
Tree Arbiter with Nearest-Neighbour SchedulingIsi Mitrani and Alex Yakovlev�Dept. of Computing Science, University of Newcastle upon Tyne, NE1 7RUAbstractA tree arbiter designed to minimize the average delay between consecutive allocations of a con-tentious resource is described and evaluated. The idea is to divide the competing users into nestedclusters corresponding to sub-trees of varying size, and to keep the resource within the smallest clustercurrently containing requests. This design reduces the number of steps in the arbitration procedureand hence increases the overall throughput of requests. The performance of the new arbiter is anal-ysed and is compared to that of an algorithm which maintains �rst-in-�rst-out order among requests.The trade-o�s between the nearest-neighbour and FIFO designs are examined numerically over wideranges of parameter values. It is shown that when the system becomes large and/or heavily loaded,the bene�ts of the the nearest-neighbour arbiter become greater.Keywords: arbitration, asynchronous systems, conict resolution, mutual exclusion, performanceanalysis, resource allocation, tree arbiter.1 IntroductionParallel and distributed systems use arbiters to resolve mutual exclusion between independent usersaccessing shared resources. For example, a number of processors may be competing for a bus, sendingrequests to it asynchronously and independently of each other. Whenever new requests arrive, or oldones are completed, the arbiter has to decide which of the waiting processors should be allowed to usethe bus. Other examples of such systems involve multi-port memories and packet routers [2, 9].The ability to use the resource is usually signalled by the possesssion of a \privilege token". A typicaluser behaviour pattern is to request the token, wait until it is granted, use the resource, release the token,perform tasks which do not require the resource (this last activity will be referred to as thinking), requestthe token again, etc. In those terms, the arbiter is a hardware device which receives token requests andtoken release signals as inputs, and produces token grants to individual users as outputs. This paper isconcerned with some trade-o�s involved in the construction of that device: di�erent design alternativesand their implications for the performance of the system.The design of a fully parallel arbiter, like that of a cross-bar switch, tends to be too complex, tooexpensive and too di�cult to scale up. A more common solution is therefore to put together a numberof simple components which combine parallel and sequential actions. The usual basic building blocksare 2-way arbiter cells which form the nodes of a binary tree. Each cell passes token request and releasesignals from descendents to parent (if any), and token grants from parent to descendents; the latter areeither users or other cells. Thus a single cell (a binary tree of height 1) can arbitrate between 2 users;a tree of height 2 containing three cells can arbitrate between 4 users; in general, an arbiter for n = 2kusers would consist of 2k�1 cells forming a complete binary tree of height k. Because arbitration tasksare performed in sequence by cells at di�erent levels of the tree, this type of arbiter is also described ascascaded (see �gure 1).If a user can occupy itself with other tasks while waiting for the resource to become available, it wouldbe sensible to design an arbiter which delivers `negative acknowledgements' when the resource is busy(see [4]). Here we are concerned with systems where the opposite is the case: once a user requests theresource, it cannot do anything useful until that request is granted; the interval between requesting andreceiving the token represents idle waiting time. In these circumstances, reducing the arbitration timeleads to a more e�cient system and is therefore a worthwhile objective to pursue. Two recent designs oflow latency arbiters where the request is propagated from one cascade stage to another in parallel with�This work was partially supported by EPSRC grant GR/K70175.1



��� BBB���BBBBBB���BBB��� @@ aaaa!!!! @@���� n nnn n nnarbiter : k = 3users : n = 8Figure 1: A cascaded tree arbiter with 7 cells and 8 usersmutual exclusion resolution, and where the release of request-grant handshakes in di�erent stages is alsodone in parallel, are described in [11, 5].Every action performed by a node in the tree, whether it involves exclusion resolution or passinginformation to parent or descendent, causes a delay. Hence, a reduction in the arbitration time can beachieved either by reducing each such delay, or by reducing the number of nodes that participate in thearbitration process. An important design consideration in this regard is the token scheduling strategy.Normally, requests for the resource are served in �rst-in-�rst-out (FIFO) order. This is implemented byqueueing the incoming requests at the root of the tree, where the token is returned after each release.Hence, every arbitration involves passing the token from the root to a leaf node and back; for a tree ofheight k, this implies a total of 2k node delays.We propose a di�erent scheduling policy. When the token is released, it is of course at one of theleaves of the tree; the user to whom it is allocated next is at another leaf: the latter is chosen so asto minimize the token travel time. Thus, if the sibling of the releasing user is among those waiting, itreceives the token after a single node delay. Otherwise, the token returns to the parent of that node and,if any of the users descending from that parent are waiting, one of them receives the token after a totalof 3 node delays; etc. This will be referred to as the nearest-neighbour scheduling policy.When comparing the performance of the FIFO and nearest-neighbour policies, the following factorsshould be taken into account: on one hand, the cells comprising the FIFO arbiter are simpler, and theirdelay times are shorter; on the other, the number of cells and hence the number of delays involved ina nearest-neighbour arbitration is, on the average, smaller. Modelling and evaluating those trade-o�sunder di�erent conditions is a major contribution of this paper.The performance measure used as a criterion for comparison is the long-term average throughput ofrequests. No premium is placed on preserving their order of arrival.It should be noted that the arbiter model presented here for performance analysis is relatively high-level and approximate (see section 3). It does not take into account the actual physical delays of acircuit implementation. Such high-level analysis is however very valuable because it reects both strongand weak points of the nearest-neighbour policy. For example, it clearly demonstrates that the gain inperformance that one can get out of this policy compared to the standard FIFO one is normally only20-30% and certainly not twice or more times.The de�nition of the tree arbiter and its behavioural description using Petri nets are given in section2. The logic circuit implementation of the nearest-neighbour policy is not covered here; one version ofsuch an implementation was presented in [10],pp. 190-193 (called non-resetting arbiter there). Section3 describes the assumptions, analysis and solution of the FIFO and nearest-neighbour models. Severalnumerical and simulation results for a number of system con�gurations are presented in section 4. Theconclusion outlines some perspectives for future work.2
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(a) (b)Figure 2: Cascaded arbiter2 De�nition of the arbiterAn asynchronous arbiter is de�ned as a circuit or a subsystem that dynamically allocates a single sharedresource to the user components in a system which is free from common clock. Each user, when it requiresthe resource, issues an asynchronous request and waits until the arbiter produces a grant in the form of aprivilege token. The user who wins the current arbitration session uses the resource and after �nishing itstask releases the privelege token by sending a release signal to the arbiter. This creates the opportunityfor another (or even the same) user to acquire the resource.An arbitration session starts with the receipt of a release signal or, if there are no requests present,with the arrival of a request signal. It ends, after some �nite delay, with the privilege token being allocatedto exactly one of the users with pending requests. Requests which arrive while the resource is busy donot trigger arbitration sessions.The duration of an arbitration session is called the reaction time of the arbiter. To minimize theaverage reaction time and at the same time to avoid an overly complex circuitry, multi-way arbitrationis organised by building a cascade of basic cells to form a (balanced) tree. Sometimes such a tree is anatural form of the overall system's topology and so the arbitration structure simply conforms to it.Thanks to the existence of a well-tested implementation of a standard 2-way mutual exclusion cell(see, for example, [9]), the multi-way asynchronous arbiter becomes a robust and realistic possibility,despite a non-zero probability of a metastable state in its behaviour [3]. The latter happens when tworequests arrive in the same cell very close to each other and the inertiality of the device, which is builton the basis of an SR-ip-op, may put it to a state in which neither of its two outputs is in its stableHIGH state. This state is however normally not much longer than a simple latch delay, and should notproduce any undesirable e�ects in an asynchronous environment. An interested reader may refer to [3]for more information on the metastability phenomenon. In this paper, we assume that metastability isstatistically infrequent and, while being an important issue from the safety point of view, plays a minorrole in terms of its e�ect on the average system's performance.Each 2-way mutual exclusion cell arbitrates between two users. It propagates request and releasesignals from lower to higher levels of the structure, while the grants are generated in the opposite direction.Figure 2 (a) shows one such cell, a 2-way arbiter, with its three request-grant-release interfaces (r1; g1; d1),(r1; g2; d2) and (r; g; d), where (r1; g1; d1) and (r2; g2; d2) stand for the links with the descendent cells,generating competing requests at r1 and r2, and the (r; g; d) triple is the link with the parent cell. Anexample of a 4-way arbiter, shown in �gure 2 (b), illustrates the regular way in which a cascaded multi-wayarbiter can be composed from the basic cells.2.1 FIFO and and nearest-neighbour arbitrarionA convenient language to capture the dynamic asynchronous behaviour of the arbiter is o�ered by Petrinets [7]. A Petri net is a graph with two types of nodes, places (circles in the graph) to represent partialstates of the system, and transitions (bars in the graph) to represent actions or events. The Petri netmodel of the 3-cell, 4-user arbiter from �gure 2 (b) is shown in �gure 3.3
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Figure 3: Petri net model for cascaded arbiter (the nearest-neighbour version is shown with dashed arcs)
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Consider �rst the Petri net without the dashed arcs and \bubbles" on the net places. Its transidionsare labeled ri or rij (accepting a request), gi or gij (granting the privilege token) and di or dij (receivinga release signal). All transitions are timed and possibly stochastic, i.e. an interval of time, whichmay be random, elapses between the enabling of the transition and its �ring (the latter is atomic andinstantaneous). Mutual exclusion is accomplished by the places labeled mei or me: when a token isconsumed from me1 or me2 by the �ring of one of a pair of ri transitions, the other one cannot �re.Similarly, when the privilege token is consumed from me by the �ring of one of the gij transitions, theother one cannot �re.The initial marking of the model shown in �gure 3 corresponds to the state where all the users havesubmitted requests (all transitions labelled ri; i = 1; :::; 4; are enabled), and the privilege token is at me.To trace a possible sequence of transition �rings, assume that transition r1 �res �rst. This �ring consumesthe token fromme1, and the request propagates to the next stage by enabling transition r12. Now if thistransition �res before its rival r34, the privilege token is taken from me and begins its way through thestages, causing transitions g12 and g1 to �re in turn. At this point, according to the behaviour of user1, shown by dotted arcs, the privilege token stays with user 1 for the �ring time of the correspondingunlabeled transition (this represents the service time of the resource). When that transition �res, itenables transition d1 (user 1 releases the resource) and also another unlabeled transition whose �ringtime represents the `think time' of user 1. The �ring of transition d1 leads to the backward propagationof the privilege token towards place me.Note that the overall Petri net model is essentially built from fragments corresponding to two-wayarbiter cells. This design can easily be extended recursively to arbiters for n = 8; 16; : : : users.Analysis of this Petri net model shows the following important behavioural detail. Whenever a userreleases the resource (i.e., one of the transitions di �res), the privilege token is returned to the root of thetree (place me ). Further, if another user submits a request, it will have to travel through the net, winningarbitration in all the intermediate stages, until it reaches the root. Therefore, if all transitions ri haveconstant and equal �ring times, and similarly for transitions rij, the arbiter serves incoming requests inFIFO order. In practice of course that is not strictly true, due to small delay variations. Nevertheless,violations of the FIFO order are su�ciently rare to justify describing this net as a FIFO arbiter.Now consider the extended Petri net in Figure 3, including the dashed arcs and the transition labeledp12. Note that this net also has a so-called inhibitor arc betwen a place and a transition (the one witha bubble end). The semantics of such an arc is that a marked place prevents the transition from �ring,while an unmarked one enables it. In the net shown in Figure 3, this implies that when user 1 releasesthe privilege token, transition d1 can �re only if user 2 has not submitted a request; if it has, then thealternative transition, p12, is enabled and the privilege token goes via transition g2 to user 2. Thismechanism, suitably extended to all cells, implements the nearest-neighbour scheduling policy (for thecorresponding asynchronous circuit implementation, see [10]).3 Performance analysisFor the purposes of performance evaluation, we model the arbiter at a higher level of abstraction thanthat of the Petri net or the asynchronous circuit. Rather, we consider it as a binary tree of the typeillustrated in �gure 1, with the users at the leaves and the privilege token moving from node to node,experiencing delays at every step. As well as the height of the tree, k, or the number of users, n = 2k,the model is characterized by the following quantities:� User think times (intervals between releasing the resource and requiring it again) are i.i.d. randomvariables distributed exponentially with mean 1=� .� Resource service times (intervals between giving the privilege token to a user and having it released)are i.i.d. random variables distributed exponentially with mean 1=�.� Delays of passing the privilege token from node to node are i.i.d. random variables distributedexponentially with mean 1=� (these are in fact the actual delays of the logic circuit for a two-wayarbiter cell, plus the interconnection between adjacent stages; for the sake of simplicity we modelthem by a single random variable).The exponential distribution assumptions are made principally for analytical convenience. They canusually be generalized at the price of increasing the complexity of the solution.5



1=�1=�--- -n�����3PPPPPqZZZZZZ~Figure 4: A FIFO queue with n users and a single server3.1 FIFO arbiterIn the FIFO case, the system can be modelled as a �nite-source, single-server queue; see �gure 4.The service rate for this model, �, is obtained by noting that, since every arbitration involves passingthe privilege token from the root to a leaf and back, the average time during which a request occupiesthe server is 1� = 1� + 2k� : (1)A simple approximate solution is derived by assuming that the service times are distributed exponentially.That solution is in fact insensitive to the distribution of the user think times. The steady-state probability,pi, that there are i requests at the arbiter, is given by (see [6]):pi = n!(n � i)! (�� )ip0 ; i = 0; 1; : : :; n ; (2)where p0 = " nXi=0 n!(n� i)! (�� )i#�1 : (3)An exact solution which treats the service time as a sum of exponentially distributed random variablesalso exists, but has higher computational complexity.The throughput of the FIFO arbiter, T , de�ned as the average number of requests that are completedper unit time, is equal to: T = (1� p0)� : (4)The average response time of a request, W , i.e. the interval between submitting it to the arbiter andhaving it granted, is determined by applying Little's theorem [6]:W = nT � 1� : (5)3.2 Nearest-neighbour arbiterIn principle, it would be possible to construct a Markov chain model of the nearest-neighbour arbiter andsolve it exactly. However, that is an impractical approach, due to the size of state space that would berequired. To describe the state of a tree arbiter of height k, one would have to specify which of the 2kusers have submitted requests, at which node is the token and, if not at a leaf, in which direction it ismoving. This leads to a state space whose size grows with k as 2k+122k .We shall provide an approximate analysis, based on the notion of a local busy period. Considersub-trees of varying height, together with their sets of users, as illustrated in �gure 5.6



n��� LLL LLL��� n n��� LLLn�� @@(a) (b)Figure 5: (a) sub-tree of height 1; (b) sub-tree of height 2Remember that, according to the nearest-neighbour scheduling policy, once the privilege token hasentered a sub-tree of height j, for any j < k, it remains within it, serving existing and newly arrivingrequests, until there are no requests present. When that sub-tree is empty, the token goes to the parentof its root, thus �nding itself in a subtree of height j + 1.Denote by Bi(j) the average interval between the token entering a sub-tree of height j, with i requestspresent, and leaving it empty. Both entry and exit occur via the root of the sub-tree. We shall make theapproximating assumption that the initial i requests are packed as closely as possible. For example, if abusy period for a sub-tree of height 2 (see �rure 5 (b)), starts with 2 requests present, the assumptionis that they come from two sibling users. That assumption simpli�es the analysis considerably, withouta�ecting the behaviour of the system unduly. It is possible to solve the model without it, at the priceof introducing a large number of di�erent types of busy periods; however the small accuracy gain is notworth the extra e�ort.Let also mi(j) be the average number of requests served during a busy period for a sub-tree of heightj, starting with i requests present. If the quantities Bi(j) and mi(j) are known for j = k, one can �nd thesystem throughput as follows: A busy period for the full arbiter tree starts with the arrival of one requestinto an empty system, and ends with the system being empty again; its average duration is B1(k). Theaverage length of the subsequent idle period, Ik, is equal to 1=(2k� ) (that is the interval until the �rstof the 2k users submits a request). During the busy{idle cycle, an average of m1(k) requests are served.Hence, the throughput of the nearest-neighbour arbiter is given byT = m1(k)B1(k) + Ik : (6)The expression (5) for the average response time of a request still applies.The averages Bi(j) and mi(j) can be determined recursively for all j = 1; 2; : : : ; k and i = 1; 2; : : : ; 2j.Consider �rst a sub-tree of height 1 (�gure 5 (a)). A busy period may start with 2 requests or with 1request present. In the former case, the token goes to one of the users, remains there for a service timeand returns to the root, after which the sub-tree behaves as if a busy period starts with 1 request present.Thus we have B2(1) = 1� + 2� +B1(1) : (7)In a busy period which starts with 1 request, the token goes to that user, remains there for a service timeand returns to the root. If in the meantime the second user does not submit a request, the busy periodends; otherwise it continues as if a new period starts with 1 request. The probability that a thinking userdoes not submit a request during a service time and two node delays is equal to ��2=(� + � )(� + � )2.Hence, B1(1) = 1� + 2� + �1� ��2(�+ � )(� + � )2 �B1(1) : (8)Similar equations allow us to determine the numbers of requests served during those busy periods:m2(1) = 1 +m1(1) ; m1(1) = 1 + �1� ��2(� + � )(� + � )2 �m1(1) : (9)7



Suppose now that the average busy periods and numbers of requests completed during them have beenobtained for all sub-trees of height strictly less than j. Consider a sub-tree of height j, with i requestspresent and the privilege token at the root. According to the `closely packed' assumption, as many aspossible of the i requests are in one of the descendent sub-trees, say the left one, and the rest are in theother. That is, `(i) = min(i; 2j�1) requests are initially in the left descendent sub-tree and r(i) = i� `(i)requests are in the right one. (Note that from the performance standpoint, the `closely packed' assumptionpresents an optimistic situation since the token stays maximally within the left subtree and may not evenneed to switch to the right subtree afterwards. That move would obviously contribute with an extra delayto the busy period. In a more general case the distribution of requests may not be `closely packed' in onesubtree. It is therefore possible to put a pessimistic bound, `(i) = d i2e, assuming that the requests areequally divided betwen the left and right subtrees. Obviously, it remains that r(i) = i� `(i).) The tokengoes to the left descendent, remains in that sub-tree until it is empty, then returns to the root. If, duringthat time, s of the thinking users in the right sub-tree submit requests, the continuation is equivalent toa busy period with r(i) + s initial requests. Denoting the probability of the latter occurrence by �i;s, wecan write a recurrence equation for Bi(j):Bi(j) = B`(i)(j � 1) + 2� + 2j�1�r(i)Xs=0 �i;sBr(i)+s(j) ; i = 1; 2; : : : ; 2j (10)(if r(i) = 0, the term with s = 0 in the right-hand side is 0 by de�nition).This is not a linear recurrence, because the probabilities �i;s depend on B`(i)(j � 1). To estimatethose probabilities, we make another approximation, namely we treat the time that the token spends inthe left descendent sub-tree, together with the two propagation delays of getting there and back, as beingdistributed exponentially. The parameter of that distribution, �, is obtained from1� = B`(i)(j � 1) + 2� : (11)The probability that a given user in think state will submit a request during an exponentially dis-tributed interval with parameter �, is equal to �=(� + � ). This implies that the probabilities �i;s areBinomial: �i;s = � 2j�1� r(i)s � ( �� + � )s(1� �� + � )2j�1�r(i)�s ; (12)for s = 0; 1; : : : ; 2j�1� r(i).The recurrence equations for the number of completed requests during a busy period are:mi(j) = m`(i)(j � 1) + 2j�1�r(i)Xs=0 �i;smr(i)+s(j) ; i = 1; 2; : : : ; 2j ; (13)with the same de�nitions for `(i), r(i) and �i;s.The throughput and average response time for a nearest-neighbour tree arbiter with 2k users can nowbe computed by means of (6) and (5), together with the above recurrences.4 Numerical experimentsIn this section we present the experimental results obtained for the analytical and simulation-basedmodels of the nearest-neighbour and FIFO arbiters. The analytical results have been obtained by iterativesolution of the linear equation systems (using the NAG software) that are generated by the recurrencesshown in the previous section. A Fortran-77 program accessing the NAG subroutines accepts as its inputthe value of the size of the tree n and set of values for the three main statistical parameters of the system:request arrival (think) rate � , privilege release (service) rate � and interstage propagation rate �. Theseresults have been checked against those from simulation, and appeared to be within acceptable range ofaccuracy (less than 10%).Note the following arrangements in the experiments:� In all experiments, we used normalised value � = 1 for convenience;8
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Figure 6: Nearest-neighbour arbiter throughput versus user think rate (n = 4; 8; 16 and � = 2; 10; 100).� When running computations for the FIFO model we had to \adjust" the value of its interstagepropagation delay to allow for the fact that the logic implementation of a nearest-neighbour arbitercell is more complex (and hence creates greater delay) that of a FIFI arbiter. We therefore appliedan appropriate set of scaling factors, e.g., �F = 1:2�, where �F is the \adjusted", by 1.2, value forthe FIFO case.� The values of � and � have been changed e�ectively in a logarithmic scale to cover most casesconcerned with the request load and internal delays in the arbiter.Table 1 shows the data obtained for n-user (n = 4; 8; 16) arbiters under the assumption �F = 1:2�.This data clearly shows that the ratio T=TF between the throughputs of the nearest-neighbour arbiterand the FIFO one increases above 1 when the request ow reaches some critical point; e.g., for n = 4at � = 10, such a point is � = 0:2. At the same time, as the speed of the arbiter circuit decreases (�becomes smaller) the e�ect of nearest-neighbour is more apparent. E.g., for n = 8 and � = 0:2 the ratioT=TF increases from 1.03 at � = 100 to 1.33 at � = 2. Then, under higher request ow, for � = 1, theratio T=TF goes from 1.02 at � = 100 to 1.55 at � = 2.The above-mentioned gain becomes more impressive as the size of the arbiter grows from n = 4 ton = 8 and then to n = 16. E.g., for � = 1 and � = 10 the ratio T=TF is 1.05 at n = 4, 1.17 for n = 8and for n = 16. This is explained by the fact that in a deeper cascaded structure, at a high request rate,the overhead of the privilege travelling up and down the whole tree is apparent. At the same time it isinteresting to note that that the throughput ratios T=TF for n = 8 and n = 16 di�er (in favour of n = 16)only under relatively low think rates � (and greater propagation delays 1=�), where the e�ect of savingon travelling between the stages in the nearest-neighbour arbiter is more apparent. Otherwise, for thevalues of � > 0:2, the size of the arbiter does not seem to a�ect the ratio.The plottings of the throughput against think rate � for the three cases n = 4; 8; 16, at � = 2 (threebottom plots), � = 10 (three middle plots) and � = 100 (three top plots), are illustrated in Figure 6.The relationship between the throughput ratio T=TF and � , again for n = 4; 8; 16 at � = 2; 10; 100and �F = 1:2� is plotted in Figure 7. This plottings show that at low propagation delays � = 100, forall three values of n, we do not gain anything form the nearest-neighbour technique. However, as thepropagation delay increases, even at the level of � = 10, the nearest-neighbour arbiter begins to save onthe server movement at reasonable think rates, e.g. between 0.1 and 0.5.The plottings of the throughput ratio T=TF against the interstage propagation delay 1� (�F = 1:2�)for n = 4; 8; 16 at � = 0:1; 0:2 and � = 1; 5 are shown in Figure 8 and Figure 9, respectively.We have also obtained data illustrating the e�ect of the variable scaling factor s in �F = s� for9



� � T TF T=TF T TF T=TF T TF T=TFn = 4 n = 8 n = 160.01 100 0.040 0.040 1.00 0.079 0.079 1.00 0.158 0.158 1.000.01 50 0.040 0.040 1.00 0.079 0.079 1.00 0.157 0.158 0.990.01 20 0.039 0.040 0.99 0.079 0.079 1.00 0.156 0.158 0.990.01 10 0.039 0.040 0.99 0.078 0.079 0.99 0.154 0.157 0.980.01 5 0.039 0.039 1.00 0.077 0.078 0.99 0.149 0.156 0.960.01 2 0.038 0.039 0.99 0.074 0.076 0.97 0.138 0.150 0.920.02 100 0.078 0.078 1.00 0.156 0.156 1.00 0.310 0.311 1.000.02 50 0.078 0.078 1.00 0.156 0.156 1.00 0.308 0.310 0.990.02 20 0.078 0.078 1.00 0.154 0.155 0.99 0.302 0.308 0.980.02 10 0.077 0.078 0.99 0.152 0.154 0.99 0.294 0.304 0.970.02 5 0.076 0.077 0.99 0.148 0.152 0.97 0.278 0.295 0.940.02 2 0.074 0.075 0.99 0.136 0.143 0.95 0.239 0.286 0.920.05 100 0.189 0.189 1.00 0.371 0.371 1.00 0.707 0.699 1.010.05 50 0.188 0.188 1.00 0.368 0.368 1.00 0.695 0.690 1.010.05 20 0.186 0.187 0.99 0.360 0.364 0.99 0.660 0.660 1.000.05 10 0.183 0.187 0.99 0.347 0.354 0.98 0.606 0.603 1.000.05 5 0.177 0.181 0.99 0.323 0.331 0.98 0.512 0.488 1.050.05 2 0.161 0.168 0.96 0.264 0.255 1.03 0.330 0.286 1.150.1 100 0.352 0.352 1.00 0.660 0.652 1.01 0.955 0.937 1.020.1 50 0.349 0.350 1.00 0.649 0.642 1.01 0.919 0.909 1.010.1 20 0.342 0.345 0.99 0.619 0.612 1.01 0.828 0.797 1.040.1 10 0.331 0.336 0.99 0.573 0.560 1.02 0.712 0.666 1.070.1 5 0.311 0.318 0.98 0.496 0.465 1.07 0.560 0.5 1.120.1 2 0.259 0.268 0.96 0.346 0.284 1.22 0.352 0.286 1.230.2 100 0.598 0.595 1.01 0.925 0.896 1.03 0.964 0.952 1.010.2 50 0.59 0.588 1.00 0.897 0.864 1.04 0.930 0.909 1.020.2 20 0.568 0.568 1.00 0.823 0.776 1.06 0.843 0.8 1.050.2 10 0.533 0.535 1.00 0.724 0.658 1.10 0.733 0.667 1.100.2 5 0.473 0.476 1.00 0.587 0.498 1.18 0.588 0.5 1.180.2 2 0.350 0.344 1.02 0.381 0.286 1.33 0.381 0.286 1.330.5 100 0.897 0.882 1.02 0.969 0.952 1.02 0.966 0.952 1.020.5 50 0.876 0.860 1.02 0.941 0.909 1.04 0.941 0.909 1.040.5 20 0.817 0.8 1.02 0.865 0.8 1.08 0.865 0.8 1.080.5 10 0.736 0.714 1.03 0.765 0.667 1.15 0.765 0.667 1.150.5 5 0.614 0.584 1.05 0.626 0.5 1.25 0.626 0.5 1.250.5 2 0.416 0.373 1.12 0.417 0.286 1.46 0.417 0.286 1.461 100 0.965 0.954 1.01 0.973 0.952 1.02 0.973 0.952 1.021 50 0.941 0.926 1.02 0.947 0.909 1.04 0.947 0.909 1.041 20 0.874 0.849 1.03 0.878 0.8 1.10 0.878 0.8 1.101 10 0.784 0.745 1.05 0.786 0.667 1.17 0.786 0.667 1.171 5 0.652 0.598 1.09 0.653 0.5 1.31 0.653 0.5 1.311 2 0.442 0.375 1.18 0.442 0.286 1.55 0.442 0.286 1.552 100 0.975 0.966 1.01 0.975 0.952 1.02 0.975 0.952 1.022 50 0.952 0.936 1.02 0.952 0.909 1.05 0.952 0.909 1.052 20 0.889 0.856 1.04 0.889 0.8 1.11 0.889 0.8 1.112 10 0.802 0.750 1.07 0.802 0.667 1.20 0.802 0.667 1.202 5 0.673 0.6 1.12 0.673 0.5 1.35 0.673 0.5 1.352 2 0.461 0.375 1.23 0.461 0.286 1.61 0.461 0.286 1.615 100 0.978 0.968 1.01 0.978 0.952 1.03 0.978 0.952 1.035 50 0.956 0.937 1.02 0.956 0.909 1.05 0.956 0.909 1.055 20 0.898 0.857 1.05 0.898 0.8 1.12 0.898 0.8 1.125 10 0.816 0.75 1.09 0.816 0.667 1.22 0.816 0.667 1.225 5 0.692 0.6 1.15 0.692 0.5 1.38 0.692 0.5 1.385 2 0.480 0.375 1.28 0.480 0.286 1.68 0.480 0.286 1.68Table 1: Throughputs T , TF and their ratio (T=TF ) for variable n; � and � (�F = 1:2�).10
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Figure 7: Throughput ratio T=TF against think rate � (n = 4; 8; 16 and � = 2; 10; 100, �F = 1:2�).
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Figure 8: Throughput ratio T=TF against interstage propagation delay 1� (n = 4; 8; 16 and � = 0:1; 0:2).11
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Figure 9: Throughput ratio T=TF against interstage propagation delay 1� (n = 4; 8; 16 and � = 1; 5).n = 8. The data are plotted in Figures 10 (for � = 0:1), 11 (� = 0:2) and 12 (� = 1). The latter forexample shows that under a high rate of requests (� = 1), even a fairly costly implementation of thenearest-neighbour mechanism, with scaling factor s around 2, the nearest-neighbour method can be quiteadvantageous.Finally, the plottings in Figure 13 illustrate the e�ect of distinction between the optimistic (`closelypacked' requests) and pessimistic (requests split equally between the left and right subtrees) cases. Notethat as the think rate � grows from 0.5 to 5 the di�erence between the bounds decreases.5 ConclusionsWe have presented a method for cascaded (tree) asynchronous arbitration which is based on the nearest-neighbour policy of privilege scheduling within a cluster of the system. This method is di�erent fromthe classical approach (called FIFO here), where the privilege always returns to the top of the tree atthe end of each resource acquisition by some user. Our intuitive expectation that the nearest-neighbourarbiter allows the overall increase of performance due to minimisation of the interstage transfers ofthe privilege has been con�rmed by performance analysis. The results of analysis demonstrate thatthe performance gain due to the nearest-neighbour discipline against the cascaded FIFO method canbe achieved for realistic values of the system's parameters, the request (think) rate and the interstatepropagation delays. Even though the use of the nearest-neighbour policy negatively a�ects the system'sfairness, one can e�ciently exploit its advantages when building a system with two types of tasks. It ispossible to construct the arbitration system combining the FIFO and nearest-neighbour arbitration cells[10]. Then, whenever the system reaches its request ow peaks, the nearest-neighbour method allows itsspeci�c parts, presumably `high priority clusters", to retain the privilege until the peak is �nished. Atthe same time, the arbiter can serve its \background clusters" during quieter periods using the FIFOmethod. The model for performance analysis presented here is relatively high-level and approximate (seesection 3), and it does not take into account the real physical delays in potential VLSI implementations.Further work is planned on lower level performance analysis of asynchronous circuit implementations ofarbiters consisting of di�erent types of cells, FIFO, low latency, with rejection and nearest-neighbour.12
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Figure 10: Plot for illustration of the e�ect of scaling the �F (variable factor s in �F = s�) for n = 8 and� = 0:1 at � = 2; 5; 10; 20.
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Figure 11: Plot for illustration of the e�ect of scaling the �F (variable factor s in �F = s�) for n = 8 and� = 0:2 at � = 2; 5; 10; 20. 13
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Figure 12: Plot for illustration of the e�ect of scaling the �F (variable factor s in �F = s�) for n = 8 and� = 1 at � = 2; 5; 10; 20 .
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Figure 13: Plot (throughput T versus propagation delay 1=v) to illustrate the di�erence between theoptimistic and pessimistic models for � = 0:5; 5. 14
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