labelled Petri net. We assumethat the reader is familiar with the basic terminology of Petri nets [12], and give here only a briefoutline of the most relevant issues.A Petri net (PN) is a directed graph consisting of two types of vertices, places and transitions ,connected by arcs, called 
ow relation, in such a way that arcs between places or between transitionsare not allowed 2. In a marked net, a special subset of places, marked with tokens (black dots),is called the initial marking of the net. A transition is enabled in a marking if all its input placesare marked. An enabled transition may �re, producing a new marking (this marking is said tobe directly reachable from the previous one) with one less token in each input place and one moretoken in each output place of the transition. The set of all markings reachable (ordinary transitiveclosure of the direct reachability) from the initial one is called the net's Reachability Set. Thegraph whose vertices are the net's markings and arcs correspond to the direct reachability relationis called the Reachability Graph of the net.2We shall sometimes abuse this standard notation by allowing two transitions to be connected by an arc directly{ this arc would stand for a place with exactly one input and one output arcs in a standard form. The \overloaded"arc thus becomes a carrier for tokens. 4



A labelled PN is a PN in which every transition is labelled with a symbol, called label , from agiven alphabet. In the case of unique labelling , i.e., if no two transitions have the same label, eachtransition in the net can be uniquely identi�ed by its label. In such a case we can use the label asthe transition's name.A PN is called safe if no more than one token can appear in a place. A PN is called pure ifno pair of a place and transition are connected by mutually opposite arcs (bi-directional arcs areoften used to represent such self-loops in PNs). A PN is called simple if no two transitions havethe same sets of input and output places.Transition systems. A transition system (TS) is a directed state graph in which every arcconnecting a pair of states is labelled with a name of an event from a speci�c event alphabet. Sucha labelled arc is called transition. One state is marked as the initial state. Any TS must satisfythe following basic conditions [9]:A1. No self-loops, that is no transition may begin and end in the same state.A2. No multiple arcs between a pair of states.A3. Every event must have some occurrence.A4. Every state is reachable from the initial state.The basic intuitive idea behind the construction of a Petri net whose behaviour is equivalent 3to the original TS is a correspondence between subsets of states, called regions , and places in thesynthesised net. This allows a 1-1 correspondence between states of a region and markings of thePetri net in which the place corresponding to the region has a token.More speci�cally, a region is a subset of states with which all transitions labelled with the sameevent e have exactly the same \entry/exit" relationship. Namely, we say that a subset of states r isentered by event e if for every transition labelled with e the source state does not belong to r whilethe destination state is in r. Similarly, r is exited by e if for every e-labelled transition the sourcestate is in R while the destination is outside r. In the remaining cases, e is said to be non-crossing ,either internal or external , event for a region. Thus, to become a region, a subset r must satisfyexactly one of the three cases for every event e: (i) r is entered by e, (ii) r is exited by e, and (iii)r is not crossed by e.A region r is a pre-region (post-region) of an event e if r is exited (entered) by e.Figure 2 illustrates a pair of regions, r1 = fE;Rg and r2 = fI; F; Cg, in the TS of the CFPPstage control. Note that r1 is a pre-region for event AI and a post-region for PI whereas r2 is apre-region for PI and a post-region for AI . Both regions are not crossed by AR and PR. Finally,G is an external event for r1 and internal for r2.It is known from [9] that in order to generate a Petri net whose reachability graph is isomorphicto a given TS, the TS must be elementary . The elementarity conditions , additional to the abovefour basic conditions, are as follows:A5. State separation property, which means that for any two di�erent states there must exist aregion which contains one of the states and does not include the other.3We basically use a strong notion of equivalence, isomorphism between the given transition system and thetransition system which is obtained from the reachability graph of the Petri net. E�ectively, the synthesis techniqueof [7] supports a weaker form, bi-simulation. 5
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ow relation is built according to the relationship between pre-regions and events, andevents and post-regions.A PN synthesised by this procedure is called a saturated net, since all regions are mapped intothe corresponding places. A saturated net is canonical but has a lot of redundancy. As shownin [10], it is su�cient to consider only regions which are not sub-regions of other regions (suchregions are called minimal). The net constructed from all minimal regions is also a canonical formand is called aminimal saturated net. Even the latter can be redundant to produce the ReachabilityGraph isomorphic to the TS. The method described in [7] performs additional optimisation andproduces an irredundant net with minimal regions (the idea is somewhat similar to an irredundantcover of prime implicants in logic minimisation [11]).It has also been shown in [7] that the elementarity conditions can be checked by means of amore practically e�cient structural property of a TS, called \Excitation Closure". It is based onthe notion of excitation regions for events.A set of states is a generalised excitation region for event e, denoted by GER(e), if it is amaximal set of states such that in every element of this set event e is enabled. Excitation Closurerequires that for every event e the intersection of pre-regions of e is equal to GER(e).In our TS of Figure 2, the Excitation Closure property does not hold for several events. Forexample, GER(PI) = fI; Cg but the only pre-region of PI is region r2 = fI; F; C; g; GER(G) =fFg but the set of pre-regions of G is empty. This TS is therefore not elementary.6



The synthesis technique of [7] allows a number of modi�cations to the basic construction idea,including extensions to the class of elementary TSs.It is possible to convert any TS to a PN by means of the so-called label splitting . Label splittingis the procedure that incrementally 4 distinguishes between the original labels (by enumeratingtheir occurrences in di�erent transitions of the TS) in such a way that the TS gradually becomeselementary with respect to the new (enumerated) alphabet. The convergence of this process isguaranteed by the fact that any TS with all transitions labelled uniquely can produce a state-machine net [12] whose structure and behaviour would be isomorphic to the original TS.In order to synthesise non-pure PNs, the above Excitation Closure condition is generalised toallow the so-called self-loop pre-regions to be involved in the intersection of pre-regions for an event.A region r is a self-loop pre-region for event e if it is not a pre-region but the GER(e) is containedin r. Including a place corresponding to such a region into the set of input and output places doesnot restruct the enabling conditions for an event unnecessarily. Yet it often allows to \trim" theintersection of pre-regions to such an extent that the given event is not enabled in the states notincluded in its excitation region.Non-pure nets appear to be very useful in practice when modelling arbitration circuits andbehaviour in which one event asymmetrically disables another event. The latter takes place, forexample, in the models where an input signal disables an output signal (e.g., see the model of aTransparent Latch in [6]).In a similar way, the Excitation Closure condition has been extended further, to allow inhibitorpre-regions. A region r is called an inhibitor pre-region for event e if its intersection with theGER(e) is empty. This extension allows one to generate inhibitor nets. Such nets (e.g., for thecase of safe nets) are known to be representable by ordinary PNs using the so-called complementaryplaces. A place is called complementary to another place if it is marked in those and only thosemarkings where the other place is unmarked. It is clear that a place and its complementary placecorrespond to a region and its complementary region (the latter is obtained by subtracting theformer from the total set of states in the TS).It is also noted in [7] that sometimes it is useful to include non-minimal regions to enforceExcitation Closure.The class of TS, properly including elementary ones, which satis�es the Excitation Closure prop-erty extended in the above ways (self-loop and inhibitor pre-regions), is called quasi-elementary [7].Finally, one can use the idea of including dummy events and corresponding transitions into theTS. Being \silent", such events do not change observational equivalence between the original TSand the modi�ed one. Yet they allow to split some states of the original TS and construct newregions capable of satisfying the Excitation Closure condition.To summarise, a number of techniques, some of which are computationally hard, can be appliedin order to generate Petri nets from non-elementary transition systems. Below, we demonstratethe use of such techniques in practice, for the original TS model of the CFPP control, which is notelementary.4 Deriving a Petri net for CFPP stage controlWe are now ready to revisit our TS model of the CFPP stage control and transform it to such aTS that would would generate a PN using the above technique.4Some useful heuristics are presented in [7] for label splitting.7
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The PNs derived from these two TSs are respectively shown in Figure 7, b and Figure 8, b. Notethat in order to enforce the Excitation Closure in both these cases, we have to use non-minimalregions, denoted by r6, to become self-loop pre-regions for AR and PR, respectively. These self-loop pre-regions guarantee that AR and PR are not enabled in the states I2 and F in Figure 7, aand Figure 8, a, respectively.We could, of course, derive inhibitor nets based only on minimal regions, using the fact that r6is complementary to r5 in Figure 7, a, and r6 is complementary to r4 in Figure 8, a.5 Circuit implementations for CFPP stage control5.1 The overall approachIn this section, we �rst brie
y review the general approach to circuit implementation of speci�ca-tions with internal con
icts, originally presented in [6]. This approach would allow us to make anappropriate re�nement of the PN models obtained in the previous section. The nets, as can beeasily observed from their Reachability Graphs, exhibit con
icts in the form of disabling of sometransitions by others.More formally, a PN that reaches a markingm in which a pair of transitions t1 and t2 is enabled,and by �ring one of them, say t1, a marking m0 is reached such that t2 is not enabled, is callednon-persistent with respect to t2.For example, the net shown in Figure 8, b is non-persistent with respect to transitions AR andPR. Either of these can be disabled by �ring AI .Why is persistency crucial for circuit synthesis ?As shown in [6], logic synthesis procedures, in particular those operating from the Signal Tran-sition Graph (STG) re�nements of Petri net models [8], can produce hazard-free implementationsonly for speci�cations without con
icts on non-input signals (so called output-persistent STGs).Obviously, the abstract events AR; PR;AI; PI in our speci�cations encapsulate transitions of bothinput and output signals { the former arrive in the stage while the latter are produced by the stage.Therefore, non-persistency with respect to, say, AR means that the logic synthesis techniques, suchas those of [4], cannot be applied to deriving the logic for such output signals. The method de-scribed in [6] proposes to treat such signals separately, by \factoring them out" of the speci�cationand associating them with standard arbitration components, such as a four-phase two-way mutex(ME) element or a two-phase RGD-arbiter , depending on whether a four-phase or two-phase circuitimplementation is obtained [8].The overall procedure [6] for implementing PNs and STGs with non-persistency with respectto non-input signals can be summarised as follows:1. determine a set of non-input signals whose transitions make the PN non-persistent;2. insert an appropriate set of semaphore actions, making semantic-preserving transformationsat the PN level;3. associate each semaphore with an appropriate ME element or an RGD-arbiter, depending onwhether a four-phase or two-phase circuit is synthesised (if the semaphores are multi-way, useappropriate decompositions of multi-way mutex components to 2-way ME's or 2-way RGD's,respectively);4. factor the semaphore implementations (the \mutex part") from the circuit, making theiroutputs to be additional inputs to the circuit, which should now be output-persistent;12
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d1r = AR g1r+ d1r(AR+ g1r)d2r = PR g2r+ d2r(PR+ g2r)G = g2i(AR� PR)(ai� S) + G((ai� S) + (AR� PR) + g2i)S = g2i (AR� PR) + (ai� G) + S((ai� G) + (AR� PR) + g2i)Note that this STG, models only one stage and its logic implementation provides only a partialview of the entire circuit. It was believed that to have a complete logic, all synthesised by atool, would give us a more trustworthy implementation rather than deriving only some parts of itthrough such reduced STG's with extra \logic glueing" done by hand. Indeed, in this asymmetricsolution, one stage is, for example, responsible for setting a request to an ME element while theresetting is done by the adjacent stage. More complex STG's, describing three adjacent stages,were also attempted. Some of them were still within the limits of a signal count allowed by SIS(currently 32 variables are allowed for the SUN workstation version [17]) but the largest possible\approximation" of the circuit has been obtained for an STG with 25 signals. This STG has beenfor three stages but had other \reductions" compared to the one shown here.The only di�culty in using the above equations for obtaining the �nal circuit is in the actualimplementation of the signals setting the ME elements from the instruction pipe. In order to obtainthis implementation we should bear in mind that the actual setting of the r1i, for example, is doneby the previous stage of the instruction pipe. The current stage has control only over the resettingof the request signal r1i in its ME element; it however also controls the setting of the requestsignal r2i in the ME element of the following stage. Therefore, we can use the r1i logic to formthe resetting part of the ME request signal, while the setting part could be obtained from the r2ilogic. Such a \glueing" actions allows us to optimise the overall logic, exploiting also the separationbetween the request and acknowledge pairs of the handshakes AI and PI .The circuit is shown in Figure 19. Some logical parts of it are represented as L (TransparentLatch) element, whose generic logic equation is: Q = DC + (D + C)Q, where D is a data inputand C is a latching input. It should be pointed out that the decomposition of the complex gatesfor Full/Empty Selector into simpler elements can be easily traced from their equations. Thisdecomposition however puts certain constraints on delays of these elements to avoid hazards.6 Further work and conclusionsWe have formally derived circuits for CFPP stage control from the initial state-based speci�cationpresented in [2]. This required combining two methodological approaches. One [7] is targetted ata Petri net model synthesised from the Transition System description. The other [6] synthesizingan asynchronous circuit from a Petri net description of its behaviour with internal con
icts.Some interesting lessons have been learned from this exercise as to the scope and power of thestate-of-the-art synthesis tools.There are some stages in this derivation at which model transformations may involve participa-tion of the designer. Firstly, it is the transformation of the Transition System to a quasi-elementaryform, to allow the Petri net to represent labelled events by means of unique net transitions. Theuniqueness requirement is crucial for those events that correspond to the transitions of outputsignals which are involved in behavioural con
icts. This is a requirement of the method in [6].Another place of possible active involvement is the signalling expansion, that is the re�nement ofthe Petri net into a Signal Transition Graph. A large number of alternative re�nements can be21
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built [8], all di�erent in performance and size. The designer thus has to be able to make importantdecisions at the STG level. Due to the size constraints imposed by the synthesis tool, the designermay need to split the speci�cation into parts and synthesise logic for them separately. Then, the�nal \glueing" is done at the logic implementation level. Here, an important role to be played isthe veri�cation at the circuit level as one can never guarantee that the dynamic behaviour of thecomposed circuit would be correct after such a glueing.Note that veri�cation is also needed at an earlier phase, to verify the legitimacy of transforma-tions of the original speci�cation, such as those reducing the set of possible execution sequences. Wemay also need to verify composition of Petri net models of individual modules. In this example, wehad di�erent alternatives to interconnect CFPP stages, to yield di�erent performance and circuitsize. The results of re�ning net models with abstract transitions into those with semaphore actionsmay also need checking for deadlock-freedom, especially if the structure of con
icts between nettransitions involves several mutually shared places.To summarise, we can state that both synthesis and veri�cation steps are closely linked in thisdesign process as some transformations are hardly mechanisable. Our asynchronous design toolsshould therefore provide an e�cient interface between these steps, to allow the designer to interfereinto this process at various stages.In this report, we have not mentioned anything about actual evaluation of performance of theobtained circuits. Similarly, analysis of timing constraints for their hazard-free implementation(e.g., in simple logical gates) should not be missed out. Some recently proposed methods to solvethese problems can be found for instance in [18, 19, 20].AcknowledgementsThe author would like to thank Jordi Cortadella, Mike Kishinevsky and Luciano Lavagno for fruitfulcollaboration on the topic of synthesising Petri nets from state-based descriptions. Many thanks toLuciano Lavagno for useful discussions about constructing a Petri net model of the CFPP exampleand his kind help with using SIS. I also highly appreciate help of Alex Semenov and his softwaretools in verifying the numerous Petri net models produced in the course of this work.References[1] S. Furber, P. Day, J.D.Garside, N.C. Paver, J.V. Woods. AMULET1: A micropipelines ARM. InProceedings of VLSI'93 , Grenoble, France, Sept. 1993, Best Paper Award.[2] R.F. Sproull,I. Sutherland and C.E. Molnar. The Counter
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