
On Developing and Verifying Design Abstra
tions for ReliableCon
urrent Programming in AdaA.Burns and A.J.WellingsReal-Time Systems Resear
h GroupDepartment of Computer S
ien
eUniversity of York, U.K.A.M.Koelmans, M.Koutny, A.Romanovsky and A.YakovlevAsyn
hronous Systems LaboratoryDepartment of Computing S
ien
eUniversity of New
astle upon Tyne, U.K.Abstra
tAda 95 is an expressive 
on
urrent programming language, whi
h allows building large multi-tasking appli
ations. Mu
h of the 
omplexity of these appli
ations stems from the intera
tionsbetween the tasks. Design abstra
tions (su
h as atomi
 a
tions, 
onversations et
.) have beenproposed to deal with su
h 
omplexity. This paper argues that Petri nets o�er a promising, tool-supported, te
hnique for 
he
king the logi
al 
orre
tness of abstra
tions. The paper illustratesthe e�e
tiveness of this approa
h by showing the 
orre
tness of an Ada implementation of theatomi
 a
tion proto
ol using a variety of Petri net tools.1 Introdu
tionAs high-integrity systems be
ome more sophisti
ated, the resulting 
omplexity is easier to manageif the appli
ations are represented as 
on
urrent pro
esses rather than sequential ones. Inevitably,the introdu
tion of 
on
urren
y brings problems of pro
ess intera
tion and 
oordination. In tryingto solve these problems, language and operating system resear
hers have introdu
ed new high-levelprogramming 
onstru
ts. These design abstra
tions are often 
losely related to the spe
i�
 domainbeing addressed. For example, software fault-toleran
e has adopted the notion of 
onversations[18℄ and atomi
 a
tions [7, 13℄ to fa
ilitate the safe and reliable 
ommuni
ation between group ofpro
esses in the presen
e of hardware and software failures, in addition to providing a stru
turingte
hnique for su
h systems. Resear
h languages su
h as Con
urrent Pas
al have been used as thebasis for experimentation [12℄, or a set of pro
edural extensions or obje
t extensions have beenprodu
ed. For example, Arjuna uses the latter approa
h to provide a transa
tion-based toolkit forC++ [24℄. However, it is now a

epted that the pro
edural and obje
t extensions are unable to 
opewith all the subtleties involved in syn
hronisation and 
o-operation between several 
ommuni
ating
on
urrent pro
esses.The main disadvantage of domain-spe
i�
 abstra
tions is that they seldom make the transitioninto general-purpose programming languages or operating systems. For example, no mainstreamlanguage or operating systems supports the notion of a 
onversation [4℄. The result is that all thehard-earned resear
h experien
e is not promulgated into industrial use.If high-level support is not going to be found in mainstream languages, the required fun
tionalitymust be programmed with lower-level primitives that are available. For some years now we havebeen exploring the use of the Ada programming language as a vehi
le for implementing reliable1



CS-TR-706, Dept. of CS, New
astle University 2
on
urrent systems [26℄. The Ada 95 programming language de�nes a number of expressive 
on-
urren
y features [1℄. Used together they represent a powerful toolkit for building higher-levelproto
ols/design abstra
tions that have wide appli
ation. E.g., [26℄ showed how Ada 95 
an beused to implement Atomi
 A
tions. As su
h an abstra
tion is not dire
tly available in any 
urrentprogramming language, this represents a signi�
ant step in moving these notions into general use.An examination of this, and other appli
ations, shows that a number of language features are usedin tandem to a
hieve the required result, namely: tasks, Asyn
hronous Transfer of Control (ATC),prote
ted types, requeue, ex
eptions and 
ontrolled types.The expressive power of the Ada 95 
on
urren
y features is therefore 
lear. What is not as straight-forward is how to be 
on�dent that the higher-level abstra
tions produ
ed are indeed 
orre
t. Asa number of intera
tions are asyn
hronous this presents a signi�
ant veri�
ation problem. Theidea of veri�
ation using Model Che
king with a �nite state model (FSM) of an Ada program was�rst presented in [5℄. This method 
onstru
ted a set of FSMs of individual tasks intera
ting via
hannels, and applied analysis of the interleaving semanti
s of the produ
t of FSMs using tool Up-paal (whose underlying formalism is that of CCS). In this paper, we investigate a 
omplementaryapproa
h based on Petri nets and their power to model 
ausality between elementary events ora
tions dire
tly. This 
an be advantageous for asyn
hronous nature of intera
tions between tasks.Petri nets, both ordinary [19℄ and high level (e.g. 
oloured nets [11℄) o�er a wide range of analysistools to model and verify the logi
al 
orre
tness a

ording to two 
ru
ial kinds of properties: (i)safety - an in
orre
t state 
annot be entered (from any legal initial state of the system); and (ii)liveness - a desirable state will be entered (from all legal initial states of the system).Petri nets have generally been applied to the veri�
ation of Ada programs, e.g. [23, 17℄. This workhas mostly been fo
used on the synta
ti
 extra
tion of Petri nets from Ada 
ode in su
h a waythat the veri�
ation of properties, su
h as deadlo
k dete
tion, 
ould be done more eÆ
iently. Toalleviate state spa
e explosion te
hniques like stru
tural redu
tion [23℄ and de
omposition [17℄ of`Ada nets' have been proposed.Our resear
h aims at developing a set of design abstra
tions for reliable 
on
urrent programmingin Ada, and at applying Petri nets to model and verify them, using available tools, su
h as PEPand Design/CPN [6℄. Furthermore, we distinguish between these abstra
tions and appli
ation 
odewhi
h uses them. However, we propose to deal with the unavoidable 
omplexity of the resultingprograms within a 
ompositional approa
h employing a versatile library of design abstra
tions withwell understood and formally veri�ed properties (
on�den
e in the abstra
tion 
an be signi�
antlyin
reased and the development a
tivity itself supported by modelling, simulation and analysis of thedynami
 behaviour of the Petri net model; the behaviour 
an be analysed either by exploring theset of rea
hable states of the net or its partial order semanti
s, su
h as the unfolding pre�x). Thelatter 
an then be used to ta
kle the veri�
ation of 
omplex designs. Thus, while we are ultimatelyinterested in eÆ
ient model 
he
king too, the main fo
us of this paper is on the semanti
 modellingof salient task intera
tion me
hanisms from Ada 95. To the best of our knowledge, there has beenno attempt of using Petri nets to analyse Ada 95 models of Atomi
 A
tions, parti
ularly with ATCand ex
eptions. However, some work on analysing Ada 95 programs (with ATC, prote
ted obje
ts,and requeue statement) with Petri nets has been re
ently reported in [10℄.This paper is organised as follows. An introdu
tion to model 
he
king based on Petri nets isgiven in the next se
tion. We use our existing study of Atomi
 A
tions to illustrate the adoptedpro
edure. A simple Petri net model is introdu
ed and veri�ed in Se
tion 3. Se
tion 4 dis
ussesdesign abstra
tions to be developed, together with their properties. Con
lusions are presented inSe
tion 5.2 An Introdu
tion to Model Che
king using Petri NetsModel 
he
king is a te
hnique in whi
h the veri�
ation of a system is 
arried out using a �niterepresentation of its state spa
e. Basi
 properties, su
h as absen
e of deadlo
k or satisfa
tion of a



CS-TR-706, Dept. of CS, New
astle University 3state invariant (e.g. mutual ex
lusion), 
an be veri�ed by 
he
king individual states. More subtleproperties, su
h as guarantee of progress, require 
he
king for spe
i�
 
y
les in a graph representingthe states and possible transitions between them. Properties to be 
he
ked are typi
ally des
ribedby formulae in a bran
hing time or linear time temporal logi
 [9℄.The main drawba
k of model 
he
king is that it su�ers from the 
ombinatorial explosion problem.That is, even a relatively small system spe
i�
ation may (and often does) yield a very large statespa
e whi
h despite being �nite requires 
omputational power for its management beyond thee�e
tive 
apability of available 
omputers. To help 
ope with the state explosion problem a numberof te
hniques have been proposed whi
h 
an roughly be 
lassi�ed as aiming at impli
it 
ompa
trepresentation of the full state spa
e of a rea
tive 
on
urrent system, or at an expli
it representationof a redu
ed (yet suÆ
ient for a given veri�
ation task) state spa
e of the system. Te
hniques aimedat redu
ed representation of state spa
es are typi
ally based on the independen
e (
ommutativity)of some a
tions, whi
h is a 
hara
teristi
 feature of rea
tive 
on
urrent systems, often relying onthe partial order view of 
on
urrent 
omputation. Brie
y, in a sequential system, it is the a
tualorder of the exe
ution of individual a
tions whi
h is usually of importan
e, whereas in a 
on
urrentsystem the a
tual order in whi
h, say, two messages were sent and then re
eived may be irrelevantto the 
orre
tness of the whole system.Model 
he
king is a te
hnique that requires tool support. For Petri nets, there are many tools ofdi�erent maturity available. These tools are 
ategorised a

ording to many parameters [27℄. In ourstudy, we used three relatively mature tools. One is PEP [2℄, whi
h uses ordinary Pla
e/Transitionnets and a number of model 
he
king methods, su
h as rea
hability analysis and unfolding pre�x.The se
ond one is INA (Integrated Net Analyzer) [20℄. The third is Design/CPN [28℄, whi
h is basedon the Coloured Petri nets and has extensive fa
ilities for simulation and o

urren
e (rea
hbility)graph analysis.3 Model of Simple Atomi
 A
tionsAtomi
 A
tions. An atomi
 a
tion is a dynami
 me
hanism for 
ontrolling the joint exe
utionof a group of tasks su
h that their 
ombined operation appears as an indivisible a
tions [13℄.Essentially, an a
tion is atomi
 if the tasks performing it 
an dete
t no state 
hange ex
ept thoseperformed by themselves, and if they do not reveal their state 
hanges until the a
tion is 
omplete.Atomi
 a
tions 
an be extended to in
lude forward or ba
kward error re
overy. In this se
tion wewill fo
us only on forward error re
overy using ex
eption handling [7℄. If an ex
eption o

urs inone of the tasks a
tive in an atomi
 a
tion then that ex
eption is raised in all pro
esses a
tive inthe a
tion. The ex
eption is said to be asyn
hronous as it originates from another pro
ess.Atomi
 A
tions in Ada. To show how atomi
 a
tions 
an be programmed in Ada [26℄, 
onsidera simple non-nested a
tion between, say, three tasks. The a
tion is en
apsulated in a pa
kage withthree visible pro
edures, ea
h of whi
h is 
alled by the appropriate task. It is assumed that notasks are aborted and that there are no deserter tasks [12℄.pa
kage simple_a
tion ispro
edure T1(params : param); -- from Task 1pro
edure T2(params : param); -- from Task 2pro
edure T3(params : param); -- from Task 3end simple_a
tion;The body of the pa
kage automati
ally provides a well-de�ned boundary, so all that is requiredis to provide the indivisibility. A prote
ted obje
t, Controller, 
an be used for this purpose. Thepa
kage's visible pro
edures 
all the appropriate entries and pro
edures in the prote
ted obje
t.The body of the pa
kage is given below.



CS-TR-706, Dept. of CS, New
astle University 4with Ada.Ex
eptions; use Ada.Ex
eptions;pa
kage body a
tion istype Vote_T is (Commit, Aborted);prote
ted 
ontroller isentry Wait_Abort(E: out Ex
eption_Id);entry Done;entry Cleanup (Vote : Vote_t;Result : out Vote_t);pro
edure Signal_Abort(E: Ex
eption_Id);privateentry Wait_Cleanup(Vote : Vote_t;Result : out Vote_t);Killed : boolean := False;Releasing_
leanup : Boolean := False;Releasing_Done : Boolean := False;Reason : Ex
eption_Id;Final_Result : Vote_t := Commit;informed : integer := 0;end 
ontroller;-- any lo
al prote
ted obje
ts for-- 
ommuni
ation between a
tionsprote
ted body 
ontroller isentry Wait_Abort(E: out Ex
eption_id)when killed isbeginE := Reason;informed := informed + 1;if informed = 3 thenKilled := False;informed := 0;end if;end Wait_Abort;entry Done when Done'Count = 3 orReleasing_Done isbeginif Done'Count > 0 thenReleasing_Done := True;elseReleasing_Done := False;end if;end done;entry Cleanup (Vote: Vote_t;Result: out Vote_t) when True isbeginif Vote = aborted thenFinal_result := aborted;end if;requeue Wait_Cleanup with abort;end Cleanup;pro
edure Signal_Abort(E: Ex
eption_id) isbeginkilled := True; reason := E;end Signal_Abort;

entry Wait_Cleanup (Vote : Vote_t;Result: out Vote_t)when Wait_Cleanup'Count = 3 orReleasing_Cleanup isbeginResult := Final_Result;if Wait_Cleanup'Count > 0 thenReleasing_Cleanup := True;elseReleasing_Cleanup := False;Final_Result := Commit;end if;end Wait_Cleanup;end 
ontroller;pro
edure T1(params: param) isX : Ex
eption_ID;De
ision : Vote_t;beginsele
tController.Wait_Abort(X);raise_ex
eption(X);then abortbegin-- 
ode to implement atomi
 a
tionController.Done; --signal 
ompletionex
eptionwhen E: others =>Controller.Signal_Abort(Ex
eption_Identity(E));end;end sele
t;ex
eption-- if any ex
eption is raised during-- the a
tion all tasks must parti
ipate-- in the re
overywhen E: others =>-- Ex
eption_Identity(E) has been-- raised in all tasks-- handle ex
eptionif handled_ok thenController.Cleanup(Commit, De
ision);elseController.Cleanup(Aborted, De
ision);end if;if de
ision = aborted thenraise atomi
_a
tion_failure;end if;end T1;pro
edure T2(params : param) is ...;pro
edure T3(params : param) is ...;end a
tion;



CS-TR-706, Dept. of CS, New
astle University 5
Executing and
waiting for an abort

Signal abort
Action component

done
Abort triggered and
Raising an exception

Exception handled

Waiting cleanup

Enter Action

Exit Action Failed Exit Action NormallyFigure 1: Simple state transition diagram illustrating Atomi
 A
tion with forward error re
overyfor the system with two tasksEa
h 
omponent of the a
tion (T1, T2, and T3) has identi
al stru
ture. The 
omponent exe
utes asele
t statement with an abortable part. The triggering event is signalled by the 
ontroller prote
tedobje
t if any 
omponent indi
ates that an ex
eption has been raised and not handled lo
ally in oneof the 
omponents. The abortable part 
ontains the a
tual 
ode of the 
omponent. If this 
odeexe
utes without in
ident, the 
ontroller is informed that this 
omponent is ready to 
ommit thea
tion.If any ex
eptions are raised during the abortable part, the 
ontroller is informed and the identityof the ex
eption passed. If the 
ontroller has re
eived noti�
ation of an unhandled ex
eption, itreleases all tasks waiting on the Wait Abort triggering event (any task late in arriving will re
eivethe event immediately it tries to enter into its sele
t statement). The tasks have their abortableparts aborted (if started), and the ex
eption is raised in ea
h task by the statement after theentry 
all to the 
ontroller. If the ex
eption is su

essfully handled by the 
omponent, the taskindi
ates that it is prepared to 
ommit the a
tion. If not, then it indi
ates that the a
tion must beaborted. If any task indi
ates that the a
tion is to be aborted, then all tasks will raise the ex
eptionAtomi
 A
tion Failure. Figure 1 shows the approa
h using a simply state transition diagram.3.1 Modelling the Ada Implementation in P/T netsWe now 
onsider Petri nets for this Ada 
ode. We �rst look at ordinary P/T nets, i.e. nets withouttoken typing (
olouring). Ea
h of the 
lient tasks will have an identi
al PN, spe
ialised only inits labelling of transitions and pla
es. The 
ontroller will also be modelled as a single Petri net.Our graphi
al support for 
apturing the Petri nets is a Petri net editor PED [15℄, whi
h allowshierar
hi
al and fragmented 
onstru
tion of P/T nets, and their export to an extensive range offormats in
luding those a

epted by analysis tools like PEP and INA. Figure 2 presents the taskmodel (a) and the 
ontroller model (b).Pla
es and transitions whi
h are not shaded, su
h as start1 and arr1 are individual for the task net(here we show the net for Task 1). Those pla
es and transitions whi
h are shaded are so 
alled (inPED) logi
al pla
es and transitions { they are used to inter
onne
t subnets to form larger nets. Inother words, by de
laring pla
es or transitions in di�erent subnets as logi
al in PED, we virtuallymerge su
h pla
es and transitions in the overall net provided that they have the same label, e.g.



CS-TR-706, Dept. of CS, New
astle University 6

commitAll
doneAll

abortAll

restart12

sendAbComm1

restart11

sendComm1sendAbort1

except12

sigAbort1

except11
done1

arr1

voteAbort

voteNotAbort

noIntTasks

Killed

notKilled

waitAbort

fail1success1

voted1

handling1

locDone1

comp1

start1

2

2

sigAbort2sigAbort1

doneAll

abortAll

commitAll

sync

voteAbort

voteNotAbort

start

synced

noIntTasks

Killed

notKilled

waitAbort

Figure 2: P/T net models: (a) Task model (b) Controller modelwaitAbort and sigAbort1. Note that the net models use the so 
alled test or read-only ar
s (ar
swith a bla
k dot at the transition end), and weighted ar
s. The former are used to show the fa
tthat transitions in the task net 
an test the state of shared variable, su
h es e.g. Killed , whi
h ismodelled by two 
omplementary (
annot be simultaneosuly marked with a token) pla
es notKilledand Killed in the 
ontroller net.Our basi
 idea of modelling the Ada 
ode for the Atomi
 A
tion behaviour with P/T nets is asfollows. We represent states of ea
h task as (unshaded) pla
es and key a
tions lo
al for the taskas unshaded (solid bars) transitions. Arriving in the Atomi
 A
tion by the task is represented bytransition arr1. This also generates a token in the pla
e waitAbort, whi
h belongs to the 
ontrollerand 
ounts the number of tasks that have a
tually entered the Atomi
 A
tion. The pla
e labelled
om1 
orresponds to the state of the task in whi
h the task performs normal 
omputation. From thisstate the task may either: (a) exe
ute transition done1 and go to the Lo
al Done state of normal
ompletion of the a
tion (pla
e lo
Done1), or (b) it may raise an ex
eption by �ring transitionsigAbort1 (this 
orresponds to exe
uting the Signal Abort pro
edure, whi
h swit
hes the state ofthe Killed 
ag from false to true { a token is toggled from pla
e notKilled to Killed), or (
) it maybe for
ed to go to the Error-Handling state (pla
e handling1), either from the Normal Computationstate or from the the Lo
al Done state be
ause of some task's (even itself) rasing an ex
eption, inwhi
h 
ase transition ex
ept12 will be �red.Subsequent a
tion of the task depends on whether the task ends in the Lo
al Done or in the Error-Handling state. If the former, the task provides a 
ondition for the 
ontroller to �re a sharedtransition doneAll (
orresponding to the exe
ution of the Done entry by all tasks). If the task is inthe Error-Handling state, it handles the ex
eption and depending on the result of the handling itvotes either for A
tion Commit or A
tion Abort.The voting me
hanism used in Atomi
 A
tions allows one task voting for Abort to for
e theentire operation into Failure. In our Petri net model, this is a
hieved by using the following threetransitions sendAbort1, sendComm1 or sendAbComm1, individual for the task. These transitions are



CS-TR-706, Dept. of CS, New
astle University 7
onne
ted to two 
omplementary pla
es voteNotAbort and voteAbort in the 
ontroller net. Initially,when the voting begins, a token is assumed to be pla
ed into pla
e voteNotAbort. While noneof the tasks votes for Abort, the token remains in this pla
e, and if the task votes for Commit(this 
orresponds of the handling ok 
ag being set in the task), transition sendComm1 �res due tothe reading ar
 from pla
e voteNotAbort. As soon as one of the tasks votes for Abort the token isswit
hed from it �res transition sendAbort1, whi
h toggles the token from voteNotAbort to voteAbortin the 
ontroller. This 
orresponds to assigning the state of the global 
ag Final result to abortedin the Cleanup entry. After that, in all tasks, regardless of their individual voting, transitionsendAbComm1 will �re due to the reading ar
 from pla
e voteAbort.The voting is 
omplete when the task is in the state where it is ready to 
he
k the value of thede
ision 
ag. This 
orresponds to a token in the voted1 pla
e. At this point all tasks syn
hroniseon �ring shared transitions 
ommitAll or abortAll, whi
h are respe
tively pre
onditioned by the
ontroller's pla
es voteNotAbort and voteAbort. If the former �res it puts a token in the lo
alsu

ess1 pla
e, if the latter the lo
al fail1 is marked. After that the task �res one of the twopossible restart transitions whi
h 
orresponds to bringing the task to the state where it is ready toexe
ute the Atomi
 A
tion again.Using the PED tool we 
onstru
ted the model of the system from the task and 
ontroller frag-ments. On
e the appropriate pla
es and transitions are merged the a
tual behavioural intera
tionbetween task and 
ontroller is a
hieved through the following two main me
hanisms: (i) syn
hro-nisation on shared transitions, whi
h is similar to rendez-vous (blo
king) syn
hronisation, and (ii)
ommuni
ation via shared pla
es, whi
h is similar to asyn
hronous (non-blo
king) 
ommuni
ation.3.2 Veri�
ation of the P/T-net modelThis P/T net model of the Ada 
ode 
an be exported from PED to analysis tools, su
h as INA orPEP. We used PEP, in whi
h we 
ould simulate the token game and perform rea
habilty analysis toverify by Model Che
king the key properties of the algorithm. First, if `Task1' is in pla
e su

ess1then it must not be possible for any of the other tasks (say 2) to be in fail2. This is presented tothe rea
hability analysis tool by the following logi
 statement: su

ess1,fail2. This test givesthe <NO> result, i.e. su
h a marking in whi
h these two pla
es are marked is not rea
hable.Similarly, to the test for rea
hability of a marking in whi
h both tasks end in su

ess state:su

ess1,su

ess2. The tool rea
ts with <YES> and produ
es:_SEQUENCE:arr2,done2,arr1,done1,doneAllwhi
h is a �ring sequen
e leading to the global su

ess state.When setting the option Cal
ulate all paths to true, the tool produ
es the following list of �ringsequen
es:_SEQUENCE:arr2,done2,arr1,done1,doneAllarr2,arr1,done2,done1,doneAllarr1,arr2,done2,done1,doneAll arr1,done1,arr2,done2,doneAllarr2,arr1,done1,done2,doneAllarr1,arr2,done1,done2,doneAllThis set, however, in
ludes only those paths whi
h go through the lo
Done states, but not thosewhi
h are the result of su


esful handling and overall Commit voting. This is 
aused by the fa
tthe system sear
hes for all paths satisfying the shortest length 
riterion.The e�e
t of a 
oherent error handling 
an be tested by: fail1,fail2. This results in:_SEQUENCE:arr1,done1,arr2,sigAbort2,ex
ept21,sendAbort2,ex
ept12,sendAbComm1,syn
,abortAllarr2,arr1,done1,sigAbort2,ex
ept21,sendAbort2,ex
ept12,sendAbComm1,syn
,abortAll...all together over 600 paths. These assertions imply in
onsisten
y is not possible.



CS-TR-706, Dept. of CS, New
astle University 8We have also used tool INA to verify the various behavioural (safety and liveness) properties. Theresults of this analysis are:Safety Properties:Safe - NoBounded - YesDead State Rea
hable - NoCovered by Transition-Invariants - Yes Resettable, reversable (to home state) - YesDead transitions exist - NoLive - YesLive and Safe - NoThe 
omputed rea
hability graph has 76 states.The INA tool allows to state properties in the form of CTL (Computational Tree Logi
) [8℄ formulas.We 
an formulate properties of interest, su
h as whether there exists a path whi
h leads to a statewhere one task ends in su

ess while the other in fail:EF((P18 &P21 )V(P19 &P20 ))Here P18 (P19) stands for su

ess1 (su

ess2) and P21(P20) for fail2 (fail1). The result of the 
he
kis:s1 sat EF((P18 &P21 )V(P19 &P20 )): FALSEAnother intersting property would be, whether there is a path that leads to a state in whi
h bothtasks end in su

ess but the 
ag Killed (pla
e P7 below) has been set to true:s1 sat EF(P7 &(P18 &P19 )): FALSEFor 
omparison, we have tried a modi�ed net model for a task { we omitted a read ar
 leading totransition done1 whi
h tests 
ag notKilled. This modi�
ation may 
orrespond to allowing the 
odefor a task to be non-sequential { a task may signal abort and at the same time pass to Lo
al Done(the e�e
t of inertia or delay in rea
ting to the abort). Interestingly, su
h a modi�
ation does notlead to the violation of deadlo
k-freeness or the property of both tasks ending either in su

ess orfail. But for the last property above it returns:s1 sat EF(P7 &(P18 &P19 )): TRUEOur preliminary results on using Colured Petri nets for modelling and analysing the Atomi
 A
tions
heme were re
ently reported in [6℄.4 Developing Design Abstra
tionsIn this se
tion we outline abstra
tions whi
h are important for reliable 
on
urrent programmingin Ada and our reasons for 
hoosing them. Our understanding has been built on analysing theexisting s
hemes supporting some abstra
tions. We believe that it is vital to develop a systemati
approa
h for 
hoosing and developing su
h abstra
tions. In parti
ular, this 
hoi
e has to be drivenby our ability to 
he
k the abstra
tions (this might depend on the Ada features used to developthem). Other important issues to address are expressing general abstra
tion properties in the wayin whi
h they 
an be formally 
he
ked and developing guides for applying the abstra
tions 
orre
tly.Our �rst experiments with modelling and 
he
king the atomi
 a
tion abstra
tion have 
ontributedto better understanding of these topi
s [6℄. This se
tion dis
usses some preliminary results of theon-going resear
h.Abstra
tion Overview There has been a 
onsiderable body of resear
h on developing reliableabstra
tions in Ada (see, for example, [26, 21, 14℄. The �rst stage of our resear
h builds on analysesof several existing s
hemes as possible 
andidates for formalisation and model 
he
king. Thesein
lude 
onversation s
hemes of di�erent types (e.g. 
on
urrent re
overy blo
ks), di�erent atomi
a
tion s
hemes (with ba
kward or forward error re
overy, a
tion nesting, dete
ting the entry andthe exit deserters, with or without entry syn
hronisation), N -version programming with 
on
urrentversion exe
ution [22℄, repli
ated systems [25℄, et
.



CS-TR-706, Dept. of CS, New
astle University 9The following step is to 
ome up with a systemati
 approa
h for developing su
h abstra
tions.The intention here is to propose a range of s
hemes whi
h work under di�erent fault assumptions(in
luding software design faults, environmental faults, transient errors, ex
eptions raised by theunderlying support, hardware faults) and whi
h are suitable for designing 
on
urrent systems andappli
ations of di�erent types.Our further intention is to propose a set of basi
 abstra
tions whi
h are useful for developingboth reliable de
entralised appli
ations and de
entralised 
ontrols for the above-mentioned reliableabstra
tions su
h as atomi
 a
tions and repli
ated systems [25℄. These 
an in
lude some of thefollowing me
hanisms: message ordering, broad
ast proto
ols, agreement proto
ols, group mem-bership support.Another important avenue to explore here is the development of new abstra
tions suitable fordesigning real-time Ada systems (e.g. periodi
 and sporadi
 tasks, s
heduling) and extending theabstra
tions dis
ussed above for dealing with time 
on
erns (e.g. by in
luding time 
onstraints).Prin
iples. In this resear
h we are following several general prin
iples:- making the s
hemes implementing the design abstra
tions as reusable and as general as possible;- relying on basi
 building blo
ks whi
h 
an be used for designing several abstra
tions (for example,features dete
ting deserter pro
esses are 
ommon for 
onversations, atomi
 a
tions and N -versionprogramming);- separating the re-usable 
ode from the appli
ation 
ode as mu
h as possible.Spe
ial measures have to be taken to make modelling and 
he
king simpler. This 
an be done byapplying an evolutionary development with developing the right abstra
tions in the right order. Forexample, paper [14℄ presents a basi
 distributed atomi
 a
tion s
heme and its several extensions,whi
h, we believe, are mu
h easier to model and to 
he
k when the basi
 s
heme is 
he
ked. Model
he
king 
an be fa
ilitated by applying several ar
hite
tural solutions:- 
omposability: developing several simple basi
 abstra
tions and demonstrating how more 
omplexones 
an be 
omposed;- separating 
on
erns: developing abstra
tions whi
h are 
on
erned with di�erent orthogonal prop-erties related to reliability (and dependability in general). This 
an make the 
onstru
tion of more
omplex abstra
tions and their veri�
ation simpler;- layering: building new abstra
tions on the top of existing and veri�ed ones whi
h are designed asthe underlying servi
e layers.Another important issue to be taken into a

ount is developing a better understanding of howdi�erent Ada 
onstru
ts 
an 
ompli
ate the 
he
king and 
ause state explosion. This will allowus to program abstra
tions whi
h are easier to 
he
k. One of the solutions 
ould be to de�ne anAda subset (although it is 
lear for us that the Ravens
ar subset [3℄ is too simple for our needs).Furthermore, 
omposability might make it diÆ
ult to subset. For example, nested ATC blo
ks add
omplexity but it is unlikely that we would want to disallow them.Some of these prin
iples as well as the intentions outlined in the previous subse
tion are 
ontradi
-tory and �nding a right balan
e is a very important issue in this resear
h.Abstra
tion Properties. To ensure the 
orre
tness of an abstra
tion we should be able toformulate and 
he
k a 
omplete set of its properties (generally speaking, it might be reasonable todevelop a ne
essary and suÆ
ient set of properties). To avoid any ad ho
 approa
hes we shouldrely on rigorous de�nitions of su
h abstra
tions. Their properties are usually de�ned in terms ofsystem design and use to help programmers rather than formally. For example, hardware faulttoleran
e s
hemes often rely on the fa
t that data saved in a stable storage 
an be re
overed after a
rash. To verify the ability of the system to be re
overed we should be able to model and to 
he
kthat su
h s
hemes always save data suÆ
ient for the restart and for guaranteeing the 
ontinuousservi
e. Other examples of su
h properties are: atomi
ity and isolation of atomi
 a
tions (absen
e of



CS-TR-706, Dept. of CS, New
astle University 10information ex
hange with the outside world), absen
e of the deserter pro
esses in 
onversations,all-or-nothing e�e
t of a
tions, mutual ex
lusion of the a

ess to shared, 
orre
t a
tion nesting.These properties should be modelled in a formal way suitable for 
he
king the 
orre
tness of theabstra
tions. Developing systemati
 approa
hes for des
ribing and formalising a 
omplete set ofproperties for ea
h abstra
tion is the only general way for ensuring their 
orre
tness.Guides. After the 
orre
tness of the design abstra
tions has been demonstrated, the programmers
an apply them for system design. Unfortunately this 
an be an error prone pro
ess be
ause itis not supported by the 
ompiler or run-time 
he
ks and be
ause the 
orre
tness of the designabstra
tions does not mean that they are always applied 
orre
tly. Although some s
hemes mayperform several run-time 
he
ks, it is usually not pra
ti
al to develop and to use s
hemes whi
h areable to dete
t and tolerate all possible types of misuse. This is why all s
hemes supporting designabstra
tions of interest assume that there are some rules and restri
tions on using them and thatthe programmers follow them. This shows the importan
e of developing guides explaining how toapply design abstra
tions implemented as the 
on
rete Ada s
hemes. These guides will in
ludetemplates and a set of 
onventions for programmers. They are to be prepared by system or faulttoleran
e programmers. For example, it is nearly impossible to prove or to guarantee in the runtime that a set of Ada tasks inside an atomi
 a
tion do not ex
hange information with the outsideworld. The only pra
ti
al solution is to des
ribe how this 
an be a
hieved in a programmers' guide.In addition it might be possible to develop some supplementary tools whi
h work with the designedAda 
ode (maybe with some annotations in
luded as 
omments) to 
he
k that su
h rules have beenfollowed while applying the design abstra
tions. In this 
ase the guides 
an be applied togetherwith su
h tools.5 Con
lusionThis paper is only a preliminary attempt in pursuing our 
hosen dire
tion of resear
h, in whi
h wewould like to develop a more 
omprehensive methodology for verifying high-integrity systems builtof Atomi
 A
tions and implemented in Ada 95.The major new aspe
ts of this work, whi
h also reveal the potentially exploitable advantages ofthe Petri net approa
h over the State Ma
hine one [5℄, are: (i) re�nement of both states andtransitions; (ii) analysis of behaviour at the true 
on
urren
y and 
ausality level; (iii) high-levelaspe
ts of modelling, su
h as parametrisation, are possible using high-level Petri nets.For example, if re�nement with threads (e.g., task spawning), re
ursive atomi
 a
tions, et
. werepossible in the modelled systems, then Petri nets would provide a mu
h more eÆ
ient way ofmodelling than state ma
hines. We have only shown the way of modelling intera
tion me
hanismsat the semanti
al level. Part of the intended future work would be to adopt the existing or developnew methods of extra
ting Petri nets from the Ada 95 syntax.We have outlined the important aspe
t of the development of new design abstra
tions, whi
h mustbe more amenable to model 
he
king in general and use of Petri nets in parti
ular. We have alsoidenti�ed a way for formulating properties of these abstra
tions to be 
he
ked, and proposed anapproa
h to develop pra
ti
al guidelines for applying the abstra
tions in real designs.Referen
es[1℄ Ada 95: Information te
hnology - Programming languages - Ada. Language and Standard Libraries.ISO/IEC 8652:1995(E), Intermetri
s, In
., 1995.[2℄ E.Best and B.Grahlmann: PEP - more than a Petri Net Tool. Pro
. of Tools and Algorithms forthe Constru
tion and Analysis of Systems, 2nd Int. Workshop, TACAS'96, Passau, Mar
h 1996, T.Margaria, B. Ste�en (eds), LNCS 1055, Springer-Verlag (1996) 397-401.



CS-TR-706, Dept. of CS, New
astle University 11[3℄ A. Burns. The Ravens
ar Pro�le. Ada Letters, v. XIX, N 4, 1999, pp.49-52.[4℄ A.Burns and A.J.Wellings: Real-Time Systems and Programming Languages (2nd ed.) Addison Wesley(1996).[5℄ A.Burns and A.J.Wellings: How to Verify Con
urrent Ada Programs - The Appli
ation of ModelChe
king. Ada Letters, Volume XIX, Number 2 (1999) 78-83.[6℄ A. Burns, A.J. Wellings, F. Burns, A.M. Koelmans, M. Koutny, A. Romanovsky, A. Yakovlev. TowardsModelling and Veri�
ation of Con
urrent Ada Programs Using Petri Nets. A

epted for Int. Work. onSoft. Eng. and Petri nets (SEPN'2000), to be held within the 22nd Int. Conf. on Appl. and Theory ofPetri Nets (PN'2000), June 2000, Aarhus, Denmark.[7℄ R.H.Campbell and B.Randell: Error Re
overy in Asyn
hronous Systems. IEEE Transa
tions on Soft-ware Engineering SE-12 (1986) 811-826.[8℄ E.M.Clarke and E.A. Emerson: Synthesis of syn
hronization skeletons for bran
hing time temporallogi
. In Dexter Kozen, editor, Logi
 of Programs: Workshop, LNCS, vol. 131, Springer-Verlag, 1981.[9℄ E.M.Clarke and J.Wing: Formal Methods: State of the Art and Future Dire
tions. Report, CarnegieMellon University (June 1996).[10℄ R.K. Gedela and S.M. Shatz. Modeling of advan
ed tasking in Ada-95: a Petri net perspe
tive. Pro
.2-nd Int. Workshop on Software Engineering for Parallel and Distributed Systems (PDSE'97), Boston,MA, pp. 4-14 (May 1997).[11℄ K.Jensen:Coloured Petri Nets. Basi
 Con
epts. EATCS Monographs on Theor. Comp. S
i. (1992).[12℄ K.H.Kim: Approa
hes to Me
hanization of the Conversation S
heme Based on Monitors. IEEE Trans-a
tions on Software Engineering SE-8 (1982) 189-197.[13℄ D.B.Lomet: Pro
ess Stru
turing, Syn
hronisation and Re
overy using Atomi
 A
tions. Pro
. of ACMConferen
e Language Design for Reliable Software. SIGPLAN (1977) 128-137.[14℄ S.E. Mit
hell, A.J. Wellings, A. Romanovsky. Distributed Atomi
 A
tions in Ada 95. Computer J., v.41, N 7, 1998, pp.486-502.[15℄ PED. http://www-dssz.Informatik.TU-Cottbus.DE/~wwwdssz/ { the home page of PED (a Hier-a
hi
al Petri Net Editor).[16℄ PEP. http://www.informatik.uni-hildesheim.de/~pep/HomePage.html { the home page of PEP(a Programming Environment Based of Petri Nets).[17℄ M. Pezze, R.N. Taylor and M. Young: Graph Models for Rea
hability Analysis of Con
urrent Programs.ACM Transa
tions on Software Engineering and Methodology 4/2 (April 1995) 171-213.[18℄ B. Randell: System Stru
ture for Software Fault Toleran
e. IEEE Trans. Soft. Eng. 1(2) 220-232 (1975).[19℄ W.Reisig: Petri Nets. An Introdu
tion. EATCS Monogr. on Theor. Comp. S
i., Springer-Verlag (1985).[20℄ S. Ro
h and P.H. Starke: INA: Integrated Net Analyzer, Version 2.2, Manual Humboldt-Univerit�at zuBerlin, Instutut f�ur Informatik, April 1999.[21℄ A. Romanovsky. A Study of Atomi
 A
tion S
hemes Intended for Standard Ada. J. of Systems andSoftware, v. 43, 1998, pp.29-44.[22℄ A. Romanovsky. Class Diversity Support in Obje
t-Oriented Languages. J. of Systems and Software.v. 48, 1999, pp.43-57.[23℄ S.M. Shatz, S. Tu, T. Murata and S. Duri: An Appli
ation of Petri Net Redu
tion for Ada TaskingDeadlo
k Analysis. IEEE Trans. on Par. and Distr. Syst. 7 (12), 1309-1324 (De
ember 1996).[24℄ S.K.Shrivastava, G.N.Dixon and G.D.Parrington: An Overview of the Arjuna Distributed ProgrammingSystem. IEEE Software 8 (1991) 66-73.



CS-TR-706, Dept. of CS, New
astle University 12[25℄ A.J. Wellings, A. Burns. Programming Repli
ated Systems in Ada 95, Computer J. v. 39, N 5, 1996,pp.361-373[26℄ A.J.Wellings and A.Burns: Implementing Atomi
 A
tions in Ada 95, IEEE Transa
tions on SoftwareEngineering 23 (1996) 107-123.[27℄ The Home page of Petri net Tools on the Web: http://www.daimi.aau.dk/~petrinet/tools/[28℄ The Home page of the Design/CPN tool: http://www.daimi.au.dk/designCPN/


