
1

Building Configurable Applications in Java
Mark C. Little and Stuart M. Wheater
Department of Computing Science,

Newcastle University,
Newcastle upon Tyne,

England, NE1 7RU

Appeared in the Proceedings of the 4th IEEE International Conference on Configurable
Distributed Systems, May 1998.

Abstract

There are many reasons why applications may require configuration, however the one which
dominates Java applications is that of security restrictions. Because an application may be
provided different capabiliti es by different users, it becomes difficult to write “ build-once, run-
anywhere” applications. Insisting that all security sensitive applications execute within
controlled or restricted environments may limit the types of application which can be built .
Therefore, in this paper we shall describe how we have constructed a configuration
infrastructure in Java which allows applications to dynamically adapt themselves to the types of
security restrictions that exist when they are executed. Because the system does not change the
language it is portable across Java implementations. We shall also describe how we have used
this system to build a toolkit for the construction of electronic commerce applications, which
allow atomic transactions to span Web browsers and servers.

1. Introduction

Java has rapidly become one of the standard programming languages for the Web. The benefits
of the language have been well documented [1][2], and include the abili ty to dynamically load
code across the network, and to run applications on virtually any platform. Before Java the Web
was a relatively static environment. However, programmers are now able to use Java to turn it
into a general purpose distributed system [3].

There are many reasons why applications may require configuration, e.g., to incorporate bug
fixes and new implementations [4][5][6]. However, the one which dominates Web applications is
that of security restrictions. There are obvious security implications whenever a user downloads
code from the network. Java security is imposed by a SecurityManager object, which defines what
a program can, and cannot do [1][7]. Generally a Java program cannot remotely communicate
with a node other than the one from which it was loaded, neither can it write to the disk of the
machine on which it is being run. If the program is loaded directly from the local disk then these
restrictions are relaxed. However, each implementer of a Java run-time can provide a different
SecurityManager implementation, which may impose different constraints. Therefore, a program
written for one Java implementation may not be able to execute on another.

There are two obvious solutions to this problem: (i) all objects must reside within domains
which have well-behaved security constraints (typically Web servers), or (ii) modify the Java
language and the run-time and provide an implementation of the SecurityManager which relaxes
security restrictions [8][9]. Unfortunately, neither of these solutions is general enough. The first

2

solution is unnecessarily restrictive in environments where SecurityManagers do allow programs
increased flexibili ty. The second solution lacks portabili ty, the very reason for using Java, as it
requires users to have access to specialised implementations.

The approach to be described in this paper does not rely on modifying the language or the
interpreter, yet is flexible enough to enable an application to configure itself to make use of the
resources a given SecurityManager permits. We use the Gandiva model [4] to allow multiple
implementations of components suited to different security restrictions to be provided by
programmers and selected by an application at run-time, based upon the limitations in place when
the application executes. We shall describe how we have developed a Java implementation of the
Gandiva model, ill ustrating the advantages for configurabili ty provided by Java. We shall also
describe how we have used this system to build a toolkit for the construction of electronic
commerce applications which use atomic transactions to control operations on persistent objects
within the Web [10][11].

1.1 Digital signatures

To provide improved flexibili ty in security management policies, digital signatures were
recently introduced into Java. Prior to being downloaded, programs can be signed with a unique
signature for each provider. Users can associate a digital signature with a set of capabili ties, e.g.,
being able to read from the user’s home directory. Whenever a signed program attempts to
perform an operation which would normally result in a security violation, the SecurityManager
inspects any capabili ties assigned to it. If the capabili ty exists which allows the program to
perform the operation then it is carried out, otherwise a security violation exception is raised.

Being able to specify capabili ties on a per user/domain basis allows more complex Java
applications to be built. However, it also leads to further problems in being able to build truly
portable Web applications: the capabili ties assigned to a program by a user may not be known
until i t has been downloaded.

2. Software design model

We believe that techniques applicable to configurable distributed systems can be used to
address the problems previously described: an application can be constructed once and be
(dynamically) configured to suit the security environment in which it executes. Moreover we
would like to allow programmers to be isolated from these reconfigurations in order that they can
concentrate on building the applications. There are a number of software models for constructing
configurable systems which meet our requirements, e.g., [5][6]. However, we have used the
Gandiva model presented in [4].

2.1 The Gandiva model for configurable software

In the Gandiva model, applications are considered to be constructed from software components
which are split into two separate entities: the interface component and the implementation
component. Interactions between implementation components can only occur through these
interface components. A core part of this model is that the binding between interface and
implementation is configurable. Applications are written only in terms of interfaces, and although

3

an application can request a specific implementation to be bound to an interface, it occurs in a
way that allows this request to be changed without modifying the application.

2.2 Object-oriented implementation

In an object-oriented language like Java, it is possible to map interface components and
implementation components onto interface and implementation classes respectively. However,
although Java has its own interface type it is used for conformance purposes (similar to pure
virtual base classes in C++). We require the binding between interface class and implementation
class to be evaluated when the interface class is instantiated. Therefore, we use delegation to
accomplish this, i.e., the interface class explicitly delegates all work to an implementation class
[4].

In order to leave this binding until run-time we must specify it as data and not within the code
of the interface class. The instance of the interface class (interface object) uses this data to create
and bind to the correct instance of the implementation class (implementation object). To provide
this separation of interface component and implementation component requires the following
classes:

(i) the interface class: users interact with instances of this class, which defines the public
operations that can be invoked on the implementation. The only implementation specific
information present in the class definition is a reference to an instance of an implementation
interface, to which the interface delegates all operations.

(ii) the implementation interface: this is a Java interface and all implementations accessible to an
interface class implement it.

(iii) the implementation class: instances of this class represent the implementation of an object.
Implementation classes can be derived from multiple implementation interfaces.

Figure 1 shows a UML object structure formed by the above classes. (An optional Control
class can also be provided by the implementation to access its non-functional characteristics, e.g.,
setting timeout and retry values for an RPC mechanism [4].)

Interface Implementation
interface

Implementation

0..* 1

+create
+control

+control

+control

Figure 1: Interface and Implementation relationship.

4

3. Java implementation

Gandiva provides a set of classes to support the construction and use of interface and
implementation classes [4]. The two most important classes for our discussion are ObjectName,
which is responsible for storing and retrieving the configuration information required by an
application, and the Inventory, which is responsible for managing repositories of implementation
classes and returning new instances to the application.

3.1 ObjectName

The ObjectName class is used to control the configuration of an application, e.g., the mapping
of interface classes to implementation classes, and any initialisation data required by
implementations. This configuration information is maintained as a set of name (string), value pair
attributes. Instances of ObjectName are used to specify and store these attributes between
successive instantiations of interfaces.

An interface object uses the attributes of ObjectName to determine the type of its
implementation; this implementation can also use the ObjectName to further configure itself. If
multiple bindings are allowed for the interface, e.g., because of possible security restrictions, the
ObjectName can specify alternate implementations. These alternates may be prioritised within the
ObjectName.

The signature of the Java implementation of ObjectName is shown below:

public class ObjectName implements Serializable
{
// the supported attribute types
public static final int SIGNED_NUMBER = 0;
// for C++ compatibility
public static final int UNSIGNED_NUMBER = 1;
public static final int STRING = 2;
public static final int OBJECTNAME = 3;
public static final int CLASSNAME = 4;
public static final int UID = 5;

public int attributeType (String attrName) throws IOException;
public String firstAttributeName () throws IOException;
public String nextAttributeName (String attr) throws IOException;

// Now a series of set/get methods for each type
// of attribute. We show only one for simplicity.
public long getLongAttribute (String attrName) throws IOException;
public void setLongAttribute (String attr, long value) throws IOException;

public boolean removeAttribute (String attrName) throws IOException;

private NameService _nameService;
}

There are methods for creating new attribute name, value pairs, and for retrieving an attribute
given its name. Additionally, it is possible to query the type of an attribute using attributeType ,
and to iterate through all of the attributes using firstAttributeName and nextAttributeName .

To enable the configuration information to be stored in a flexible manner, ObjectName stores
and retrieves the information using a separate NameService interface and implementation [4].

5

Therefore, the means of storing this configuration data can be changed simply be changing the
NameService implementation. For example, the JDBC (Java Database Connectivity) API is a
standard SQL database access interface, providing uniform access to a wide range of relational
databases. By providing a suitable NameService implementation, the ObjectName data could be
maintained within such a database. However, to minimise external dependencies, our current
implementation for Web applications embeds the ObjectName data within the HTML document
which is downloaded with the Java application. The HTML document is created automatically
from a separate description language.

3.2 Inventory

This is an interface class and a set of implementation classes, and is at the core of the system; it
is a repository for implementation classes and provides a means for the dynamic creation of
objects based upon their class names. Several implementations of the inventory exist, each tailored
for specific applications, e.g., one which checks versions of implementation classes registered with
it and returns the latest version. Populating the inventory with implementation classes can occur:

1) statically at build time: specific implementations are “hard-wired” into the inventory when the
application is constructed.

2) dynamically at run time: implementation classes may be dynamically loaded across the
network or from the local disk. This has the advantage of flexibili ty, but requires the sources of
these implementations (e.g., Web servers) to remain available while the application is being
configured.

Because the inventory is accessed through a well-defined interface, changing its implementation
does not require any changes in an application. For simplicity we show only a representative set of
the Inventory interface methods, without the exceptions they throw:

public class Inventory
{
public Object createVoid (String typeName);
public Object createObjectName String typeName, ObjectName paramObjectName);

// A handle on the application’s inventory for bootstrapping purposes.

public static Inventory inventory ();
}

The create methods take the name of the implementation class (a string) to instantiate and,
depending on the method, pass additional parameter(s) to the created implementation. For
example, createObjectName will pass the ObjectName parameter to the implementation when it is
created. In order that the inventory can deal with any Java implementation class, it returns all
created objects to the caller (the interface) as instances of the Java Object class, which is the base
class from which all Java classes are derived. The interface can then safely convert this back to the
required interface implementation class.

3.2.1 ClassLoaders and dynamic inventories

Java has been designed to have a minimal run-time footprint: code needed by an application can
be dynamically loaded across the network or from disk (assuming the SecurityManager allows) by

6

a ClassLoader object. It is the responsibili ty of the ClassLoader to load the byte streams
representing new classes, and that loading them does not violate the security policy. Typically
class representations must reside within a specific search path for the ClassLoader to find and use
them. However, it is possible for users to override the default ClassLoader to provide
implementations more suited to their requirements [2].

The basic definition of the Java ClassLoader is shown below (all Java types are represented by
an instance of Class which can be used to create instances of that type):

public abstract class ClassLoader extends Object
{
public Class loadClass (String name) throws ClassNotFoundException;

protected abstract Class loadClass (String name, boolean resolve)
 throws
ClassNotFoundException;
};

Given the string name of the class, the virtual machine calls loadClass which either finds and
returns the Class representation or throws an exception. Therefore, the combination of the
ClassLoader and Class are a natural way to implement a dynamic inventory in Java. In the
following section we shall briefly describe one such implementation, the network ClassLoader
inventory.

3.2.2 The network ClassLoader inventory

The network ClassLoader inventory obtains implementation code required by an application
from a network implementation repository: machines on which implementation code resides co-
operate to share their code base. Figure 2 ill ustrates how, by communicating with a single member
of this repository, an application can gain access to implementations maintained by other
repository members. The repositories are all written in Java, and each repository member can only
load class implementations from a specific search path. Communication with and between
repository members requires authentication and uses Java’s Remote Method Invocation (RMI)
mechanism.

If an application is configured to use the ClassLoader Inventory, programmers need only ensure
that implementation code is available to a single repository site. When the inventory requires code
for a new implementation it will contact one of the repository members, which (potentially) will
search the entire repository for the necessary code. The repository to contact may be specified
within the initial configuration information, or may be imposed by SecurityManager restrictions,
e.g., for most Web browsers the repository member must reside on the machine from which the
program was downloaded.

7

Repositories

Interface object

Java appli cation

Inventory implementation

Figure 2: Network implementation repositories.

3.3 Interfaces

When an interface is instantiated it is responsible for binding to an appropriate implementation.
Figure 3 ill ustrates how this occurs.

Configuration support framework

Java appli cation

Implementations

Interface ObjectName

Inventory

Figure 3: Application execution environment.

To determine which implementation it requires, the interface interrogates the ObjectName to
obtain the name of an implementation and passes this name to the inventory. If the requested
implementation has not been registered with the inventory, or cannot be used within the current
environment, e.g., because of security restrictions, then the binding will fail. If alternative
implementations are specified within the ObjectName (e.g., to tolerate different security
restrictions) then the interface can try to use them. If there are no implementations which can
function for the interface, all subsequent invocations on the interface will fail. Importantly, none
of this is visible at the application level: the programmer simply creates and uses an interface
object.

The Gandiva build-time support includes an interface/implementation code generation tool:
given the definition of an implementation interface, this tool will automatically create an interface
class with all of the necessary binding code, and (optionally) skeleton implementation classes
which the programmer can populate with code. For example, consider an implementation
interface to a (simplified) persistent object store service, used for storing the state of an object
between instantiations:

8

interface ObjectStoreImple
{
public ObjectState readState (ObjectID id) throws ObjectStoreException;
public void writeState (ObjectState state, ObjectID id)
 throws ObjectStoreException;
};

Ignoring error checking, part of the interface class produced by the code generation tool is:

public class ObjectStore
{
public ObjectStore (ObjectName objName)
{
 Inventory inventory = Inventory.inventory();
 String type = objName.getClassNameAttribute(“ClassName”);
 ObjectName oName = objName.getObjectNameAttribute(“ObjectName”);
 Object ptr = inventory.createObjectName(type, oName);

 // if returned object is of right type then cast to actual type.

 if (ptr instanceof ObjectStoreImple)
 imple = (ObjectStoreImple) ptr;
 else
 imple = null;
}

public ObjectState readState (ObjectID id) throws ObjectStoreException
{
 if (_imple != null)
 return _imple->readState(id);
 else
 throw new ObjectStoreException(“No imple”);
}

// the implementation object
private ObjectStoreImple _imple;
};

3.4 Determining security restrictions

In order to configure itself to operate within a specific security environment, an application
must be able to determine the restrictions imposed by that environment. At bind time an interface
must be able to determine whether the implementation it receives from the inventory can work
within the current security restrictions. Therefore, each implementation object must provide a
canExecute method which returns either true if it can execute within the current environment, or
false if it cannot. When the inventory returns an implementation object, the interface calls this
method to determine whether the object can function. If it cannot, the interface can ask the
ObjectName for the name of another implementation, and pass this to the inventory.

This technique of delegating to the implementation the requirement for determining whether or
not it can execute within a given environment allows us to remove any knowledge of specific
security restrictions from the Gandiva framework and interfaces. An interface can only tell
whether an implementation can function by calli ng the canExecute method. New security
restrictions can be accounted for by providing new implementations without requiring changes to
either Gandiva or the interfaces which use the implementations.

9

To determine whether or not it can function within the security environment, the
implementation object may extract information from the ObjectName it is given when it is created,
e.g., the location of the object store database to use for persistence, or the name of the remote
host to contact. It can then obtain a reference to the current SecurityManager and query its
restrictions accordingly. Shown below is the canExecute method for a simple object store service
which writes to the local file system. In the example below, the implementation has been written
to cope with a fairly typical security policy, which restricts the file system access of Java programs
to specific locations, e.g., a temporary file store. If the security restrictions prevent access to this
location the implementation will not function and the interface must try an alternate
implementation.

public SimpleObjectStore implements ObjectStoreImple
{
public boolean canExecute ()
{
 // First get handle on current SecurityManager.

 SecurityManager manager = System.getSecurityManager();

 if (manager == null)
 return true; // no restrictions!
 else
 {
 // There is a SecurityManager, so
 // interrogate it to find restrictions.
 try
 {
 // Assume these file names were read
 // from the ObjectName when this
 // implementation was created.

 manager.checkRead(“/ObjStore/data”);
 manager.checkWrite(“/ObjStore/data);
 manager.checkDelete(“/ObjStore/data”);

 return true;
 }
 catch (Exception e)
 {
 // SecurityManager raised an
 // exception, we could try alternate location.

 return false;
 }
 }
}
}

At present application programmers must implement the canExecute methods. However, we
are examining the possibili ty of automatically generating this code from a high-level specification
language.

10

4. Configurable Web commerce applications

One of the reasons for building this configuration framework in Java was to support the
construction of electronic commerce applications, and in particular those which require atomic
transactions in a Web environment [10][11]. The Web frequently suffers from failures which can
affect both the performance and consistency of applications running over it. For example, if a user
purchases a cookie (a token) granting access to a newspaper site, it is important that the cookie is
delivered and stored if the user’s account is debited; a failure could prevent either from occurring,
and leave the system in an indeterminate state. For resources such as documents, failures may
simply be annoying to users; for commercial services, they can result in loss of revenue and
credibili ty.

Atomic actions are a well-known technique for guaranteeing application consistency in the
presence of failures. Web applications already exist which offer transactional guarantees to users.
However, these guarantees only extend to resources used at Web servers, or between servers;
browsers are not included, despite being a significant source of unreliabili ty. Providing end-to-end
transactional integrity between the browser and the application is important: in the previous
example, the cookie must be delivered once the user’s account has been debited. Cgi-scripts
cannot provide this level of transactional integrity since replies sent after the transactions have
completed may be lost, and replies sent during the transaction may need to be revoked if the
transaction cannot complete [12]. This is an inherent problem with the original “thin” client model
of the Web, where browsers were functionally barren. With the advent of Java it is now possible
to consider empowering browsers so that they can fully participate within transactional
applications. However, the constraints imposed by Java SecurityManagers can directly affect
transactional applications which may require, for example, to make state updates (e.g., cookies)
persistent by accessing the local disk.

Using the Java implementation of Gandiva, we have designed and implemented a transaction
toolkit for the Web, JTSArjuna [11]. The toolkit, which is based upon the Arjuna system [13],
allows transactional applications to span Web browsers and servers, and benefits from the
configurabili ty described previously: an application can be made transactional without
compromising the security policies operational at browsers and servers. Finally, the toolkit
complies with the OMG Object Transaction Service (OTS) [14][15] and the Java Transaction
Service (JTS) [16] standards. It is beyond the scope of this paper to describe how JTSArjuna
provides end-to-end transactional integrity for Web applications; we shall concentrate only on its
configurabili ty. However, the interested reader is referred to [10][11] for a detailed description of
the other aspects of the system.

4.1 Transaction standards for distributed objects

The Object Management Group (OMG) has specified a Common Object Request Broker
Architecture (CORBA) that at the basic level consists of the Object Request Broker (ORB) that
enables distributed objects to interact with each other [14][15]. At the next level a number of
system level services have been specified, which include persistence, concurrency control, and the
Object Transaction Service (OTS). The OTS is a protocol engine intended to guarantee that
transactional behaviour is obeyed, but it does not directly support all of the transaction properties.
As such it depends on other system level services for the required functionality, e.g., persistence

11

and concurrency control services. The Java Transaction Service (JTS) is a direct mapping of the
OTS to the Java language using the standard Java IDL mapping [16].

4.2 JTSArjuna model

The interfaces defined by the OMG for building transactional applications are too low-level for
most application programmers. For example, the programmer is required to manage persistence,
concurrency control etc. on behalf of every transactional object, and registering it with each
transaction it participates with. Therefore, we have provided a higher-level API which attempts to
hide many of these details from programmers. This API has been based on the experiences gained
from extensive use of the original Arjuna system [13][17].

The JTSArjuna model for building transactional applications exploits object-oriented techniques
to present programmers with a toolkit of classes from which application classes can inherit to
obtain desired properties, such as persistence and concurrency control [11][13]. Each class is
concerned with a single functionality, and these classes form a hierarchy, part of which is shown in
figure 4.

StateManager is the class responsible for naming, persistence and recovery control of persistent
and recoverable objects. When not in use, persistent objects are stored in an object store, whereas
recoverable objects are always memory resident. To satisfy the durabili ty requirement,
StateManager makes use of a persistence service when activating (loading) and deactivating
(storing) persistent objects. The programmer must provide save_state and restore_state

methods for each class which specify which parts of the object’s state to store/restore.

LockManager is responsible for two-phase locking, and uses instances of the Lock class, in
conjunction with a suitable concurrency control service, to accomplish this. The programmer uses
the setlock method to acquire appropriate locks (read or write locks in the current
implementation); the atomic action mechanism is responsible for releasing these locks.
AtomicAction is the class which implements the OTS protocol engine, and this class uses
StateManager in order to make any transactional decisions persistent.

StateManager

LockManager A tomicActionLock

User classes

Figure 4: JTSArjuna class hierarchy

By inheriting from LockManager, user classes are automatically transactional, with
LockManager and StateManager being responsible for guaranteeing the ACID properties. Apart
from specifying the scopes of transactions, and setting appropriate locks within objects, the
application programmer does not have any other responsibili ties: JTSArjuna guarantees that
transactional objects will be registered with, and be driven by, the appropriate transactions, and
that in the event of failures crash recovery mechanisms are invoked automatically.

12

4.2.1 Configurable implementations

Both the persistence and concurrency control services required by transactions can be directly
affected by the security restrictions imposed by a Java SecurityManager. Therefore, these services
are required to be configurable within the toolkit and have been implemented using interface and
implementation separation. This allows the toolkit and applications written with it to execute
within different environments.

Figure 5 shows a transactional user class inheriting from LockManager. Internally,
LockManager uses the concurrency service (CC) through an interface; currently there are three
different implementations which that interface can use:

1) a local disk implementation, where locks are made persistent by being written to the local file
system; this allows locks, and therefore objects, to be shared between different Java virtual
machines.

2) a purely local implementation, where locks are maintained within the memory of the virtual
machine which created them; objects cannot be shared between virtual machines.

3) a remote implementation, where the implementation which LockManager uses is actually a
client-side stub (proxy) to a remote service, which may reside within another browser or at a
Web server.

User class

LockM anager

StateM anager

CC daemon

POS daemon

Persistence service

Concurrency service

memory

Concurrency
interface

Persistence
interface

Local disk

Local disk

Figure 5: Configuration hierarchy

Likewise, the interface through which the StateManager class uses the Persistent Object
Service (POS) can bind to either a local (file-system) implementation or a remote implementation.
(In memory implementations are used only for recoverable objects.)

Shown below is an example of the configuration information necessary for the simple
transactional object shown in figure 5. (The ‘~’ and ‘!’ characters preceding each attribute value

13

are used for runtime type checking by ObjectName .) Importantly, there are no requirements from
the application user: all implementations will be loaded across the network when required.

<HTML>
<HEAD><TITLE>Example Applet</TITLE></HEAD>
<BODY>
<APPLET CODE=TranApplet.class WIDTH=400 HEIGHT=200>
<PARAM NAME=OSClassName1 VALUE=”~LocalObjectStoreImple”>
<PARAM NAME=OSLocation1 VALUE=”!/tmp/ObjectStore”>
<PARAM NAME=OSClassName2 VALUE=”~RemoteObjectStoreImple”>
<PARAM NAME=OSLocation2 VALUE=”!glororan.ncl.ac.uk”>
<PARAM NAME=CCClassName1 VALUE=”~LocalCCImple”>
</APPLET>
</BODY>
</HTML>

The preferred type of the persistence service is LocalObjectStoreImple, with the attribute name
OSClassName, and the location of the object store is the directory /tmp/ObjectStore. If this fails,
the interface can use the alternate implementation RemoteObjectStoreImple which is on the
specified machine. The concurrency service is local. If the programmer wishes to change the
configuration of the application, only modifications to the HTML document are required.

5. Conclusions and future work

We have shown that to build many types of Java applications which are truly “write-once-run-
anywhere”, configuration support is required. We have also shown how that support can be
provided using the interface and implementation separation model of Gandiva, and how features
of the Java language can be used to facili tate configuration. Finally, we have used this framework
to provide support for the construction of configurable Web commerce applications using atomic
actions and persistent objects. The framework presented should allow applications to be
constructed which can cope with many different types of security restrictions. We intend to
construct a range of applications with different requirements on security to confirm this.

New Java features offer further possibili ties for configuration support. JDK 1.1, introduced
classes to support reflection and introspection [1], making it possible to query the capabili ties of a
class at run-time and determine, for example, what methods it provides, what parameters they
take, and what exceptions they raise. Using this reflection API an application can use code it had
no prior knowledge of simply by invoking the class and its methods through their names.
Therefore, implementations need not conform to an implementation interface for interfaces to be
able to use them. In addition, JDK 1.1 introduced the concept of object serialisation: the complete
state of an object, including any objects it refers to, can be written to an output stream, and this
stream can be used to recreate that object at a later time. Therefore, once an application has been
configured, the configuration could be “frozen” using this mechanism, and automatically recreated
later, without a need for the original ObjectName.

Acknowledgements

The work reported here has been supported in part by a grant from UK Engineering and
Physical Sciences Research Council (grant no. GR/L 73708).

14

References

[1] D. Flanagan, “Java in a Nutshell 2nd Edition” , O’Reill y, 1997.

[2] K. Arnold and J. Gosling, “The Java Programming Language”, Addison Wesley, 1996.

[3] R. Orfali et al, “Client/Server Programming with Java and Corba”, Wiley, 1997.

[4] S. M. Wheater and M. C. Little, “The Design and Implementation of a Framework for
Configurable Software”, Proceedings of the 3rd International Conference on Configurable
Distributed Systems, May 1996, pp. 136-143.

[5] J. Magee et al, “A Constructive Development Environment for Parallel and Distributed
Programs”, Proceedings of the 2nd International Workshop on Configurable Distributed
Systems, March 1994, pp. 4-14.

[6] J. Kramer and J. Magee, “Dynamic Configuration for Distributed Systems”, IEEE
Transactions on Software Engineering, SE-11 (4), April 1985, pp. 425-436.

[7] J. S. Fritzinger and M. Mueller, “Java Security” , Sun Microsystems, 1995.

[8] M. Atkinson et al, “Draft Pjava Design 1.2” , Department of Computing Science, University
of Glasgow, January 1996.

[9] A. Garthwaite and S. Nettles, “Transactions for Java”, MS-CIS-96-17, University of
Pennsylvania, 1996.

[10] M. C. Little et al, “Constructing Reliable Web Applications Using Atomic Actions” ,
Proceedings of the 6th Web Conference, April 1997, pp 561-571.

[11] M. C. Little and S. K. Shrivastava, “Distributed Transactions in Java”, Proceedings of the
7th International Workshop on High Performance Transaction Systems, September 1997, pp.
151-155.

[12] T. Sanfili ppo and D. Weisman, “Applications of the Secure Web Technology in Transaction
Processing Systems”, The Open Group Research Institute, November 1996.

[13] G. D. Parrington, S. K. Shrivastava, S. M. Wheater and M. C. Little, “The Design and
Implementation of Arjuna”, USENIX Computing Systems Journal, Vol. 8, No. 3, pp. 253-
306, Summer 1995.

[14] “CORBAservices: Common Object Services Specification” , OMG Document Number 95-3-
31, March 1995.

[15] R. Orfali et al, “The Essential Distributed Object Survival Guide”, Wiley, 1996.

[16] V. Matena and R. Cattell, “JTS: A Java Transaction Service API” , Sun Microsystems,
December 1996.

[17] S. K. Shrivastava, “Lessons learned from building and using the Arjuna distributed
programming system,” International Workshop on Distributed Computing Systems: Theory
meets Practice, Dagsthul, September 1994, LNCS 938, Springer-Verlag, July 1995.

