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Abstract

A tree arbiter designed to minimize the average delay between consecutive allocations of a con-
tentious resource is described and evaluated. The idea is to divide the competing users into nested
clusters corresponding to sub-trees of varying size, and to keep the resource within the smallest cluster
currently containing requests. This design reduces the number of steps in the arbitration procedure
and hence increases the overall throughput of requests. The performance of the new arbiter is anal-
ysed and is compared to that of an algorithm which maintains first-in-first-out order among requests.
The trade-offs between the nearest-neighbour and FIFO designs are examined numerically over wide
ranges of parameter values. It is shown that when the system becomes large and/or heavily loaded,
the benefits of the the nearest-neighbour arbiter become greater.

Keywords: arbitration, asynchronous systems, conflict resolution, mutual exclusion, performance
analysis, resource allocation, tree arbiter.

1 Introduction

Parallel and distributed systems use arbiters to resolve mutual exclusion between independent users
accessing shared resources. For example, a number of processors may be competing for a bus, sending
requests to it asynchronously and independently of each other. Whenever new requests arrive, or old
ones are completed, the arbiter has to decide which of the waiting processors should be allowed to use
the bus. Other examples of such systems involve multi-port memories and packet routers [2, 9].

The ability to use the resource is usually signalled by the possesssion of a “privilege token”. A typical
user behaviour pattern is to request the token, wait until it is granted, use the resource, release the token,
perform tasks which do not require the resource (this last activity will be referred to as thinking), request
the token again, etc. In those terms, the arbiter is a hardware device which receives token requests and
token release signals as inputs, and produces token grants to individual users as outputs. This paper is
concerned with some trade-offs involved in the construction of that device: different design alternatives
and their implications for the performance of the system.

The design of a fully parallel arbiter, like that of a cross-bar switch, tends to be too complex, too
expensive and too difficult to scale up. A more common solution is therefore to put together a number
of simple components which combine parallel and sequential actions. The usual basic building blocks
are 2-way arbiter cells which form the nodes of a binary tree. Each cell passes token request and release
signals from descendents to parent (if any), and token grants from parent to descendents; the latter are
either users or other cells. Thus a single cell (a binary tree of height 1) can arbitrate between 2 users;
a tree of height 2 containing three cells can arbitrate between 4 users; in general, an arbiter for n = 2*

users would consist of 28-1

cells forming a complete binary tree of height k. Because arbitration tasks
are performed in sequence by cells at different levels of the tree, this type of arbiter is also described as
cascaded (see figure 1).

If a user can occupy itself with other tasks while waiting for the resource to become available, it would
be sensible to design an arbiter which delivers ‘negative acknowledgements’ when the resource is busy
(see [4]). Here we are concerned with systems where the opposite is the case: once a user requests the
resource, it cannot do anything useful until that request is granted; the interval between requesting and
receiving the token represents idle waiting time. In these circumstances, reducing the arbitration time
leads to a more efficient system and is therefore a worthwhile objective to pursue. Two recent designs of
low latency arbiters where the request is propagated from one cascade stage to another in parallel with

*This work was partially supported by EPSRC grant GR/K70175.
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Figure 1: A cascaded tree arbiter with 7 cells and 8 users

mutual exclusion resolution, and where the release of request-grant handshakes in different stages is also
done in parallel, are described in [11, 5].

Every action performed by a node in the tree, whether it involves exclusion resolution or passing
information to parent or descendent, causes a delay. Hence, a reduction in the arbitration time can be
achieved either by reducing each such delay, or by reducing the number of nodes that participate in the
arbitration process. An important design consideration in this regard is the token scheduling strategy.
Normally, requests for the resource are served in first-in-first-out (FIFO) order. This is implemented by
queueing the incoming requests at the root of the tree, where the token is returned after each release.
Hence, every arbitration involves passing the token from the root to a leaf node and back; for a tree of
height k, this implies a total of 2k node delays.

We propose a different scheduling policy. When the token is released, it is of course at one of the
leaves of the tree; the user to whom it is allocated next is at another leaf: the latter 1s chosen so as
to minimize the token travel time. Thus, if the sibling of the releasing user is among those waiting, 1t
receives the token after a single node delay. Otherwise, the token returns to the parent of that node and,
if any of the users descending from that parent are waiting, one of them receives the token after a total
of 3 node delays; etc. This will be referred to as the nearest-neighbour scheduling policy.

When comparing the performance of the FIFO and nearest-neighbour policies, the following factors
should be taken into account: on one hand, the cells comprising the FIFO arbiter are simpler, and their
delay times are shorter; on the other, the number of cells and hence the number of delays involved in
a nearest-neighbour arbitration is, on the average, smaller. Modelling and evaluating those trade-offs
under different conditions is a major contribution of this paper.

The performance measure used as a criterion for comparison is the long-term average throughput of
requests. No premium is placed on preserving their order of arrival.

It should be noted that the arbiter model presented here for performance analysis is relatively high-
level and approximate (see section 3). Tt does not take into account the actual physical delays of a
circuit implementation. Such high-level analysis is however very valuable because 1t reflects both strong
and weak points of the nearest-neighbour policy. For example, it clearly demonstrates that the gain in
performance that one can get out of this policy compared to the standard FIFO one is normally only
20-30% and certainly not twice or more times.

The definition of the tree arbiter and its behavioural description using Petri nets are given in section
2. The logic circuit implementation of the nearest-neighbour policy is not covered here; one version of
such an implementation was presented in [10],pp. 190-193 (called non-resetting arbiter there). Section
3 describes the assumptions, analysis and solution of the FIFO and nearest-neighbour models. Several
numerical and simulation results for a number of system configurations are presented in section 4. The
conclusion outlines some perspectives for future work.



rl =
[
dl = Arbiter
2 | cd x
02 <]
rl — d2 = .
01 —| Arbiter
dl = Arbiter =" Cell
=-g r3 =
2 | Cell = B =]
g2 < d3 = Arbiter
d2 =1 4 =] Cel
04 <
d4 =
@ (b)

Figure 2: Cascaded arbiter

2 Definition of the arbiter

An asynchronous arbiter is defined as a circuit or a subsystem that dynamically allocates a single shared
resource to the user components in a system which is free from common clock. Each user, when it requires
the resource, 1ssues an asynchronous request and waits until the arbiter produces a grant in the form of a
privilege token. The user who wins the current arbitration session uses the resource and after finishing its
task releases the privelege token by sending a release signal to the arbiter. This creates the opportunity
for another (or even the same) user to acquire the resource.

An arbitration session starts with the receipt of a release signal or, if there are no requests present,
with the arrival of a request signal. It ends, after some finite delay, with the privilege token being allocated
to exactly one of the users with pending requests. Requests which arrive while the resource is busy do
not trigger arbitration sessions.

The duration of an arbitration session is called the reaction time of the arbiter. To minimize the
average reaction time and at the same time to avoid an overly complex circuitry, multi-way arbitration
is organised by building a cascade of basic cells to form a (balanced) tree. Sometimes such a tree is a
natural form of the overall system’s topology and so the arbitration structure simply conforms to it.

Thanks to the existence of a well-tested implementation of a standard 2-way mutual exclusion cell
(see, for example, [9]), the multi-way asynchronous arbiter becomes a robust and realistic possibility,
despite a non-zero probability of a metastable state in its behaviour [3]. The latter happens when two
requests arrive in the same cell very close to each other and the inertiality of the device, which 1s built
on the basis of an SR-flip-flop, may put it to a state in which neither of its two outputs is in its stable
HIGH state. This state is however normally not much longer than a simple latch delay, and should not
produce any undesirable effects in an asynchronous environment. An interested reader may refer to [3]
for more information on the metastability phenomenon. In this paper, we assume that metastability is
statistically infrequent and, while being an important issue from the safety point of view, plays a minor
role in terms of its effect on the average system’s performance.

Each 2-way mutual exclusion cell arbitrates between two users. It propagates request and release
signals from lower to higher levels of the structure, while the grants are generated in the opposite direction.
Figure 2 (a) shows one such cell, a 2-way arbiter, with its three request-grant-release interfaces (r1, g1, d1),
(rl,92,d2) and (r, g,d), where (rl,¢l,d1) and (2, ¢2,d2) stand for the links with the descendent cells,
generating competing requests at 1 and r2, and the (r, g, d) triple is the link with the parent cell. An
example of a 4-way arbiter, shown in figure 2 (b), illustrates the regular way in which a cascaded multi-way
arbiter can be composed from the basic cells.

2.1 FIFO and and nearest-neighbour arbitrarion

A convenient language to capture the dynamic asynchronous behaviour of the arbiter is offered by Petri
nets [7]. A Petri net is a graph with two types of nodes, places (circles in the graph) to represent partial
states of the system, and transitions (bars in the graph) to represent actions or events. The Petri net
model of the 3-cell, 4-user arbiter from figure 2 (b) is shown in figure 3.
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Figure 3: Petri net model for cascaded arbiter (the nearest-neighbour version is shown with dashed arcs)



Consider first the Petri net without the dashed arcs and “bubbles” on the net places. Its transidions
are labeled r{ or rij (accepting a request), gi or gij (granting the privilege token) and di or dij (receiving
a release signal). All transitions are timed and possibly stochastic, i.e. an interval of time, which
may be random, elapses between the enabling of the transition and its firing (the latter is atomic and
instantaneous). Mutual exclusion is accomplished by the places labeled mei or me: when a token is
consumed from mel or me2 by the firing of one of a pair of ri transitions, the other one cannot fire.
Similarly, when the privilege token is consumed from me by the firing of one of the gij transitions, the
other one cannot fire.

The initial marking of the model shown in figure 3 corresponds to the state where all the users have
submitted requests (all transitions labelled ri,i = 1,...,4, are enabled), and the privilege token is at me.
To trace a possible sequence of transition firings, assume that transition r1 fires first. This firing consumes
the token from mel, and the request propagates to the next stage by enabling transition 12. Now if this
transition fires before its rival r34, the privilege token is taken from me and begins its way through the
stages, causing transitions g12 and g1l to fire in turn. At this point, according to the behaviour of user
1, shown by dotted arcs, the privilege token stays with user 1 for the firing time of the corresponding
unlabeled transition (this represents the service time of the resource). When that transition fires, it
enables transition d1 (user 1 releases the resource) and also another unlabeled transition whose firing
time represents the ‘think time’ of user 1. The firing of transition d1 leads to the backward propagation
of the privilege token towards place me.

Note that the overall Petri net model is essentially built from fragments corresponding to two-way
arbiter cells. This design can easily be extended recursively to arbiters for n = 8,16, ... users.

Analysis of this Petri net model shows the following important behavioural detail. Whenever a user
releases the resource (i.e., one of the transitions di fires), the privilege token is returned to the root of the
tree (place me ). Further, if another user submits a request, it will have to travel through the net, winning
arbitration in all the intermediate stages, until it reaches the root. Therefore, if all transitions rz have
constant and equal firing times, and similarly for transitions rij, the arbiter serves incoming requests in
FIFO order. In practice of course that is not strictly true, due to small delay variations. Nevertheless,
violations of the FIFO order are sufficiently rare to justify describing this net as a FIFO arbiter.

Now consider the extended Petri net in Figure 3, including the dashed arcs and the transition labeled
pl2. Note that this net also has a so-called inhibitor arc betwen a place and a transition (the one with
a bubble end). The semantics of such an arc is that a marked place prevents the transition from firing,
while an unmarked one enables it. In the net shown in Figure 3, this implies that when user 1 releases
the privilege token, transition d1 can fire only if user 2 has not submitted a request; if it has, then the
alternative transition, pl2, is enabled and the privilege token goes via transition g2 to user 2. This
mechanism, suitably extended to all cells, implements the nearest-neighbour scheduling policy (for the
corresponding asynchronous circuit implementation, see [10]).

3 Performance analysis

For the purposes of performance evaluation, we model the arbiter at a higher level of abstraction than
that of the Petri net or the asynchronous circuit. Rather, we consider it as a binary tree of the type
illustrated in figure 1, with the users at the leaves and the privilege token moving from node to node,
experiencing delays at every step. As well as the height of the tree, k, or the number of users, n = 2%,
the model is characterized by the following quantities:

e User think times (intervals between releasing the resource and requiring it again) are i.i.d. random
variables distributed exponentially with mean 1/7.

e Resource service times (intervals between giving the privilege token to a user and having it released)
are i.i.d. random variables distributed exponentially with mean 1/p.

e Delays of passing the privilege token from node to node are 1.i.d. random variables distributed
exponentially with mean 1/v (these are in fact the actual delays of the logic circuit for a two-way
arbiter cell, plus the interconnection between adjacent stages; for the sake of simplicity we model
them by a single random variable).

The exponential distribution assumptions are made principally for analytical convenience. They can
usually be generalized at the price of increasing the complexity of the solution.
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Figure 4: A FIFO queue with n users and a single server

3.1 FIFO arbiter

In the FIFO case, the system can be modelled as a finite-source, single-server queue; see figure 4.
The service rate for this model, £, is obtained by noting that, since every arbitration involves passing
the privilege token from the root to a leaf and back, the average time during which a request occupies
the server is
I

e=aty (1)
A simple approximate solution is derived by assuming that the service times are distributed exponentially.
That solution is in fact insensitive to the distribution of the user think times. The steady-state probability,
pi, that there are ¢ requests at the arbiter, is given by (see [6]):

Ypo ; i=0,1,...,n, (2)

=
Il
—

where
- n! T -
p= |3y (3)
LZ:; (n—9)1"¢

An exact solution which treats the service time as a sum of exponentially distributed random variables
also exists, but has higher computational complexity.

The throughput of the FIFO arbiter, T, defined as the average number of requests that are completed
per unit time, is equal to:

T =(1-po)s . (4)

The average response time of a request, W i.e. the interval between submitting it to the arbiter and
having it granted, is determined by applying Little’s theorem [6]:

n 1
W_T_;' (5)

3.2 Nearest-neighbour arbiter

In principle, it would be possible to construct a Markov chain model of the nearest-neighbour arbiter and
solve 1t exactly. However, that is an impractical approach, due to the size of state space that would be
required. To describe the state of a tree arbiter of height k, one would have to specify which of the 2%
users have submitted requests, at which node is the token and, if not at a leaf, in which direction it 1s
moving. This leads to a state space whose size grows with £ as 2k+192%

We shall provide an approximate analysis, based on the notion of a local busy period. Consider
sub-trees of varying height, together with their sets of users, as illustrated in figure 5.
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Figure 5: (a) sub-tree of height 1; (b) sub-tree of height 2

Remember that, according to the nearest-neighbour scheduling policy, once the privilege token has
entered a sub-tree of height j, for any j < k, it remains within 1t, serving existing and newly arriving
requests, until there are no requests present. When that sub-tree is empty, the token goes to the parent
of its root, thus finding itself in a subtree of height j + 1.

Denote by B;(j) the average interval between the token entering a sub-tree of height j, with ¢ requests
present, and leaving it empty. Both entry and exit occur via the root of the sub-tree. We shall make the
approximating assumption that the initial ¢ requests are packed as closely as possible. For example, if a
busy period for a sub-tree of height 2 (see firure 5 (b)), starts with 2 requests present, the assumption
is that they come from two sibling users. That assumption simplifies the analysis considerably, without
affecting the behaviour of the system unduly. It is possible to solve the model without it, at the price
of introducing a large number of different types of busy periods; however the small accuracy gain is not
worth the extra effort.

Let also m;(j) be the average number of requests served during a busy period for a sub-tree of height
J, starting with ¢ requests present. If the quantities B;(j) and m;(j) are known for j = &, one can find the
system throughput as follows: A busy period for the full arbiter tree starts with the arrival of one request
into an empty system, and ends with the system being empty again; its average duration is By (k). The
average length of the subsequent idle period, Iy, is equal to 1/(2%7) (that is the interval until the first
of the 2% users submits a request). During the busy—idle cycle, an average of m; (k) requests are served.
Hence, the throughput of the nearest-neighbour arbiter is given by

_ ma(k)
= Bi(k)+ I

The expression (5) for the average response time of a request still applies.

The averages B;(j) and m;(j) can be determined recursively for all j = 1,2,..., kand i =1,2,...,2/.
Consider first a sub-tree of height 1 (figure 5 (a)). A busy period may start with 2 requests or with 1
request present. In the former case, the token goes to one of the users, remains there for a service time
and returns to the root, after which the sub-tree behaves as if a busy period starts with 1 request present.
Thus we have

(6)

me=%+§+3mm. (7)

In a busy period which starts with 1 request, the token goes to that user, remains there for a service time
and returns to the root. If in the meantime the second user does not submit a request, the busy period
ends; otherwise it continues as if a new period starts with 1 request. The probability that a thinking user
does not submit a request during a service time and two node delays is equal to pv?/(p + 7)(v + 7)%.
Hence,

_l2 o m
B1) =+ F+ 1= ] B0 &

Similar equations allow us to determine the numbers of requests served during those busy periods:
2

mo(1) = 1+m(l) ; mi(l) =1+ [1_%] mi(1) . (9)



Suppose now that the average busy periods and numbers of requests completed during them have been
obtained for all sub-trees of height strictly less than j. Consider a sub-tree of height j, with i requests
present and the privilege token at the root. According to the ‘closely packed’ assumption, as many as
possible of the ¢ requests are in one of the descendent sub-trees, say the left one, and the rest are in the
other. That is, £(7) = min(i, 2/ ~!) requests are initially in the left descendent sub-tree and (i) = i — £(4)
requests are in the right one. (Note that from the performance standpoint, the ‘closely packed’ assumption
presents an optimistic situation since the token stays maximally within the left subtree and may not even
need to switch to the right subtree afterwards. That move would obviously contribute with an extra delay
to the busy period. In a more general case the distribution of requests may not be ‘closely packed’ in one
subtree. Tt is therefore possible to put a pessimistic bound, £(i) = [%], assuming that the requests are
equally divided betwen the left and right subtrees. Obviously, it remains that r(¢) = ¢ — £(¢).) The token
goes to the left descendent, remains in that sub-tree until it is empty, then returns to the root. If, during
that time, s of the thinking users in the right sub-tree submit requests, the continuation is equivalent to
a busy period with r(4) + s initial requests. Denoting the probability of the latter occurrence by «; 5, we
can write a recurrence equation for B;(j):

2971 (4)
. . 2 . . ;
Bi(j) = Begiy(j — 1) + ~+ > @B (i) 5 i=1,2,..,2 (10)
s=0
(if #(¢) = 0, the term with s = 0 in the right-hand side is 0 by definition).
This is not a linear recurrence, because the probabilities a; s depend on By;)(j — 1). To estimate
those probabilities, we make another approximation, namely we treat the time that the token spends in

the left descendent sub-tree; together with the two propagation delays of getting there and back, as being
distributed exponentially. The parameter of that distribution, 7, is obtained from

1 . 2
;—Bz(i)(J—l)“‘; ~ (11)

The probability that a given user in think state will submit a request during an exponentially dis-
tributed interval with parameter 7, is equal to 7/(n + 7). This implies that the probabilities «; , are

Binomial: - 0
207 —r(2 T T 29l p(i)—s
i = 1— — , 12
e G [ (12)

for s =0,1,...,2/ 71 — »(4).
The recurrence equations for the number of completed requests during a busy period are:

Zj_l—r(i)

mi(j) = meny(G— D+ Y. aamengs(i) 5 i=1,2,...,20 (13)

s=0

with the same definitions for £(4), r(¢) and «; ;.
The throughput and average response time for a nearest-neighbour tree arbiter with 2% users can now
be computed by means of (6) and (5), together with the above recurrences.

4 Numerical experiments

In this section we present the experimental results obtained for the analytical and simulation-based
models of the nearest-neighbour and FIFO arbiters. The analytical results have been obtained by iterative
solution of the linear equation systems (using the NAG software) that are generated by the recurrences
shown in the previous section. A Fortran-77 program accessing the NAG subroutines accepts as its input
the value of the size of the tree n and set of values for the three main statistical parameters of the system:
request arrival (think) rate 7, privilege release (service) rate p and interstage propagation rate v. These
results have been checked against those from simulation, and appeared to be within acceptable range of
accuracy (less than 10%).
Note the following arrangements in the experiments:

e In all experiments, we used normalised value y = 1 for convenience;
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Figure 6: Nearest-neighbour arbiter throughput versus user think rate (n = 4,8,16 and v = 2,10, 100).

e When running computations for the FIFO model we had to “adjust” the value of its interstage
propagation delay to allow for the fact that the logic implementation of a nearest-neighbour arbiter
cell is more complex (and hence creates greater delay) that of a FIFT arbiter. We therefore applied
an appropriate set of scaling factors, e.g., vp = 1.2v, where vp 1s the “adjusted”, by 1.2, value for
the FIFO case.

e The values of 7 and v have been changed effectively in a logarithmic scale to cover most cases
concerned with the request load and internal delays in the arbiter.

Table 1 shows the data obtained for n-user (n = 4,8, 16) arbiters under the assumption vp = 1.2v.
This data clearly shows that the ratio T'/Tr between the throughputs of the nearest-neighbour arbiter
and the FIFO one increases above 1 when the request flow reaches some critical point; e.g., for n = 4
at v = 10, such a point is 7 = 0.2. At the same time, as the speed of the arbiter circuit decreases (v
becomes smaller) the effect of nearest-neighbour is more apparent. E.g., for n = 8 and 7 = 0.2 the ratio
T/Tp increases from 1.03 at » = 100 to 1.33 at » = 2. Then, under higher request flow, for 7 = 1, the
ratio T'/Tp goes from 1.02 at v = 100 to 1.55 at v = 2.

The above-mentioned gain becomes more impressive as the size of the arbiter grows from n = 4 to
n = 8 and then to n = 16. E.g., for 7 = 1 and v = 10 the ratio T/T¥ is 1.05 at n = 4, 1.17 for n = 8
and for n = 16. This is explained by the fact that in a deeper cascaded structure, at a high request rate,
the overhead of the privilege travelling up and down the whole tree is apparent. At the same time it is
interesting to note that that the throughput ratios T/Tr for n = 8 and n = 16 differ (in favour of n = 16)
only under relatively low think rates 7 (and greater propagation delays 1/v), where the effect of saving
on travelling between the stages in the nearest-neighbour arbiter is more apparent. Otherwise, for the
values of 7 > 0.2, the size of the arbiter does not seem to affect the ratio.

The plottings of the throughput against think rate 7 for the three cases n = 4,8,16, at v = 2 (three
bottom plots), v = 10 (three middle plots) and v = 100 (three top plots), are illustrated in Figure 6.

The relationship between the throughput ratio T/Te and 7, again for n = 4,8, 16 at » = 2,10, 100
and vp = 1.2v 18 plotted in Figure 7. This plottings show that at low propagation delays v = 100, for
all three values of n, we do not gain anything form the nearest-neighbour technique. However, as the
propagation delay increases, even at the level of v = 10, the nearest-neighbour arbiter begins to save on
the server movement at reasonable think rates, e.g. between 0.1 and 0.5.

The plottings of the throughput ratio T/Tp against the interstage propagation delay % (vp = 1.2v)
forn=4,8 16 at 7=0.1,0.2 and 7 = 1,5 are shown in Figure 8 and Figure 9, respectively.

We have also obtained data illustrating the effect of the variable scaling factor s in vp = sv for



T v T | Tr | T/Tr T | Tr | T/Tr T | Tr | T/Tr
n=4 n=2=8 n =16

0.01 | 100 0.040 | 0.040 1.00 0.079 | 0.079 1.00 0.158 | 0.158 1.00
0.01 50 0.040 | 0.040 1.00 0.079 | 0.079 1.00 0.157 | 0.158 0.99
0.01 20 0.039 | 0.040 0.99 0.079 | 0.079 1.00 0.156 | 0.158 0.99
0.01 10 0.039 | 0.040 0.99 0.078 | 0.079 0.99 0.154 | 0.157 0.98
0.01 5 0.039 | 0.039 1.00 0.077 | 0.078 0.99 0.149 | 0.156 0.96
0.01 2 0.038 | 0.039 0.99 0.074 | 0.076 0.97 0.138 | 0.150 0.92
0.02 | 100 0.078 | 0.078 1.00 0.156 | 0.156 1.00 0.310 | 0.311 1.00
0.02 50 0.078 | 0.078 1.00 0.156 | 0.156 1.00 0.308 | 0.310 0.99
0.02 20 0.078 | 0.078 1.00 0.154 | 0.155 0.99 0.302 | 0.308 0.98
0.02 10 0.077 | 0.078 0.99 0.152 | 0.154 0.99 0.294 | 0.304 0.97
0.02 5 0.076 | 0.077 0.99 0.148 | 0.152 0.97 0.278 | 0.295 0.94
0.02 2 0.074 | 0.075 0.99 0.136 | 0.143 0.95 0.239 | 0.286 0.92
0.05 | 100 0.189 | 0.189 1.00 0.371 | 0.371 1.00 0.707 | 0.699 1.01
0.05 50 0.188 | 0.188 1.00 0.368 | 0.368 1.00 0.695 | 0.690 1.01
0.05 20 0.186 | 0.187 0.99 0.360 | 0.364 0.99 0.660 | 0.660 1.00
0.05 10 0.183 | 0.187 0.99 0.347 | 0.354 0.98 0.606 | 0.603 1.00
0.05 5 0.177 | 0.181 0.99 0.323 | 0.331 0.98 0.512 | 0.488 1.05
0.05 2 0.161 | 0.168 0.96 0.264 | 0.255 1.03 0.330 | 0.286 1.15
100 0.352 | 0.352 1.00 0.660 | 0.652 1.01 0.955 | 0.937 1.02
50 0.349 | 0.350 1.00 0.649 | 0.642 1.01 0.919 | 0.909 1.01
20 0.342 | 0.345 0.99 0.619 | 0.612 1.01 0.828 | 0.797 1.04
10 0.331 | 0.336 0.99 0.573 | 0.560 1.02 0.712 | 0.666 1.07
5 0.311 | 0.318 0.98 0.496 | 0.465 1.07 0.560 0.5 1.12
2 0.259 | 0.268 0.96 0.346 | 0.284 1.22 0.352 | 0.286 1.23
100 0.598 | 0.595 1.01 0.925 | 0.896 1.03 0.964 | 0.952 1.01
50 0.59 0.588 1.00 0.897 | 0.864 1.04 0.930 | 0.909 1.02
20 0.568 | 0.568 1.00 0.823 | 0.776 1.06 0.843 0.8 1.05
10 0.533 | 0.535 1.00 0.724 | 0.658 1.10 0.733 | 0.667 1.10
5 0.473 | 0.476 1.00 0.587 | 0.498 1.18 0.588 0.5 1.18
2 0.350 | 0.344 1.02 0.381 | 0.286 1.33 0.381 | 0.286 1.33
100 0.897 | 0.882 1.02 0.969 | 0.952 1.02 0.966 | 0.952 1.02
50 0.876 | 0.860 1.02 0.941 | 0.909 1.04 0.941 | 0.909 1.04
20 0.817 0.8 1.02 0.865 0.8 1.08 0.865 0.8 1.08
10 0.736 | 0.714 1.03 0.765 | 0.667 1.15 0.765 | 0.667 1.15
0.614 | 0.584 1.05 0.626 0.5 1.25 0.626 0.5 1.25
2 0.416 | 0.373 1.12 0.417 | 0.286 1.46 0.417 | 0.286 1.46
100 0.965 | 0.954 1.01 0.973 | 0.952 1.02 0.973 | 0.952 1.02
50 0.941 | 0.926 1.02 0.947 | 0.909 1.04 0.947 | 0.909 1.04
20 0.874 | 0.849 1.03 0.878 0.8 1.10 0.878 0.8 1.10
10 0.784 | 0.745 1.05 0.786 | 0.667 1.17 0.786 | 0.667 1.17
5 0.652 | 0.598 1.09 0.653 0.5 1.31 0.653 0.5 1.31
2 0.442 | 0.375 1.18 0.442 | 0.286 1.55 0.442 | 0.286 1.55
100 0.975 | 0.966 1.01 0.975 | 0.952 1.02 0.975 | 0.952 1.02
50 0.952 | 0.936 1.02 0.952 | 0.909 1.05 0.952 | 0.909 1.05
20 0.889 | 0.856 1.04 0.889 0.8 1.11 0.889 0.8 1.11
10 0.802 | 0.750 1.07 0.802 | 0.667 1.20 0.802 | 0.667 1.20
5 0.673 0.6 1.12 0.673 0.5 1.35 0.673 0.5 1.35
2 0.461 | 0.375 1.23 0.461 | 0.286 1.61 0.461 | 0.286 1.61
100 0.978 | 0.968 1.01 0.978 | 0.952 1.03 0.978 | 0.952 1.03
50 0.956 | 0.937 1.02 0.956 | 0.909 1.05 0.956 | 0.909 1.05
20 0.898 | 0.857 1.05 0.898 0.8 1.12 0.898 0.8 1.12
10 0.816 0.75 1.09 0.816 | 0.667 1.22 0.816 | 0.667 1.22
5 0.692 0.6 1.15 0.692 0.5 1.38 0.692 0.5 1.38
2 0.480 | 0.375 1.28 0.480 | 0.286 1.68 0.480 | 0.286 1.68

o o o o o o
— = e
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Table 1: Throughputs 7', Tp and their ratio (7'/TF) for variable n, 7 and v (vp = 1.2v).
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Figure 7: Throughput ratio T/Tr against think rate 7 (n = 4,8, 16 and v = 2,10, 100, vp = 1.2v).
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Figure 8: Throughput ratio T//Tg against interstage propagation delay % (n=4,8,16 and 7 =0.1,0.2).

11



"ratio_nu.opt.1.4.dat" —<—
19 F "ratio_nu.opt.1.8.dat" -+-- x
’ "ratio_nu.opt.1.16.dat" -=--,7
"ratio_nu.opt.5.4.dat" -x“
18 F "ratio_nu.opt.5.8.dat" /A— i
' “ratio_nu.opt.5.16.dat}" - -
7 /EE
1.7 + & e
/ /
/ 7
16 /,/ yd N
S /
S i
/ /
15 | s B
/
S
14 < 3
/// /// . =
13 eyl 1
o X
»
1.2 /// pd 1
i
e — X
T _—
L1r P o .
el = N
l — — L L 1 1 s s PR L L L L L L P
0.01 0.1 1

Figure 9: Throughput ratio T//Tg against interstage propagation delay % (n=4,8,16 and 7 = 1,5).

n = 8. The data are plotted in Figures 10 (for 7 = 0.1), 11 (7 = 0.2) and 12 (7 = 1). The latter for
example shows that under a high rate of requests (7 = 1), even a fairly costly implementation of the
nearest-neighbour mechanism, with scaling factor s around 2, the nearest-neighbour method can be quite
advantageous.

Finally, the plottings in Figure 13 illustrate the effect of distinction between the optimistic (‘closely
packed’ requests) and pessimistic (requests split equally between the left and right subtrees) cases. Note
that as the think rate 7 grows from 0.5 to 5 the difference between the bounds decreases.

5 Conclusions

We have presented a method for cascaded (tree) asynchronous arbitration which is based on the nearest-
neighbour policy of privilege scheduling within a cluster of the system. This method is different from
the classical approach (called FIFO here), where the privilege always returns to the top of the tree at
the end of each resource acquisition by some user. Our intuitive expectation that the nearest-neighbour
arbiter allows the overall increase of performance due to minimisation of the interstage transfers of
the privilege has been confirmed by performance analysis. The results of analysis demonstrate that
the performance gain due to the nearest-neighbour discipline against the cascaded FIFO method can
be achieved for realistic values of the system’s parameters, the request (think) rate and the interstate
propagation delays. Even though the use of the nearest-neighbour policy negatively affects the system’s
fairness, one can efficiently exploit its advantages when building a system with two types of tasks. It is
possible to construct the arbitration system combining the FIFO and nearest-neighbour arbitration cells
[10]. Then, whenever the system reaches its request flow peaks, the nearest-neighbour method allows its
specific parts, presumably ‘high priority clusters”, to retain the privilege until the peak is finished. At
the same time, the arbiter can serve its “background clusters” during quieter periods using the FIFO
method. The model for performance analysis presented here is relatively high-level and approximate (see
section 3), and it does not take into account the real physical delays in potential VLSI implementations.
Further work is planned on lower level performance analysis of asynchronous circuit implementations of
arbiters consisting of different types of cells, FIFO, low latency, with rejection and nearest-neighbour.
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Figure 11: Plot for illustration of the effect of scaling the vp (variable factor s in vp = sv) for n = 8 and

r=0.2at v =2,5, 10, 20.
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Figure 12: Plot for illustration of the effect of scaling the vp (variable factor s in vp = sv) for n = 8 and
T=1latv=2510,20.
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Figure 13: Plot (throughput T versus propagation delay 1/v) to illustrate the difference between the
optimistic and pessimistic models for 7 = 0.5, 5.
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