Building Configurable Applicationsin Java

Mark C. Little and Stuart M. Wheaer
Department of Computing Science,
Newcastle University,
Newcastle upon Tyne,
England, NE1 7RU

Appeared in the Proceadings of the 4" IEEE Internationd Conference on Configurable
Digtributed Systems, May 1998

Abstract

There are many reasons why apgications may require configuration, howeve the one which
dominates Java appgications is that of seaurity restrictions. Because an appication may be
provided dfferent capabhliti es by different users, it becomes difficult to write “ build-once, run-
anywhere” appgications. Insisting that all seaurity sensitive apgications exeate within
controlled or restricted environments may limit the types of apgication which can ke built.
Therefore, in this paper we shal describe how we have ®@nstructed a configuration
infrastructure in Java which dlows apgications to dynamically adapg themselves to the types of
seaurity restrictions that exst when they are exeated. Because the system does not change the
languag it is portable acrossJava implementations. We shall also describe how we have used
this g/stem to buld a todkit for the wnstruction d eledronic comrmerce apgications, which
all ow atomic transactions to spanWeb browsers and servers.

1. Introduction

Java has rapidly beaome one of the standard programming languages for the Web. The benefits
of the language have been well documented [1][2], and include the &dility to dynamicaly load
code acossthe network, and to run applicaions on virtually any platform. Before Java the Web
was a relatively static environment. However, programmers are now able to use Java to turn it
into a general purpose distributed system [3].

There ae many reasons why applicaions may require wnfiguration, e.g., to incorporate bug
fixes and new implementations [4][5][6]. However, the one which dominates Web applications is
that of seaurity restrictions. There ae obvious saurity implications whenever a user downloads
code from the network. Java seaurity is imposed by a SeaurityManager objed, which defines what
a program can, and cannot do [1][7]. Generally a Java program cannot remotely communicate
with a node other than the one from which it was loaded, neither can it write to the disk of the
madine on which it is being run. If the program is loaded dredly from the locd disk then these
restrictions are relaxed. However, ead implementer of a Java run-time can provide adifferent
SeaurityManager implementation, which may impose different constraints. Therefore, a program
written for one Java implementation may not be &le to exeaute on another.

There ae two obvious lutions to this problem: (i) all objeds must reside within domains
which have well-behaved seaurity constraints (typicdly Web servers), or (i) modify the Java
language and the run-time and provide an implementation of the SeaurityManager which relaxes
seaurity restrictions [8][9]. Unfortunately, neither of these solutions is general enough. The first

solution is unnecessarily restrictive in environments where SeaurityManagers do alow programs
increased flexibility. The second solution ladks portability, the very reason for using Java, as it
requires users to have accesto spedalised implementations.

The gproadc to be described in this paper does not rely on modifying the language or the
interpreter, yet is flexible enough to enable an application to configure itself to make use of the
resources a given SeaurityManager permits. We use the Gandiva model [4] to allow multiple
implementations of components slited to different seaurity restrictions to be provided by
programmers and seleded by an applicaion at run-time, based upon the limitations in placewhen
the gplication exeautes. We shall describe how we have developed a Java implementation of the
Gandiva model, illustrating the advantages for configurability provided by Java. We shall aso
describe how we have used this g/stem to build a toaolkit for the construction of eledronic
commerce gplicaions which use aomic transadions to control operations on persistent objeds
within the Web [10][11].

1.1 Digital signatures

To provide improved flexibility in seaurity management policies, digita signatures were
recantly introduced into Java. Prior to being downloaded, programs can ke signed with a unique
signature for ead provider. Users can asciate adigital signature with a set of capabilities, e.g.,
being able to read from the user's home diredory. Whenever a signed program attempts to
perform an operation which would normally result in a seaurity violation, the SeaurityManager
inspeds any capabilities assgned to it. If the caability exists which allows the program to
perform the operation then it is carried out, otherwise aseaurity violation exception is raised.

Being able to spedfy cgpabilities on a per user/domain besis allows more complex Java
applicaions to be built. However, it aso leads to further problems in being able to build truly
portable Web applications: the capabilities assgned to a program by a user may not be known
until it has been downloaded.

2. Softwar e design model

We believe that techniques applicable to configurable distributed systems can be used to
address the problems previoudly described: an application can be nstructed once ad be
(dynamicdly) configured to suit the seaurity environment in which it exeates. Moreover we
would like to allow programmers to be isolated from these reconfigurations in order that they can
concentrate on huilding the gplicaions. There ae anumber of software models for constructing
configurable systems which med our requirements, e.g., [5][6]. However, we have used the
Gandiva model presented in [4].

2.1 The Gandiva model for configurable software

In the Gandiva model, applications are mnsidered to be cnstructed from software components
which are split into two separate eitities. the interface @mporent and the implementation
comporent. Interadions between implementation components can only occur through these
interface omponents. A core part of this modd is that the binding between interface ad
implementation is configurable. Applicaions are written only in terms of interfaces, and although

an applicaion can request a spedfic implementation to be bound to an interface it ocaurs in a
way that allows this request to be dhanged without modifying the goplication.

2.2 Object-oriented implementation

In an objed-oriented language like Java, it is posshle to map interface ©mponents and
implementation components onto interface and implementation classes respedively. However,
although Java has its own interfacetype it is used for conformance purposes (similar to pure
virtual base dasses in C++). We require the binding between interface t¢assand implementation
classto be evaluated when the interface tassis instantiated. Therefore, we use delegation to
acomplish this, i.e., the interface tass explicitly delegates all work to an implementation class
[4].

In order to leave this binding until run-time we must spedfy it as data and not within the amde
of the interface ¢ass The instance of the interface tass(interface objed) uses this data to crede
and bind to the rred instance of the implementation class (implementation oljed). To provide
this separation of interface omponent and implementation component requires the following
classs:

(i) the interface dass users interad with instances of this class which defines the public
operations that can ke invoked on the implementation. The only implementation spedfic
information present in the dass definition is a reference to an instance of an implementation
interface to which the interfacedelegates all operations.

(i) the implementation interface thisis a Javainterface and al implementations accessble to an
interface ¢assimplement it.

(iii) the implementation class instances of this class represent the implementation of an objed.
I mplementation classes can ke derived from multiple implementation interfaces.

Figure 1 shows a UML objed structure formed by the a&ove dasss. (An optional Control
classcan aso be provided by the implementation to accessits non-functional charaderistics, e.g.,
setting timeout and retry values for an RPC mechanism [4].)

Implementation

+control
i
1
1
1
1
0. 1 | Implementation
Interface Implementatio
interface
+control +create
+control

Figure 1: Interface and Implementation relationship.

3. Javaimplementation

Gandiva provides a set of clases to support the @nstruction and use of interface ad
implementation classes [4]. The two most important classes for our discusson are ObjedName,
which is responsible for storing and retrieving the nfiguration information required by an
applicaion, and the Inventory, which is responsible for managing repositories of implementation
classes and returning new instances to the goplication.

3.1 ObjectName

The ObjedName dassis used to control the configuration of an application, e.g., the mapping
of interface ¢asses to implementation classes, and any initidisation data required by
implementations. This configuration information is maintained as a set of name (string), value pair
attributes. Instances of ObjedName ae used to spedfy and store these dtributes between
successve instantiations of interfaces.

An interface objed uses the dtributes of ObjedName to determine the type of its
implementation; this implementation can aso use the ObjedName to further configure itself. If
multiple bindings are dlowed for the interface e.g., becaise of possble seaurity restrictions, the
ObjedName can spedfy aternate implementations. These dternates may be prioritised within the
ObjedName.

The signature of the Java implementation of ObjedName is iown below:

public class ObjectName implements Serializable

I/l the supported attribute types

public static final int SIGNED_NUMBER = 0;

/I for C++ compatibility

public static final int UNSIGNED _NUMBER = 1;
public static final int STRING = 2;

public static final int OBJECTNAME = 3;

public static final int CLASSNAME = 4;

public static final int UID = 5;

public int attributeType (String attrName) throws IOException;
public String firstAttributeName () throws IOException;
public String nextAttributeName (String attr) throws IOException;

/I Now a series of set/get methods for each type

/I of attribute. We show only one for simplicity.

public long getLongAttribute (String attrName) throws IOException;
public void setLongAttribute (String attr, long value) throws IOException;

public boolean removeAttribute (String attrName) throws IOException;

private NameService _nameService;

}

There ae methods for creaing new attribute name, value pairs, and for retrieving an attribute
given its name. Additionally, it is possble to query the type of an attribute using attributeType
and to iterate through all of the dtributes using firstAttributeName and nextAttributeName

To enable the @nfiguration information to be stored in a flexible manner, objectName stores
and retrieves the information using a separate NameService interface ad implementation [4].

4

Therefore, the means of storing this configuration data can be dhanged simply be dhanging the
NameService implementation. For example, the JDBC (Java Database Connredivity) APl is a
standard SQL database accssinterface providing uniform accessto a wide range of relational
databases. By providing a suitable NameService implementation, the objectName data @uld be
maintained within such a database. However, to minimise externa dependencies, our current
implementation for Web applicaions embeds the objectName data within the HTML document
which is downloaded with the Java gplication. The HTML document is creaed automaticdly
from a separate description language.

3.2 Inventory

Thisis an interface tassand a set of implementation classes, and is at the @re of the system; it
is a repository for implementation classes and provides a means for the dynamic aeaion of
objeds based upon their classnames. Severa implementations of the inventory exist, ead tailored
for spedfic goplicaions, e.g., one which chedks versions of implementation classes registered with
it and returnsthe latest version. Populating the inventory with implementation classes can ocaur:

1) datically at build time: spedfic implementations are “hard-wired” into the inventory when the
applicaion is constructed.

2) dynamically at run time: implementation classes may be dynamicdly loaded aaoss the
network or from the loca disk. This has the advantage of flexihili ty, but requires the sources of
these implementations (e.g., Web servers) to remain available while the gplicaion is being
configured.

Because the inventory is accessed through a well-defined interface changing its implementation
does not require any changesin an applicaion. For simplicity we show only a representative set of
the Inventory interfacemethods, without the exceptions they throw:

public class Inventory

{
public Object createVoid (String typeName);
public Object createObjectName String typeName, ObjectName paramObjectName);

/I A handle on the application’s inventory for bootstrapping purposes.

fublic static Inventory inventory ();

The aede methods take the name of the implementation class (a string) to instantiate and,
depending on the method, pass additional parameter(s) to the aeaed implementation. For
example, createObjectName Will passthe ObjedName parameter to the implementation when it is
creaed. In order that the inventory can ded with any Java implementation class it returns all
creaed objedsto the cdler (the interface as instances of the Java object class which is the base
classfrom which al Java dasses are derived. The interface ca then safely convert this bad to the
required interfaceimplementation class

3.2.1 ClassLoadersand dynamic inventories

Java has been designed to have aminimal run-time footprint: code needed by an application can
be dynamicaly loaded aaossthe network or from disk (assuming the SeaurityManager alows) by

a Clasd.oader objed. It is the responshility of the Clasd.oader to load the byte streams
representing new classes, and that loading them does not violate the seaurity policy. Typicdly
classrepresentations must reside within a spedfic seach path for the Clasd.oader to find and use
them. However, it is possble for users to override the default Clasd.oader to provide
implementations more suited to their requirements [2].

The basic definition of the Java Clasd_oader is giown below (al Java types are represented by
an instance of class which can be used to creae instances of that type):

public abstract class ClassLoader extends Object
public Class loadClass (String name) throws ClassNotFoundException;

protected abstract Class loadClass (String name, boolean resolve)
throws
ClassNotFoundException;

h

Given the string name of the dass the virtual machine cdls loadclass which either finds and
returns the class representation or throws an exception. Therefore, the combination of the
Clasd.oader and Class are a natural way to implement a dynamic inventory in Java. In the
following sedion we shall briefly describe one such implementation, the network Clasd.oader
inventory.

3.2.2 Thenetwork ClassL oader inventory

The network Clasd_oader inventory obtains implementation code required by an application
from a network implementation repository: madines on which implementation code resides co-
operate to share their code base. Figure 2 ill ustrates how, by communicating with a single member
of this repository, an applicaion can gain access to implementations maintained by other
repository members. The repositories are dl written in Java, and ead repository member can only
load class implementations from a spedfic seach path. Comnmunicaion with and between
repository members requires authentication and uses Jva's Remote Method Invocaion (RMI)
medhanism.

If an applicaion is configured to use the Clasd_oader Inventory, programmers need only ensure
that implementation code is avail able to a single repository site. When the inventory requires code
for a new implementation it will contad one of the repository members, which (potentially) will
seach the etire repository for the necessary code. The repository to contad may be spedfied
within the initial configuration information, or may be imposed by SeaurityManager restrictions,
e.g., for most Web browsers the repository member must reside on the machine from which the
program was downloaded.

Repositories

Inventory implementation

|:| Interfaceobject

Java gplication Q

Figure 2: Network implementation repositories.

3.3 Interfaces

When an interfaceis instantiated it is responsible for binding to an appropriate implementation.
Figure 3 ill ustrates how this occurs.

Java application

Inventory
Implementations

Configuration support framework

Figure 3: Application execution environment.

To determine which implementation it requires, the interfaceinterrogates the ObjedName to
obtain the name of an implementation and passs this name to the inventory. If the requested
implementation has not been registered with the inventory, or cannot be used within the arrent
environment, e.g., because of seaurity redtrictions, then the binding will fall. If aternative
implementations are spedfied within the ObjedName (e.g., to tolerate different seaurity
restrictions) then the interface ca try to use them. If there ae no implementations which can
function for the interface all subsequent invocaions on the interfacewill fail. Importantly, none
of this is visble & the gplicaion level: the programmer smply creaes and uses an interface
objed.

The Gandiva build-time support includes an interfacdimplementation code generation toal:
given the definition of an implementation interface this tool will automaticdly creae an interface
class with al of the necessary binding code, and (optionally) skeleton implementation classes
which the programmer can populate with code. For example, consder an implementation
interfaceto a (smplified) persistent objed store service used for storing the state of an objed
between instantiations:

interface ObjectStorelmple

{
public ObjectState readState (ObjectID id) throws ObjectStoreException;
public void writeState (ObjectState state, ObjectID id)

k

throws ObjectStoreException;

Ignoring error cheding, part of the interface ¢assproduced by the amde generation tool is:
public class ObjectStore

{
public ObjectStore (ObjectName objName)
{

Inventory inventory = Inventory.inventory();

String type = objName.getClassNameAttribute(“ClassName™);
ObjectName oName = objName.getObjectNameAttribute(“ObjectName”);
Object ptr = inventory.createObjectName(type, oName);

/I if returned object is of right type then cast to actual type.

if (ptr instanceof ObjectStorelmple)
imple = (ObjectStorelmple) ptr;
else
imple = null;

}
public ObjectState readState (ObjectID id) throws ObjectStoreException

if (_imple = null)
return _imple->readState(id);
else
throw new ObjectStoreException(“No imple™);

}

/l the implementation object
private ObjectStorelmple _imple;

h
3.4 Determining security restrictions

In order to configure itself to operate within a spedfic seaurity environment, an application
must be &le to determine the restrictions imposed by that environment. At bind time an interface
must be ale to determine whether the implementation it recaves from the inventory can work
within the aurrent seaurity restrictions. Therefore, ead implementation objed must provide a
canExecute method which returns either true if it can exeaute within the arrent environment, or
fase if it cannot. When the inventory returns an implementation objed, the interface ciis this
method to determine whether the objea can function. If it cannot, the interface ca ask the
ObjectName for the name of another implementation, and passthisto the inventory.

This technique of delegating to the implementation the requirement for determining whether or
not it can exeaute within a given environment allows us to remove aty knowledge of spedfic
seaurity restrictions from the Gandiva framework and interfaces. An interface ca only tell
whether an implementation can function by cdling the canExecute method. New seaurity
restrictions can be acounted for by providing new implementations without requiring changes to
either Gandiva or the interfaces which use the implementations.

To determine whether or not it can function within the searity environment, the
implementation objea may extrad information from the objectName it is given when it is creaed,
e.g., the locaion of the objed store database to use for persistence, or the name of the remote
host to contad. It can then obtain a reference to the arrent SeaurityManager and query its
restrictions acardingly. Shown below is the canExecute method for a smple objed store service
which writes to the locd file system. In the example below, the implementation has been written
to cope with afairly typicd seaurity policy, which restricts the file system accessof Java programs
to spedfic locations, e.g., atemporary file store. If the seaurity restrictions prevent accessto this
locaion the implementation will not function and the interface must try an alternate
implementation.

public SimpleObjectStore implements ObjectStorelmple
public boolean canExecute ()
/I First get handle on current SecurityManager.
SecurityManager manager = System.getSecurityManager();

if (manager == null)
return true; // no restrictions!
else

{

/I There is a SecurityManager, so
Il interrogate it to find restrictions.
try

{

/I Assume these file names were read
// from the ObjectName when this
/l implementation was created.

manager.checkRead(*/ObjStore/data™);
manager.checkWrite(“/ObjStore/data);
manager.checkDelete(*/ObjStore/data”);

return true;
catch (Exception e)

/I SecurityManager raised an
/I exception, we could try alternate location.

return false;

}
}

}
}
At present application programmers must implement the canexecute methods. However, we

are examining the possbility of automaticdly generating this code from a high-level spedficaion
language.

4. Configurable Web commer ce applications

One of the reasons for building this configuration framework in Java was to support the
construction of eledronic commerce gplicaions, and in particular those which require aomic
transadions in a Web environment [10][11]. The Web frequently suffers from failures which can
affed both the performance and consistency of applications running over it. For example, if a user
purchases a wokie (atoken) granting accessto a newspaper site, it isimportant that the awokie is
delivered and stored if the user’s acount is debited; a failure wuld prevent either from occurring,
and leave the system in an indeterminate state. For resources such as documents, failures may
smply be annoying to users, for commercial services, they can result in loss of revenue and
credibili ty.

Atomic adions are awell-known technique for guaranteang application consistency in the
presence of failures. Web applications arealy exist which offer transadional guarantees to users.
However, these guarantees only extend to resources used at Web servers, or between servers,
browsers are not included, despite being a significant source of unreliability. Providing end-to-end
transadional integrity between the browser and the gplicaion is important: in the previous
example, the mokie must be delivered once the user’s acmunt has been debited. Cgi-scripts
cannot provide this level of transadional integrity since replies snt after the transadions have
completed may be lost, and replies ent during the transadion may need to be revoked if the
transadion cannot complete [12]. Thisis an inherent problem with the original “thin” client model
of the Web, where browsers were functionally barren. With the alvent of Java it is now possble
to consider empowering browsers © that they can fully participate within transadional
applicaions. However, the mnstraints imposed by Java SeaurityManagers can diredly affea
transadional applicaions which may require, for example, to make state updates (e.g., cookies)
persistent by accessng the locd disk.

Using the Java implementation of Gandiva, we have designed and implemented a transadion
toalkit for the Web, JTSArjuna[11]. The toadlkit, which is based upon the Arjuna system [13],
alows transadiona applications to span Web krowsers and servers, and benefits from the
configurability described previously: an applicaion can be made transadional without
compromising the seaurity policies operational at browsers and servers. Findly, the toolkit
complies with the OMG Objed Transadion Service (OTS) [14][15] and the Java Transadion
Service (JTS) [16] standards. It is beyond the scope of this paper to describe how JTSArjuna
provides end-to-end transadional integrity for Web applications; we shall concentrate only on its
configurability. However, the interested realer isreferred to [10][11] for a detailed description of
the other aspeds of the system.

4.1 Transaction standardsfor distributed objects

The Objed Management Group (OMG) has gedfied a Common Objed Request Broker
Architedure (CORBA) that at the basic level consists of the Objed Request Broker (ORB) that
enables distributed objeds to interad with ead other [14][15]. At the next level a number of
system level services have been spedfied, which include persistence, concurrency control, and the
Objea Transadion Service (OTS). The OTS is a protocol engine intended to guarantee that
transadional behaviour is obeyed, but it does not diredly support al of the transadion properties.
As such it depends on other system level services for the required functionality, e.g., persistence

10

and concurrency control services. The Java Transadion Service (JTS) is a dired mapping of the
OTS to the Java language using the standard Java IDL mapping [16].

4.2 JTSArjuna model

The interfaces defined by the OMG for building transadional applications are too low-level for
most applicaion programmers. For example, the programmer is required to manage persistence,
concurrency control etc. on behaf of every transadional objed, and registering it with ead
transadion it participates with. Therefore, we have provided a higher-level APl which attempts to
hide many of these details from programmers. This API has been based on the experiences gained
from extensive use of the original Arjuna system [13][17].

The JTSArjuna model for building transadional applications exploits objed-oriented techniques
to present programmers with a toolkit of classes from which applicaion classes can inherit to
obtain desired properties, such as persistence and concurrency control [11][13]. Each classis
concerned with a single functionality, and these dasses form a hierarchy, part of which is giownin
figure 4.

StateManager isthe dassresponsible for naming, persistence and recovery control of persistent
and recverable objeds. When ot in use, persistent objeds are stored in an objed store, whereas
recoverable objeds are dways memory resident. To satisfy the durability requirement,
StateManager makes use of a persistence service when adivating (loading) and deadivating
(storing) persistent objeds. The programmer must provide save_state and restore_state
methods for ead classwhich spedfy which parts of the objed’s date to store/restore.

LockManager is responsible for two-phase locking, and uses instances of the Lock class in
conjunction with a suitable concurrency control service, to acomplish this. The programmer uses
the setbck method to aauire gpropriate locks (read or write locks in the airrent
implementation); the aomic adion medanism is responsible for releasing these locks.
AtomicAction is the dass which implements the OTS protocol engine, and this class uses
StateManager in order to make aly transadiona dedsions persistent.

A

'y

StateM anager

AtomicAction

Figure 4: JTSArjuna class hierarchy

By inheriting from LockManager, user clases are aitomaticdly transadional, with
LockManager and StateManager being responsible for guaranteeng the ACID properties. Apart
from spedfying the scopes of transadions, and setting appropriate locks within objeds, the
applicaion programmer does not have awy other responshilities: JTSArjuna guarantees that
transadional objeds will be registered with, and be driven by, the gpropriate transadions, and
that in the event of failures crash recovery mechanisms are invoked automaticaly.

11

4.2.1 Configurableimplementations

Both the persistence and concurrency control services required by transadions can be diredly
affeded by the seaurity restrictions imposed by a Java SeaurityManager. Therefore, these services
are required to be configurable within the toolkit and have been implemented using interface ad
implementation separation. This allows the toolkit and applicaions written with it to exeate
within different environments.

Figure 5 shows a transadiona user class inheriting from LockManager. Internaly,
LockManager uses the mncurrency service (CC) through an interface currently there ae three
different implementations which that interface ca use:

1) alocd disk implementation, where locks are made persistent by being written to the locd file
system; this allows locks, and therefore objeds, to be shared between different Java virtual
madines.

2) apurely locd implementation, where locks are maintained within the memory of the virtual
madhine which creaed them; objeds cannot be shared between virtual machines.

3) aremote implementation, where the implementation which LockManager uses is adualy a
client-side stub (proxy) to a remote service, which may reside within another browser or at a

Web server.
User class Q Concurrency service

Local disk

Concurrency
interface

A

LockM anager (

memory

CC daemon

4—»@

Persistence Local disk
interface

StateM anager POS daemon

Persistence service

Figure 5: Configuration hierarchy

Likewise, the interface through which the StateManager class uses the Persistent Objed
Service (POS) can hind to either alocd (file-system) implementation or a remote implementation.
(In memory implementations are used only for recmverable objeds.)

Shown below is an example of the onfiguration information necessry for the smple
transadional objed shown in figure 5. (The '~ and ‘' charaders precaling ead attribute value

12

are used for runtime type dheding by objectName .) Importantly, there ae no requirements from
the goplication user: al implementations will be loaded aaossthe network when required.

<HTML>
<HEAD><TITLE>Example Applet</TITLE></HEAD>
<BODY>
<APPLET CODE=TranApplet.class WIDTH=400 HEIGHT=200>
<PARAM NAME=0SClassNamel VALUE="~LocalObjectStorelmple”>
<PARAM NAME=0SLocation1 VALUE="!/tmp/ObjectStore">
<PARAM NAME=0SClassName2 VALUE="~RemoteObjectStorelmple”>
<PARAM NAME=0SLocation2 VALUE="lglororan.ncl.ac.uk">
<PARAM NAME=CCClassNamel VALUE="~LocalCCIimple">
</APPLET>
</BODY>
</HTML>
The preferred type of the persistence serviceis LocdObjeaStorel mple, with the atribute name
OSClasdName, and the locaion of the objed store is the diredory /tmp/ObjedStore. If this fails,
the interface ca use the dternate implementation RemoteObjedStorelmple which is on the
spedfied machine. The cncurrency service is locd. If the programmer wishes to change the

configuration of the goplication, only modificaions to the HTML document are required.

5. Conclusions and future wor k

We have shown that to build many types of Java goplicaions which are truly “write-once-run-
anywhere”, configuration support is required. We have dso shown how that support can be
provided using the interface &ad implementation separation model of Gandiva, and how feaures
of the Javalanguage can be used to fadlitate configuration. Finally, we have used this framework
to provide support for the construction of configurable Web commerce gplicaions using atomic
adions and persistent objeds. The framework presented should alow applicaions to be
constructed which can cope with many different types of seaurity restrictions. We intend to
construct a range of applications with different requirements on seaurity to confirm this.

New Java feaures offer further possbhilities for configuration support. JDK 1.1, introduced
clases to support refledion and introspedion [1], making it possble to query the capabilities of a
classat run-time and determine, for example, what methods it provides, what parameters they
take, and what exceptions they raise. Using this refledion API an applicaion can use cde it had
no prior knowledge of smply by invoking the dass and its methods through their names.
Therefore, implementations need not conform to an implementation interfacefor interfaces to be
able to use them. In addition, JDK 1.1 introduced the mncept of objed serialisation: the mmplete
state of an objed, including any objeds it refers to, can be written to an output stream, and this
stream can be used to reaede that objea at a later time. Therefore, once an applicaion hes been
configured, the configuration could be “frozen” using this mecdhanism, and automeaticdly reaedaed
later, without a nead for the original ObjedName.

Acknowledgements

The work reported here has been supported in part by a grant from UK Engineaing and
Physicd Sciences Research Council (grant no. GR/L 73708.

13

References

[1] D. Flanagan, “Javain a Nutshell 2™ Edition”, O’ Reilly, 1997

[2] K. Arnold and J. Godling, “The Java Programming Language”, Addison Wedley, 1996
[3] R. Orfdli et a, “Client/Server Programming with Java and Corba”, Wiley, 1997

[4] S. M. Wheder and M. C. Little, “The Design and Implementation of a Framework for
Configurable Software”, Procealings of the 3 International Conference on Configurable
Digtributed Systems, May 1996 pp. 136-143

[5] J Magee ¢ a, “A Constructive Development Environment for Paralel and Distributed
Programs’, Procealings of the 2™ International Workshop on Configurable Distributed
Systems, March 1994 pp. 4-14.

[6] J Kramer and J. Magee “Dynamic Configuration for Distributed Systems’, IEEE
Transadions on Software Engineeing, SE-11 (4), April 1985 pp. 425436

[7] J. S. Fritzinger and M. Mueller, “Java Seaurity”, Sun Microsystems, 1995

[8] M. Atkinson et a, “Draft Pjava Design 1.2”, Department of Computing Science, University
of Glasgow, January 1996

[9] A. Garthwaite and S. Nettles, “Transadions for Java”, MS-CIS-96-17, University of
Pennsylvania, 1996

[10]M. C. Little @ a, “Constructing Reliable Web Applications Using Atomic Actions’,
Procealings of the 6" Web Conference, April 1997, pp 561571

[11] M. C. Little and S. K. Shrivastava, “Distributed Transadions in Java”, Proceadings of the
7™ International Workshop on High Performance Transadion Systems, September 1997, pp.
151-155

[12] T. Sanfilippo and D. Weisman, “Applicaions of the Seaure Web Tedhnology in Transadion
Processng Systems’, The Open Group Reseach Ingtitute, November 1996

[13] G. D. Parrington, S. K. Shrivastava, S. M. Wheaer and M. C. Little, “The Design and
Implementation of Arjuna”, USENIX Computing Systems JDburnal, Vol. 8, No. 3, pp. 253
306, Summer 1995

[14] “CORBAservices. Common Objed Services Spedficaion”, OMG Document Number 95-3-
31, March 1995

[15] R. Orfali et al, “The Essential Distributed Objed Survival Guide”, Wiley, 1996

[16]V. Matena and R. Cattell, “JTS: A Java Transadion Service API”, Sun Microsystems,
December 1996

[17]S. K. Shrivastava, “Lesons leaned from building and using the Arjuna distributed
programming system,” International Workshop on Distributed Computing Systems. Theory
meds Pradice Dagsthul, September 1994 LNCS 938 Springer-Verlag, July 1995

14

