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Abstract

This paper approaches the problem of implementing an asynchronous control for a stage of the
Sproull Counterflow pipeline processor (CFPP) as an exercise in combining two synthesis techniques
recently developed for Petri nets. We first synthesise a number of Petri net models of the CFPP
stage control from its original “five-state-five-event” description due to C. Molnar. Secondly, we
implement these net models in asynchronous circuits, using two-phase and four-phase components.
The latter stage involves synthesising circuits with arbitration elements from behavioural descrip-
tions with internal conflicts. This exercise appears to be quite instructive in the sense that it helps
to estimate the scope and power of formal methods and today’s automatic tools in assisting the
process of asynchronous design.

Keywords: arbitration, asynchronous circuit, counterflow pipeline processor, design automa-
tion tool, event-based signalling, micropipeline, Petri net, signal transition graph, synthesis.

1 Introduction

Asynchronous design technology is getting more mature both in actual designing industrial strength
circuits and developing design tools. Two recent processor design projects, the Amuletl micropro-
cessor [1] and Sproull’s counterflow pipeline processor (CFPP) [2], have drawn attention of a much
wider audience than what used to be a traditionally small “asynchronous club”. On the tools front,
there has also been much progress in the last five years. Amongst at least a dozen of existing
software packages are such systems as Tangram [3], supporting syntax-driven design from high-
level programming specifications, and SIS [4] and FORCAGE [5], supporting circuit synthesis from
interpreted Petri nets and their “close relative”, Change Diagrams. The FORCAGE system also
provides tools for verification of speed-independence conditions in asynchronous designs.

There is still much to be done for the tools to enable practical circuit designers benefit from
them in their everyday experience. The major shortcomings of the existing tools are following.
Firstly, they are usually good in simple routine operations, such translating high-level behavioural
descriptions into specially structured circuits, e.g., converting Tangram CSP-like expressions into
interconnections of handshake components. The resulting circuits can often be inefficient, both
in speed and in size. Secondly, the synthesis-oriented tools are capable of synthesising only from
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specifications which are special classes of state-graphs (semi-modular) and Petri nets (free-choice
and safe, or non-choice) and of a fairly limited size. For example, today’s tools do not allow the
designer to synthesise circuits with arbitration unless the designer uses special “tricks”, combining
two approaches, partly manual and partly automated.

There has been some initial work on the methods that extend the class of specifications, to allow
designing circuits with arbitration components [6]. This work (a) needs further formalisation and
automation, and (b) it is limited to a particular modelling framework, all transformations must be
carried out at the Petri net level. Both these issues can be resolved independently, and the latter
one can possibly benefit from the recent developments in the area of automated synthesis of Petri
nets from state-based models.

Indeed, as can be seen in the model of a CFPP stage control circuit, devised by Charles Mol-
nar [2], the designer may find it easier to define the behaviour in a state-transition form. The stage
control model is the one with an essential arbitration paradigm. Originally, it looked doubtful that
circuit synthesis techniques available for Petri nets [6] could be directly applied to it. The way
from the specification to the circuit, as outlined in [2], was paved by manual effort. For example,
the most crucial part of this design was a structural decomposition of a stage into an inter-stage
arbiter (called “cop”) and the remaining stage circuitry. That has obviously been one of the ways
(apparently a very successful one!) to pursue the design. It would however probably be desirable
to use a more formal technique that would allow a set of transformations at the behavioural level,
in which this design would be a natural option from the synthesis process. Such a wish creates the
major goal of this paper.

The paper demonstrates the combined use of the following constituents:

1. Equivalent transformations at the state-transition level, which are aimed at obtaining a state
graph in such a form that can be converted into a behaviourally equivalent Petri net.

2. Synthesis of a Petri net from the state graph [7]; the net must satisfy the requirements of
subsequent circuit synthesis [6].

3. Synthesis of a circuit in one of the two potential technologies. The first one is a two-phase
circuit consisting of special (micropipeline) elements. Such a circuit can often be obtained
by a relatively straightforward conversion of the Petri net (almost similar to a syntax-driven
approach of Tangram). The second possibility, quite a challenge for today’s synthesis tools, is
to refine the net into a Signal Transition Graph (using the so-called “signalling expansion” [8])
and perform logic synthesis using one of the STG-based tools (e.g., SIS).

These steps are not fully automated as yet but there is a good indication that design examples
like this one with CFPP create a very good motivation and provide guidance for further work
on tools. For example, a new tool, called petrify, whose original version has been developed by
Jordi Cortadella on the ideas of [7], already supports synthesis of Petri nets from state graphs and
equivalent transformations at the Petri net level. In fact, the most recent version of petrify has
helped to obtain the Petri net models shown in Figure 4, ¢ and d, which lead to the circuit shown
in Figure 11. Those synthesised originally by hand had some redundant places and arcs.

Hopefully, petrify will eventually provide an important link between circuit compilation tools
(e.g., TANGRAM) and circuit synthesis and verification tools (e.g., SIS and FORCAGE).

The paper is organised as follows. Section 2 introduces the description of the CFPP stage
control circuit and formulates the problem. Section 3 describes the procedure to synthesise Petri
net specifications from state-based models. Section 4 demonstrates the application of this procedure



to the state-based description of the CFPP stage control. Section 5 presents implementations of
the Petri net models of the CFPP stage control. Finally, Section 6 outlines directions of future
work and draws conclusions.

2 CFPP stage control circuit. Original description

For a complete description of the CFPP architecture we refer the reader to [2]. Here, we would like
to abstract away from the details of instruction execution in the CFPP, and only concentrate on
the issue of the behavioural specification of control in a basic stage of the CFPP.

The overall organisation of control in a CFPP is as follows. There are two mutually synchronised
pipelines, one for instructions and the other for results, where the results are used by instructions
and may be produced or updated by them. These pipelines allow instructions and results to
propagate in opposite directions, each of them operating as an ordinary pipeline with data items
passing between any pair of adjacent stages if one of the stages is empty and the preceding stages
holds a datum. Here, the role of data items is played by instructions, in the instruction pipe, and
by results, in the result pipe.

Mutual synchronisation between the two pipes is essential for the functionality of the CFPP.
The following important requirement is imposed on such a synchronisation: for every instruction
1, entering the instruction pipe from the bottom (by convention, instructions flow “bottom-up”),
and every result R, entering the pipe at the top (results flow “top-down”) while the instruction I
is already in the pipe, there must be an opportunity to match in one of the stages (the matching
process, including potential execution if the address of the operand in I matches the one in R, is
called garnering ).

Abiding by the above requirement, instructions and results happenning to cohabit in the coun-
terflow pipeline must never miss each other. This requirement is met by organising the pairs of
adjacent stages in such a way that the states of control in these stages prevents certain items from
advancing along their pipes until the garnering process has been accomplished.

Figure 1 shows Molnar’s state diagram of a pipeline stage control. The states have the following
meaning:

FE: Empty. Neither instruction nor result is present.

I: Instruction. Only an instruction is present.

B

Result. Only a result is present.

R

Full. Both instruction and result have arrived.

2

Complete. The CFPP execution rules [2] have been enforced, and both instruction and
1

result are free to move on *.

The transitions in this state graph that involve motion of instructions and results are labelled

Al (accept instruction from below), PI (pass instruction upward), AR (accept result from above),

PR (pass result downward), and G (perform garnering, which is either executing the instruction if
its operand matches the result or release both instruction and result).

Observing the state graph, we may note that there are two states in which dynamic arbitration

may take place. First, this is state I, where either instruction may be passed before a result may

! As was noted in [2], in practice this state might be divided further to allow the result to advance while the
instruction is being executed. We, however, abstract away from such distinctions in this paper.
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Figure 1: Counterflow pipeline stage control: (a) structural view, (b) state diagram

arrive in the stage or result may arrive before instruction is allowed to leave the stage. Similarly,
in state R, either result may be passed before an instruction may arrive in the state or instruction
may arrive before result is allowed to leave the stage.

The presentation in [2] “jumped” from definition of this state diagram directly to its structural
and circuit implementation. Our task here is to demonstrate the process of deriving the specification
in the form of a Petri net with signal events represented uniquely, which would be more amenable to
formal transformations. The latter would bring us to a circuit solution, or a set of solutions, with
standard arbitration elements (e.g., a 2-way mutual exclusion element), following the technique
described in [6].

First, we need to review some important results on synthesis of Petri nets from transition
systems (i.e., state graphs). The major theoretical background can be found in [9]. The adaptation
of those results to a practical procedure of synthesising nets from state-based models was made
in [7].

3 Synthesis of Petri nets from transition systems

Labelled Petri nets. The target of our specification synthesis is a labelled Petri net. We assume
that the reader is familiar with the basic terminology of Petri nets [12], and give here only a brief
outline of the most relevant issues.

A Petri net (PN) is a directed graph consisting of two types of vertices, places and transitions,
connected by arcs, called flow relation, in such a way that arcs between places or between transitions
are not allowed 2. In a marked net, a special subset of places, marked with tokens (black dots),
is called the initial marking of the net. A transition is enabled in a marking if all its input places
are marked. An enabled transition may fire, producing a new marking (this marking is said to
be directly reachable from the previous one) with one less token in each input place and one more
token in each output place of the transition. The set of all markings reachable (ordinary transitive
closure of the direct reachability) from the initial one is called the net’s Reachability Set. The
graph whose vertices are the net’s markings and arcs correspond to the direct reachability relation
is called the Reachability Graph of the net.

2We shall sometimes abuse this standard notation by allowing two transitions to be connected by an arc directly
— this arc would stand for a place with exactly one input and one output arcs in a standard form. The “overloaded”
arc thus becomes a carrier for tokens.



A labelled PN is a PN in which every transition is labelled with a symbol, called label, from a
given alphabet. In the case of unique labelling, i.e., if no two transitions have the same label, each
transition in the net can be uniquely identified by its label. In such a case we can use the label as
the transition’s name.

A PN is called safe if no more than one token can appear in a place. A PN is called pure if
no pair of a place and transition are connected by mutually opposite arcs (bi-directional arcs are
often used to represent such self-loops in PNs). A PN is called simple if no two transitions have
the same sets of input and output places.

Transition systems. A transition system (TS) is a directed state graph in which every arc
connecting a pair of states is labelled with a name of an event from a specific event alphabet. Such
a labelled arc is called transition. One state is marked as the initial state. Any TS must satisfy
the following basic conditions [9]:

A1l. No self-loops, that is no transition may begin and end in the same state.
A2. No multiple arcs between a pair of states.

A3. Every event must have some occurrence.

A4. Every state is reachable from the initial state.

The basic intuitive idea behind the construction of a Petri net whose behaviour is equivalent 3
to the original TS is a correspondence between subsets of states, called regions, and places in the
synthesised net. This allows a 1-1 correspondence between states of a region and markings of the
Petri net in which the place corresponding to the region has a token.

More specifically, a region is a subset of states with which all transitions labelled with the same
event e have exactly the same “entry/exit” relationship. Namely, we say that a subset of states r is
entered by event e if for every transition labelled with e the source state does not belong to r while
the destination state is in r. Similarly, r is exzited by e if for every e-labelled transition the source
state is in R while the destination is outside r. In the remaining cases, e is said to be non-crossing,
either internal or external, event for a region. Thus, to become a region, a subset r must satisfy
exactly one of the three cases for every event e: (i) r is entered by e, (ii) r is exited by e, and (iii)
r is not crossed by e.

A region r is a pre-region (post-region) of an event e if r is exited (entered) by e.

Figure 2 illustrates a pair of regions, r1 = {F, R} and 2 = {[, F,C}, in the TS of the CFPP
stage control. Note that r1 is a pre-region for event Al and a post-region for PI whereas r2 is a
pre-region for PI and a post-region for AI. Both regions are not crossed by AR and PR. Finally,
G is an external event for r1 and internal for r2.

It is known from [9] that in order to generate a Petri net whose reachability graph is isomorphic
to a given TS, the TS must be elementary. The elementarity conditions, additional to the above
four basic conditions, are as follows:

Ab. State separation property, which means that for any two different states there must exist a
region which contains one of the states and does not include the other.

We basically use a strong notion of equivalence, isomorphism between the given transition system and the
transition system which is obtained from the reachability graph of the Petri net. Effectively, the synthesis technique
of [7] supports a weaker form, bi-simulation.
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Figure 2: Hlustration of regions

A6. Forward closure property, which states that, for every state s and every event e, if the set
of pre-regions of e is included in the set of regions such that each of them contains s, then e
must be enabled in s (i.e., there must be a transition from s labelled with e).

Following [9, 7], for any elementary TS there exists a safe, pure and simple PN such that: (1)
each PN transition is labelled with an event of the TS; (2) no two transitions are labelled with the
same event label; (3) the reachability graph of the PN is isomorphic to the TS.

The basic procedure, from [9], to produce a PN from an elementary TS is as follows:

1. For each event e a transition labelled with e is built in the PN;
2. For each region r a place named r is generated;

3. Place r contains a token in the initial marking iff the corresponding region r contains the
initial state of the TS;

4. The flow relation is built according to the relationship between pre-regions and events, and
events and post-regions.

A PN synthesised by this procedure is called a saturated net, since all regions are mapped into
the corresponding places. A saturated net is canonical but has a lot of redundancy. As shown
in [10], it is sufficient to consider only regions which are not sub-regions of other regions (such
regions are called minimal). The net constructed from all minimal regions is also a canonical form
and is called a minimal saturated net. Even the latter can be redundant to produce the Reachability
Graph isomorphic to the TS. The method described in [7] performs additional optimisation and
produces an irredundant net with minimal regions (the idea is somewhat similar to an irredundant
cover of prime implicants in logic minimisation [11]).

It has also been shown in [7] that the elementarity conditions can be checked by means of a
more practically efficient structural property of a TS, called “Excitation Closure”. It is based on
the notion of excitation regions for events.

A set of states is a generalised excitation region for event e, denoted by GFER(e), if it is a
maximal set of states such that in every element of this set event e is enabled. Excitation Closure
requires that for every event e the intersection of pre-regions of e is equal to GER(e).

In our TS of Figure 2, the Excitation Closure property does not hold for several events. For
example, GER(PI) = {I,C} but the only pre-region of PI is region r2 = {I, F,C,}; GER(G) =
{F'} but the set of pre-regions of GG is empty. This TS is therefore not elementary.



The synthesis technique of [7] allows a number of modifications to the basic construction idea,
including extensions to the class of elementary TSs.

It is possible to convert any TS to a PN by means of the so-called label splitting. Label splitting
is the procedure that incrementally * distinguishes between the original labels (by enumerating
their occurrences in different transitions of the TS) in such a way that the TS gradually becomes
elementary with respect to the new (enumerated) alphabet. The convergence of this process is
guaranteed by the fact that any TS with all transitions labelled uniquely can produce a state-
machine net [12] whose structure and behaviour would be isomorphic to the original TS.

In order to synthesise non-pure PNs, the above Excitation Closure condition is generalised to
allow the so-called self-loop pre-regions to be involved in the intersection of pre-regions for an event.
A region 7 is a self-loop pre-region for event e if it is not a pre-region but the GFE R(e) is contained
in r. Including a place corresponding to such a region into the set of input and output places does
not restruct the enabling conditions for an event unnecessarily. Yet it often allows to “trim” the
intersection of pre-regions to such an extent that the given event is not enabled in the states not
included in its excitation region.

Non-pure nets appear to be very useful in practice when modelling arbitration circuits and
behaviour in which one event asymmetrically disables another event. The latter takes place, for
example, in the models where an input signal disables an output signal (e.g., see the model of a
Transparent Latch in [6]).

In a similar way, the Excitation Closure condition has been extended further, to allow inhibitor
pre-regions. A region r is called an inhibitor pre-region for event e if its intersection with the
GER(e) is empty. This extension allows one to generate inhibitor nets. Such nets (e.g., for the
case of safe nets) are known to be representable by ordinary PNs using the so-called complementary
places. A place is called complementary to another place if it is marked in those and only those
markings where the other place is unmarked. It is clear that a place and its complementary place
correspond to a region and its complementary region (the latter is obtained by subtracting the
former from the total set of states in the TS).

It is also noted in [7] that sometimes it is useful to include non-minimal regions to enforce
Excitation Closure.

The class of TS, properly including elementary ones, which satisfies the Excitation Closure prop-
erty extended in the above ways (self-loop and inhibitor pre-regions), is called quasi-elementary [7].

Finally, one can use the idea of including dummy events and corresponding transitions into the
TS. Being “silent”, such events do not change observational equivalence between the original TS
and the modified one. Yet they allow to split some states of the original TS and construct new
regions capable of satisfying the Excitation Closure condition.

To summarise, a number of techniques, some of which are computationally hard, can be applied
in order to generate Petri nets from non-elementary transition systems. Below, we demonstrate
the use of such techniques in practice, for the original TS model of the CFPP control, which is not
elementary.

4 Deriving a Petri net for CFPP stage control

We are now ready to revisit our TS model of the CFPP stage control and transform it to such a
TS that would would generate a PN using the above technique.

*Some useful heuristics are presented in [7] for label splitting.
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Figure 3: One way of separating the “diamonds”: (a) original TS, (b) transformed TS

It should be pointed out that the application of the label splitting method, albeit possible,
does not satisfy our requirement about the unique representation of all arbitrating events. A PN
produced by label splitting is isomorphic to the TS and has multiple transitions labelled with labels
Al, PI, AR and PR.

The main obstacle in satisfying the Fxcitation Closure condition, even in its extended form
(using self-loop pre-regions and/or inhibitor pre-regions) comes with the event G/, for which we
do not have appropriate pre-regions and post-regions. In order to help solving this problem, we
slightly restructure the TS by introducing dummy transitions. Such dummies are added without
changing the behavioural (bi-simulation and trace equivalence) semantics of the TS.

Intuitively, and this is one of the heuristics of the dummy insertion method, we need to establish
proper “diamond” structures in the TS, reflecting the potential concurrency between pairs (A7, AR)
and (PI, PR). For this, two ideas can be applied: “symmetric” and “asymmetric” approach.

4.1 “Symmetric” approach

This approach, eventually leading us to a circuit solution similar to the one found by C. Molnar [2],
uses the idea of separating the two “state-transition diamonds”, one for the pair of events (A7, AR)
and the other for the pair (PI, PR). Complete separation of these diamonds could be performed
by unfolding the TS into two similar sub-graphs, as shown in Figure 3.

The new TS contains three dummy events, labelled i, r and ¢, and three transitions with split
labelling of GG. This TS satisfies the requirements of the Excitation Closure and can give us an
appropriate PN.

It is however possible to make a more “economical” separation of the diamonds, with only one
dummy event and event G left unsplit. This solution is shown in Figure 4, b, where states I and
R are shared between the diamonds and the only dummy event is labelled with d. This dummy
plays the same role for the (PI, PR) diamond as G for the (Al, AR).

The TS is not elementary in its basic form but is a quasi-elementary one since it satisfies the
extended Excitation Closure condition (applied with self-loop and inhibitor regions). It gives the
inhibitor net shown in Figure 4, c. The regions giving rise to the places of this net are as follows:
rl ={E,ILE},r2={E, R, FE'},r3 ={R, F,C},rd = {I[,F,C},r5 = {E,I,C},r6 = {E,R,C}.

The reader may check the pre-regions, self-loop pre-regions and inhibitor pre-region for all events
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Figure 4: A better way to separate the “diamonds” and its synthesis result: (a) original TS, (b)
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Figure 5: “Asymmetrisation” of TS: (a) original TS, (b) removing PR, (¢) removing AR

by tracing them back from the net’s arcs.

If we also consider an extra region r6’ = {I, E’, F'}, which is complementary to r6, we can
replace our inhibitor pre-region interconnections with ordinary pre-region relations, and thus obtain
an ordinary PN shown in Figure 4, d. The reader may construct the reachability graph for this
net and verify its isomorphic conformance to the TS in Figure 4, b. The latter is in its turn
behaviourally equivalent to the original specification.

Later, we shall demonstrate how this net model is further used to produce a circuit implemen-
tation.

4.2 “Asymmetric” approach

Another way to transform the TS to its quasi-elementary form is slightly more liberal as far as
the conformance to the original description is concerned. We may notice that it is possible to
reduce the degree of concurrency in the original specification on one of the above-mentioned pairs
of events. Namely, we can either “asymmetrise” the diamond formed by (Al, AR) or the one formed
by (PI, PR), as shown in Figure 5.

Either of these transformations of the original TS restricts the trace semantics of the specifi-
cation. We should therefore be able to demonstrate that the new TS is still consistent with the
original requirements imposed on the CFPP interstage synchronisation. To do this, we have verified
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a composition of TSs of several stages and formally checked that the original requirements, outlined
in Section 2, are satisfied.

The validity of such a check is intuitively clear from the following consideration. A simpler
version of such a composition built for two adjacent stages, each modelled by the TS option shown
in Figure 5,c (with AR deleted), is shown in Figure 6. This composition is a parallel composition
of stage 1 and stage 2 with a “rendez-vous” type of synchronisation on the corresponding pairs of
events, denoted as AIl = PI2=1 and AR2 = PR1 = R.

Although the composed TS may appear somewhat complicated, one can check the crucial syn-
chronisation cases by examining groups of traces in it. For example, it clearly shows that the system
is deadlock-free. The requirement of an instruction and result entering the pipe to never miss each
other is seen from the following observation. Whenever both AR1 (result enters the pipe) and Al2
(instruction enters the pipe) have occurred, the system always passes through the states in which
it performs garnering. It either happens in stage 1 (event G'1) or in stage 2 (event G2).

Similar sort of analysis can be performed for the composition of TSs shown in Figure 5,b (with
PR deleted).

Now, in order to produce PNs, both reduced TSs need a dummy event (¢) to be inserted in
them, which brings no further semantical constraints. The corresponding quasi-elementary TSs are
respectively shown in Figure 7, a and Figure 8, a.

10
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Figure 5, ¢; (b) Synthesised Petri net
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The PNs derived from these two TSs are respectively shown in Figure 7, b and Figure 8, b. Note
that in order to enforce the Excitation Closure in both these cases, we have to use non-minimal
regions, denoted by r6, to become self-loop pre-regions for AR and PR, respectively. These self-
loop pre-regions guarantee that AR and PR are not enabled in the states /2 and F in Figure 7, a
and Figure 8, a, respectively.

We could, of course, derive inhibitor nets based only on minimal regions, using the fact that 6
is complementary to r5 in Figure 7, a, and r6 is complementary to r4 in Figure 8, a.

5 Circuit implementations for CFPP stage control

5.1 The overall approach

In this section, we first briefly review the general approach to circuit implementation of specifica-
tions with internal conflicts, originally presented in [6]. This approach would allow us to make an
appropriate refinement of the PN models obtained in the previous section. The nets, as can be
easily observed from their Reachability Graphs, exhibit conflicts in the form of disabling of some
transitions by others.

More formally, a PN that reaches a marking m in which a pair of transitions ¢1 and ¢2 is enabled,
and by firing one of them, say t1, a marking m’ is reached such that ¢2 is not enabled, is called
non-persistent with respect to ¢2.

For example, the net shown in Figure 8, b is non-persistent with respect to transitions AR and
PR. Either of these can be disabled by firing A[f.

Why is persistency crucial for circuit synthesis ?

As shown in [6], logic synthesis procedures, in particular those operating from the Signal Tran-
sition Graph (STG) refinements of Petri net models [8], can produce hazard-free implementations
only for specifications without conflicts on non-input signals (so called output-persistent STGs).
Obviously, the abstract events AR, PR, AI, PI in our specifications encapsulate transitions of both
input and output signals — the former arrive in the stage while the latter are produced by the stage.
Therefore, non-persistency with respect to, say, AR means that the logic synthesis techniques, such
as those of [4], cannot be applied to deriving the logic for such output signals. The method de-
scribed in [6] proposes to treat such signals separately, by “factoring them out” of the specification
and associating them with standard arbitration components, such as a four-phase two-way mutez
(ME) element or a two-phase RG D-arbiter, depending on whether a four-phase or two-phase circuit
implementation is obtained [8].

The overall procedure [6] for implementing PNs and STGs with non-persistency with respect
to non-input signals can be summarised as follows:

1. determine a set of non-input signals whose transitions make the PN non-persistent;

2. insert an appropriate set of semaphore actions, making semantic-preserving transformations

at the PN level;

3. associate each semaphore with an appropriate ME element or an RGD-arbiter, depending on
whether a four-phase or two-phase circuit is synthesised (if the semaphores are multi-way, use
appropriate decompositions of multi-way mutex components to 2-way ME’s or 2-way RGD’s,
respectively);

4. factor the semaphore implementations (the “mutex part”) from the circuit, making their
outputs to be additional inputs to the circuit, which should now be output-persistent;

12
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5. synthesise the “logical part” of the circuit by the existing (e.g., STG-based, if the specification
has been refined to the event level of rising and falling edges of signals, alternatively use
syntax-directed methods to derive logic from PNs);

6. combine the “mutex part” with the “logical part” by interconnecting the ME’s or RGD’s and
the gate network through the set of request-acknowledgement handshakes.

5.2 Towards the circuit implementation of “symmetric solution”

We shall now illustrate how this technique is used to obtain a two-phase implementation for our
“symmetric case”, that is the PN shown in Figure 4, d.

First of all, we need to refine this net to reflect the idea of input and output signal actions in a
stage. Figure 9 shows such a refinement for action A[; similar refinements can be obtained for the
remaining three abstract actions AR, PR and PI.

Here, we first split Al into four events to represent two pairs of handshake signals. One pair
is AI?7 and AI!, which is produced within the current stage. Here, AI? stands for a signal whose
meaning is a query “I am ready to accept an instruction from the lower stage, can I accept it?”;
the meaning of AI'is “You can accept an instruction from the lower stage”. The other pair pi?
and pi! models the handshake interface with the lower stage. Here, pi?, stands for a query “I am
ready to pass an instruction, are you ready to receive it?” (which is an input signal to the current
stage), and pi!, meaning “The instruction has been received (and latched 5 in a register) by me!”
(which is an output signal from the current stage to the lower stage). It is obvious that events Al
and pi! can be produced simultaneously, hence, to avoid cluttering of multiple arcs, we use a single
PN transition pi! = AI! at this step.

Since the pi! = Al! transition is now the cause of non-persistency (place r6 is a place through
which the transition can be disabled by a corresponding transition in the results pipe model), we
associate a semaphore denoted by me (to further become a two-way mutex element implemented by
an RGD-arbiter) with place r6. The second step of refinement inserts explicit semaphore actions
(wait(me) and signal(me)), protecting the pi! = AI! transition. These actions are represented by
the signal transitions of an RGD arbiter implementing this semaphore, namely RI (request from
the instruction pipe), G'I (grant to the instruction pipe), and DI (done from the instruction pipe).

Finally, when both actions pi! and AI'! are protected by the me we can split them into two
separate transitions assuming that they will further correspond in the circuit to two different wires
forking out of a single grant output from the RGD-arbiter.

®We try to avoid describing the structure of the CFPP data path in this paper but in some cases it seems impossible
to at least mention some actions on data path, such latching instructions and results within a CFPP stage.
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Figure 10: Petri net used for direct two-phase circuit implementation

We can now refine all four actions in a similar manner, that is followed by a trivial PN level
transformation:

¢ adding two auxiliary transitions F (standing for “Execute”) and D (meaning “Done”);

e both “Done” events DI and DR, for both semaphores mel and me2 can be combined into
single “Done” (D) transition, to be implemented by one internal signal.

This transformation does not change the behaviour of the net with respect to its original semantics.
The resulting net is shown in Figure 10. It is easy to notice structural resemblance of this net
to the organisation of the control, based on stage control circuits and inter-stage “cops”, proposed
in [2]. This is reflected in the dotted boxes.
We can now apply a direct transformation technique (similar to the one used in [8], which
essentially adopted Patil’s approach [13]) to obtain a two-phase circuit implementation:

e the mutex signal transitions are implemented by two RGD-arbiters; note that we may use
a modified version of the RGD-arbiter, with a single “Done” signal [2] (sometimes called
Sequencer);

e both pairs of transitions Rl and RR can be implemented by C-elements;
e the “merging” place 76’ can be implemented by XOR;

o transition IV produces an event-based signal to activate selection between GG and d whereas
its D counterpart is a simple fork after an XOR standing for a place which is input-incident
to D;
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Figure 11: Two-phase circuit implementation of “symmetric” solution

o finally, G and d require a special circuit component, which is effectively a dual-rail Selector,
with one event-based input F, two event-based outputs for G and d, and two level-based
signals f and f, forming the boolean condition (dual-rail encoded) for this selector. The last
two signals are logically “built” from the outputs from the RGD-arbiters. They have the
meaning of marked places r3 (the results part is filled with an item) and 72 (the instruction
part is empty).

The analysis of this net shows that the trickiest part of the circuit is the interface between
the handshake signals of both pipes and the dual-rail selector. It can in fact be refined in a most
straightforward way. Indeed, at the time when signal associated with transition F is produced, the
marking of places r1,r2,r3 and r4 would either be r1 = r2=0,73 =rd=1lorrl=r2=1,r3 =
r4 = 0. The former corresponds to the case of generating the “Garner” control signal, while the
latter is the case of a “skip” signal. The skipping means that either instruction or result is passing
through the stage without interaction with its counterpart. To implement these conditions in logic
we can use for example two XOR’s (one with inverted output) to produce level-based signals f
and ¢, used to control the Selector. Each such XOR would stand for the boolean condition “the
instruction (result) part is empty (filled with an item)”.

The main circuit diagram is shown in Figure 11 while the internal structure of Selector is in
Figure 12. Here, L is a Transparent Latch, whose generic logic equation is: Q@ = DC + (D + C)Q.

In this simple implementation, which is not purely speed-independent, we must guarantee, to
avoid glitches in the Selector, that the delay with which signal F is applied to the Selector’s input
x is large enough compared to that of the XORs forming the dual-rail inputs f and t. If necessary,
an extra delay element should be inserted in wire F/ to make sure that this signal does not arrive
before the level-based control has reached its valid state.

This circuit, at such a modular level, looks very much like the one described in [2], except that
the latter does not show the Full-Empty detector of the Stage Automaton while we “hide” the fact
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the “Done” signal (input d) to each RGD-arbiter is in fact formed by joining two “Done’s” of the
two adjacent stages (as shown by dotted C-elements and extra connections in Figure 11). Plus, in
this paper, this circuit has been obtained from the initial specification on a formal basis.

It would also be possible to make a different signalling expansion of the PN shown in Figure 4, d,
using the four-phase approach. The circuit could then be built of ordinary four-phase ME elements
and standard logic gates, whose boolean functions would be obtained from an automatic tool, such
as SIS. We do not present this alternative here for the “symmetric” case but it will be shown for
the “asymmetric” one.

5.3 Towards the circuit for “asymmetric solution”

We have two potential specifications to take up for further refinement and implementation, one is in
Figure 7, b and the other in Figure 8, b. They basically produce the same effect on the results pipe,
and differ mainly in the way the handshake in the instruction pipe is synchronised with garnering.

It is quite easy to notice however that executing each action Al or PI involves (see the Al
refinement in the previous section) synchronisation of handshake signals of two adjacent stages,
where the role of Al in the upper stage is similar to that of PI in the lower one. We can therefore
conclude that both models would effectively yield the same performance — the critical cycle in the
instruction pipe always involves an execution (garnering or skip) and two inter-stage transfers (note
sequence 12 — Al — r4 — Gle — rb — PI).

What matters however is the way we synchronise two adjacent stages. Note that the mutually
exclusive place r2 in the model of one stage can play the part of p6 in the adjacent stage. Hence
one possible way of synchronising two stages could be to merge such places into one which will
control the border between the two stages.

Such an approach is shown in Figure 13, where place labelled me2 is the merger of r2 and r6
for the composition of two stages of Figure 7, b. The meaning behind this model is as follows. As
soon as an instruction enters the right hand side stage (“lower” stage in the terminology of [2]),
having passed through semaphore place mel, it acquires the grant from the me2 semaphore, which
controls the border between the stages. Only after both semaphores are held with the instruction
pipe it can perform execution, that is either garnering or skipping the instruction, depending on
the state of the results part. After completing the execution phase, the instruction pipe releases
the mel semaphore (token is returned back to place me2) and both instruction and result (or only
instruction) can move further to their corresponding next stages.

Figure 14 shows a refinement of the above two-stage PN model, in which we separated actions
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on semaphores and handshake signal transitions to suit the two-phase signalling approach. This
net can now be used for direct implementation by a two-phase circuit.

Figure 15 shows the corresponding circuit, which is “compiled” from the PN in the same way
as in the “symmetric” solution. Note that due to asymmetry of the control organisation, the top
part and the bottom part of the result and instruction pipes, respectively, are “non-standard”.
Similar sort of circuit solution, based on “asymmetrisation” of the CFPP control, has been recently
presented by J. Ebergen [16].

It can be observed from the PN model that in this circuit two adjacent stages always perform
execution (garnering or skipping) sequentially. That is, two instructions, in adjacent stages cannot
be garnered in parallel. This constraint stems from the fact that the new execution in the lower
stage can only begin if the upper stage has completed its execution and released the corresponding
semaphore. This is an obvious disadvantage of our first approach to synchronise two adjacent stages
by means of merging their mutual exclusion places r2 and r6 according to Figure 13. In such an
organisation, the merger place, say me2, plays not only the role of mutual exclusion between the
result and instruction pipes but also restricts concurrency between events in the instruction pipe.

It may appear possible to increase parallelism between the stages by allowing the upper stage
to produce its acknowledgement to the lower stage before the execution in it begins, say after it
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Figure 16: Model of two stages with unmerged “semaphore” places

has gained the grant from the next mutex element. But, in order to start the execution in the
lower stage, we need to unlock the current mutex element, by also generating “Done” to it before
the execution in the upper stage. This has its inevitable effect on unlocking the result pipe, which
must not be allowed since the execution needs that pipe to be in stationary state.

We shall now try to avoid constraining concurrency by a different means, namely, by composing
two stages preserving both mutex places r2 and r6 between them. The PN composition is shown
in Figure 16. Here, as a building block we have taken the stage model of Figure 8, b.

It is easy to observe that this net allows execution to take place in both stages at the same time.
Indeed the following simple sequence of events brings the net to a marking in which both places
r4 have a token: Al,e, AI = PI, AI. Had the sequence AR, PR = AR, AR preceded the previous
sequence, we would have had both garnering actions G enabled in the above-mentioned marking.

This net is however slightly more difficult to implement. Note that events labelled PR = AR and
Al = PI are atomic in the sense that they change the marking of both mutex places simultaneously
(additionally, the instruction pipe’s action Al = PI also consumes a token from the next r2). First
of all, we need to refine this net to such a form where the mutually exclusive places are associated
with semaphore actions. Furthermore, we must be careful in such a refinement since, if we want to
use standard 2-way mutex elements to implement semaphores, we need to split the above-indicated
atomicity — such splitting often leads to a solution with a deadlock.

Luckily, we can observe in this net that place r2 is always decremented first in the instruction
pipe. This pipe must therefore hold this token until it has seized a token from r6 and further
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Figure 17: Two-phase circuit implementation for unmerged “semaphore” places

from the next r2. If we adopt the same order of acquisition, first 2 and then r6, for the result
pipe (action PR = AR) we can guarantee that the net does not get into a deadlock. Indeed, the
only place for which both pipes effectively arbitrate is r2. Place r6 thus plays the role of a passive
synchroniser between the stages, so it need not be associated with a semaphore (and an arbiter in
the circuit) at all.

For this stage of our report, we omit the phase of PN refinement as it seems now rather tedious
to go through. The circuit (for a single stage inside the CFPP) obtained in a way similar to the
previous solutions is shown in Figure 17.

Note that this circuit really benefits from the fact that the mutex place r6 is not an arbitration
one. Instead of taking an extra RGD-arbiter, we can use a simpler block, a 2-by-1 Decision-Wait
(originating from Join [15]), which is another standard two-phase circuit element (we also need an
XOR to realise the “token-merging” functionality of place r6). Note also that, although signal PI!is
produced to the next stage only after the instruction execution, we generate both acknowledgement
AI' and a “Done” for the RGD-arbiter earlier, to enable the lower stage to process its following
instruction.

Let us now look at an alternative way to implement our basic PN models. Instead of deriving
a two-phase circuit directly from the refined PN description we shall try to make use of automatic
tools, e.g. SIS, which can synthesise logic from an STG expansion of the PN [8]. It should be
reminded that the ME elements must be factored out so that the synthesis tool will only need to
produce boolean equations for “persistent” signals.

As an example, let us take the PN from Figure 8, b. In order to obtain an STG expansion
of this net we need to represent explicitly all signal events in the form of falling and rising edges
(Al+,AlI—, PI+,...). Additionally, we must insert semaphore actions, in the form of falling and
rising edges on the request grant pairs to the appropriate ME elements. The result of such an
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Figure 18: An STG expansion of PN shown in Figure 8, b

expansion is shown in Figure 18. This STG describes the behaviour of a single (internal) stage of
the CFPP. Here, signal .5 represents the “skipping” case of the instruction execution; G still stands
for the signal activating garnering.

Although it looks quite cluttered with arcs (some of which are only sketched for being quite
obvious, while those connecting the mutex places are shown by dashed lines), this STG is still
sufficiently clear to reflect its correspondence to the PN it originates from. To avoid further clut-
tering we do not split control events Al4,... into their actual handshake pairs AI7+, A4, ...
presuming that it would be rather clear to trace them in the circuit representation.

This STG involves 14 signals. The actual synthesised version was slightly bigger, 17 signals. It
had, for example, a couple of internal signals that were included to assist unique state encoding. It
was run through SIS on a fairly powerful workstation and produced results in a few minutes:

Hi = [@ISEPD

2t = (P& a)

rlr = PR3dlr

r2r = AR O d2r

AR = d2r g2r + AR(d2r + ﬁ)

PR = dlr glr+ PR(d1r + gT)
ai = AI PT+ ai(Al + W)
PI = aigli+ PI(gli+ a7)
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dlr = AR glr+ dlr(AR+ g1r)
d2r = PR g2r+ d2r(PR+ ¢2r)
G = ¢2i(AR® PR)(ai® S)+ G((ai® S)+ (AR PR) + ¢2i)
S = g2 (AR® PR)+ (i ® G)+ S((ai ® G) 4+ (AR @ PR) + g2i)

Note that this STG, models only one stage and its logic implementation provides only a partial
view of the entire circuit. It was believed that to have a complete logic, all synthesised by a
tool, would give us a more trustworthy implementation rather than deriving only some parts of it
through such reduced STG’s with extra “logic glueing” done by hand. Indeed, in this asymmetric
solution, one stage is, for example, responsible for setting a request to an MFE element while the
resetting is done by the adjacent stage. More complex STG’s, describing three adjacent stages,
were also attempted. Some of them were still within the limits of a signal count allowed by SIS
(currently 32 variables are allowed for the SUN workstation version [17]) but the largest possible
“approximation” of the circuit has been obtained for an STG with 25 signals. This STG has been
for three stages but had other “reductions” compared to the one shown here.

The only difficulty in using the above equations for obtaining the final circuit is in the actual
implementation of the signals setting the ME elements from the instruction pipe. In order to obtain
this implementation we should bear in mind that the actual setting of the r1z, for example, is done
by the previous stage of the instruction pipe. The current stage has control only over the resetting
of the request signal r1¢ in its ME element; it however also controls the setting of the request
signal 727 in the ME element of the following stage. Therefore, we can use the rl¢ logic to form
the resetting part of the ME request signal, while the setting part could be obtained from the r2:
logic. Such a “glueing” actions allows us to optimise the overall logic, exploiting also the separation
between the request and acknowledge pairs of the handshakes Al and PI.

The circuit is shown in Figure 19. Some logical parts of it are represented as I (Transparent
Latch) element, whose generic logic equation is: Q@ = DC + (D + C)Q, where D is a data input
and C is a latching input. It should be pointed out that the decomposition of the complex gates
for Full/Empty Selector into simpler elements can be easily traced from their equations. This
decomposition however puts certain constraints on delays of these elements to avoid hazards.

6 Further work and conclusions

We have formally derived circuits for CFPP stage control from the initial state-based specification
presented in [2]. This required combining two methodological approaches. One [7] is targetted at
a Petri net model synthesised from the Transition System description. The other [6] synthesizing
an asynchronous circuit from a Petri net description of its behaviour with internal conflicts.

Some interesting lessons have been learned from this exercise as to the scope and power of the
state-of-the-art synthesis tools.

There are some stages in this derivation at which model transformations may involve participa-
tion of the designer. Firstly, it is the transformation of the Transition System to a quasi-elementary
form, to allow the Petri net to represent labelled events by means of unique net transitions. The
uniqueness requirement is crucial for those events that correspond to the transitions of output
signals which are involved in behavioural conflicts. This is a requirement of the method in [6].
Another place of possible active involvement is the signalling expansion, that is the refinement of
the Petri net into a Signal Transition Graph. A large number of alternative refinements can be
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built [8], all different in performance and size. The designer thus has to be able to make important
decisions at the STG level. Due to the size constraints imposed by the synthesis tool, the designer
may need to split the specification into parts and synthesise logic for them separately. Then, the
final “glueing” is done at the logic implementation level. Here, an important role to be played is
the verification at the circuit level as one can never guarantee that the dynamic behaviour of the
composed circuit would be correct after such a glueing.

Note that verification is also needed at an earlier phase, to verify the legitimacy of transforma-
tions of the original specification, such as those reducing the set of possible execution sequences. We
may also need to verify composition of Petri net models of individual modules. In this example, we
had different alternatives to interconnect CFPP stages, to yield different performance and circuit
size. The results of refining net models with abstract transitions into those with semaphore actions
may also need checking for deadlock-freedom, especially if the structure of conflicts between net
transitions involves several mutually shared places.

To summarise, we can state that both synthesis and verification steps are closely linked in this
design process as some transformations are hardly mechanisable. OQur asynchronous design tools
should therefore provide an efficient interface between these steps, to allow the designer to interfere
into this process at various stages.

In this report, we have not mentioned anything about actual evaluation of performance of the
obtained circuits. Similarly, analysis of timing constraints for their hazard-free implementation
(e.g., in simple logical gates) should not be missed out. Some recently proposed methods to solve
these problems can be found for instance in [18, 19, 20].
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