On Developing and Verifying Design Abstractions for Reliable
Concurrent Programming in Ada

A.Burns and A.J.Wellings
Real-Time Systems Research Group
Department of Computer Science
University of York, U.K.

A.M.Koelmans, M.Koutny, A.Romanovsky and A.Yakovlev
Asynchronous Systems Laboratory
Department of Computing Science

University of Newcastle upon Tyne, U.K.

Abstract

Ada 95 is an expressive concurrent programming language, which allows building large multi-
tasking applications. Much of the complexity of these applications stems from the interactions
between the tasks. Design abstractions (such as atomic actions, conversations etc.) have been
proposed to deal with such complexity. This paper argues that Petri nets offer a promising, tool-
supported, technique for checking the logical correctness of abstractions. The paper illustrates
the effectiveness of this approach by showing the correctness of an Ada implementation of the
atomic action protocol using a variety of Petri net tools.

1 Introduction

As high-integrity systems become more sophisticated, the resulting complexity is easier to manage
if the applications are represented as concurrent processes rather than sequential ones. Inevitably,
the introduction of concurrency brings problems of process interaction and coordination. In trying
to solve these problems, language and operating system researchers have introduced new high-level
programming constructs. These design abstractions are often closely related to the specific domain
being addressed. For example, software fault-tolerance has adopted the notion of conversations
[18] and atomic actions [7, 13] to facilitate the safe and reliable communication between group of
processes in the presence of hardware and software failures, in addition to providing a structuring
technique for such systems. Research languages such as Concurrent Pascal have been used as the
basis for experimentation [12], or a set of procedural extensions or object extensions have been
produced. For example, Arjuna uses the latter approach to provide a transaction-based toolkit for
C++ [24]. However, it is now accepted that the procedural and object extensions are unable to cope
with all the subtleties involved in synchronisation and co-operation between several communicating
concurrent processes.

The main disadvantage of domain-specific abstractions is that they seldom make the transition
into general-purpose programming languages or operating systems. For example, no mainstream
language or operating systems supports the notion of a conversation [4]. The result is that all the
hard-earned research experience is not promulgated into industrial use.

If high-level support is not going to be found in mainstream languages, the required functionality

must be programmed with lower-level primitives that are available. For some years now we have
been exploring the use of the Ada programming language as a vehicle for implementing reliable

CS-TR-706, Dept. of CS, Newcastle University 2

concurrent systems [26]. The Ada 95 programming language defines a number of expressive con-
currency features [1]. Used together they represent a powerful toolkit for building higher-level
protocols/design abstractions that have wide application. E.g., [26] showed how Ada 95 can be
used to implement Atomic Actions. As such an abstraction is not directly available in any current
programming language, this represents a significant step in moving these notions into general use.
An examination of this, and other applications, shows that a number of language features are used
in tandem to achieve the required result, namely: tasks, Asynchronous Transfer of Control (ATC),
protected types, requeue, exceptions and controlled types.

The expressive power of the Ada 95 concurrency features is therefore clear. What is not as straight-
forward is how to be confident that the higher-level abstractions produced are indeed correct. As
a number of interactions are asynchronous this presents a significant verification problem. The
idea of verification using Model Checking with a finite state model (FSM) of an Ada program was
first presented in [5]. This method constructed a set of FSMs of individual tasks interacting via
channels, and applied analysis of the interleaving semantics of the product of FSMs using tool Up-
paal (whose underlying formalism is that of CCS). In this paper, we investigate a complementary
approach based on Petri nets and their power to model causality between elementary events or
actions directly. This can be advantageous for asynchronous nature of interactions between tasks.
Petri nets, both ordinary [19] and high level (e.g. coloured nets [11]) offer a wide range of analysis
tools to model and verify the logical correctness according to two crucial kinds of properties: (i)
safety - an incorrect state cannot be entered (from any legal initial state of the system); and (ii)
liveness - a desirable state will be entered (from all legal initial states of the system).

Petri nets have generally been applied to the verification of Ada programs, e.g. [23, 17]. This work
has mostly been focused on the syntactic extraction of Petri nets from Ada code in such a way
that the verification of properties, such as deadlock detection, could be done more efficiently. To
alleviate state space explosion techniques like structural reduction [23] and decomposition [17] of
‘Ada nets’ have been proposed.

Our research aims at developing a set of design abstractions for reliable concurrent programming
in Ada, and at applying Petri nets to model and verify them, using available tools, such as PEP
and Design/CPN [6]. Furthermore, we distinguish between these abstractions and application code
which uses them. However, we propose to deal with the unavoidable complexity of the resulting
programs within a compositional approach employing a versatile library of design abstractions with
well understood and formally verified properties (confidence in the abstraction can be significantly
increased and the development activity itself supported by modelling, simulation and analysis of the
dynamic behaviour of the Petri net model; the behaviour can be analysed either by exploring the
set of reachable states of the net or its partial order semantics, such as the unfolding prefix). The
latter can then be used to tackle the verification of complex designs. Thus, while we are ultimately
interested in efficient model checking too, the main focus of this paper is on the semantic modelling
of salient task interaction mechanisms from Ada 95. To the best of our knowledge, there has been
no attempt of using Petri nets to analyse Ada 95 models of Atomic Actions, particularly with ATC
and exceptions. However, some work on analysing Ada 95 programs (with ATC, protected objects,
and requeue statement) with Petri nets has been recently reported in [10].

This paper is organised as follows. An introduction to model checking based on Petri nets is
given in the next section. We use our existing study of Atomic Actions to illustrate the adopted
procedure. A simple Petri net model is introduced and verified in Section 3. Section 4 discusses
design abstractions to be developed, together with their properties. Conclusions are presented in
Section 5.

2 An Introduction to Model Checking using Petri Nets

Model checking is a technique in which the verification of a system is carried out using a finite
representation of its state space. Basic properties, such as absence of deadlock or satisfaction of a

CS-TR-706, Dept. of CS, Newcastle University 3

state invariant (e.g. mutual exclusion), can be verified by checking individual states. More subtle
properties, such as guarantee of progress, require checking for specific cycles in a graph representing
the states and possible transitions between them. Properties to be checked are typically described
by formulae in a branching time or linear time temporal logic [9].

The main drawback of model checking is that it suffers from the combinatorial explosion problem.
That is, even a relatively small system specification may (and often does) yield a very large state
space which despite being finite requires computational power for its management beyond the
effective capability of available computers. To help cope with the state explosion problem a number
of techniques have been proposed which can roughly be classified as aiming at implicit compact
representation of the full state space of a reactive concurrent system, or at an explicit representation
of a reduced (yet sufficient for a given verification task) state space of the system. Techniques aimed
at reduced representation of state spaces are typically based on the independence (commutativity)
of some actions, which is a characteristic feature of reactive concurrent systems, often relying on
the partial order view of concurrent computation. Briefly, in a sequential system, it is the actual
order of the execution of individual actions which is usually of importance, whereas in a concurrent
system the actual order in which, say, two messages were sent and then received may be irrelevant
to the correctness of the whole system.

Model checking is a technique that requires tool support. For Petri nets, there are many tools of
different maturity available. These tools are categorised according to many parameters [27]. In our
study, we used three relatively mature tools. One is PEP [2], which uses ordinary Place/Transition
nets and a number of model checking methods, such as reachability analysis and unfolding prefix.
The second one is INA (Integrated Net Analyzer) [20]. The third is Design/CPN [28], which is based
on the Coloured Petri nets and has extensive facilities for simulation and occurrence (reachbility)
graph analysis.

3 Model of Simple Atomic Actions

Atomic Actions. An atomic action is a dynamic mechanism for controlling the joint execution
of a group of tasks such that their combined operation appears as an indivisible actions [13].
Essentially, an action is atomic if the tasks performing it can detect no state change except those
performed by themselves, and if they do not reveal their state changes until the action is complete.
Atomic actions can be extended to include forward or backward error recovery. In this section we
will focus only on forward error recovery using exception handling [7]. If an exception occurs in
one of the tasks active in an atomic action then that exception is raised in all processes active in
the action. The exception is said to be asynchronous as it originates from another process.

Atomic Actions in Ada. To show how atomic actions can be programmed in Ada [26], consider
a simple non-nested action between, say, three tasks. The action is encapsulated in a package with
three visible procedures, each of which is called by the appropriate task. It is assumed that no
tasks are aborted and that there are no deserter tasks [12].

package simple_action is

procedure T1(params : param); -- from Task 1
procedure T2(params : param); -- from Task 2
procedure T3(params : param); —-- from Task 3

end simple_action;

The body of the package automatically provides a well-defined boundary, so all that is required
is to provide the indivisibility. A protected object, Controller, can be used for this purpose. The
package’s visible procedures call the appropriate entries and procedures in the protected object.

The body of the package is given below.

CS-TR-706, Dept. of CS, Newcastle University

with Ada.Exceptions; use Ada.Exceptions;
package body action is

type Vote_T is (Commit, Aborted);
protected controller is
entry Wait_Abort(E: out Exception_Id);
entry Done;

entry Cleanup (Vote : Vote_t;

Result : out Vote_t);
procedure Signal_Abort(E: Exception_Id);

private
entry Wait_Cleanup(Vote : Vote_t;
Result : out Vote_t);

Killed : boolean := False;
Releasing_cleanup : Boolean := False;
Releasing_Done : Boolean := False;
Reason : Exception_Id;
Final_Result : Vote_t := Commit;
informed : integer := 0;

end controller;
-- any local protected objects for
-- communication between actions
protected body controller is
entry Wait_Abort(E: out Exception_id)
when killed is

begin
E := Reason;
informed := informed + 1;
if informed = 3 then
Killed := False;
informed := 0;
end if;

end Wait_Abort;

entry Done when Done’Count = 3 or

Releasing_Done is
begin
if Done’Count > O then
Releasing_Done := True;
else
Releasing Done := False;
end if;
end done;

entry Cleanup (Vote: Vote_t;

Result: out Vote_t) when True is
begin

if Vote = aborted then

Final_result := aborted;

end if;

requeue Wait_Cleanup with abort;
end Cleanup;

procedure Signal_Abort(E: Exception_id)
begin
killed := True; reason := E;

end Signal_Abort;

entry Wait_Cleanup (Vote : Vote_t;
Result: out Vote_t)
when Wait_Cleanup’Count = 3 or
Releasing_Cleanup is

begin
Result := Final_Result;
if Wait_Cleanup’Count > O then
Releasing_Cleanup := True;
else
Releasing_Cleanup := False;
Final_Result := Commit;

end if;
end Wait_Cleanup;
end controller;
procedure T1(params: param) is
X : Exception_ID;
Decision : Vote_t;
begin
select
Controller.Wait_Abort(X);
raise_exception(X);
then abort
begin
-- code to implement atomic action
Controller.Done; --signal completion
exception
when E: others =>
Controller.Signal_Abort
(Exception_Identity(E));
end;
end select;

exception
-- if any exception is raised during
-- the action all tasks must participate
-- in the recovery
when E: others =>
Exception_Identity(E) has been
raised in all tasks

handle exception
if handled_ok then
Controller.Cleanup(Commit, Decision);
else
Controller.Cleanup(Aborted, Decision);
end if;
if decision aborted then
raise atomic_action_failure;
end if;
end T1;

param) is ...;
param) is ...;

procedure T2(params :
procedure T3(params :
end action;

CS-TR-706, Dept. of CS, Newcastle University 5

[Enter Action]

'

Executing and
waiting for an abort

'

Abort triggered and Action component
Raising an exception done

'

Exception handled

'

Waiting cleanup

‘ Y

[Exit Action Failed] [Exit Action Normally]

Signal abort ———

Figure 1: Simple state transition diagram illustrating Atomic Action with forward error recovery
for the system with two tasks

Each component of the action (71, T2, and T3) has identical structure. The component executes a
select statement with an abortable part. The triggering event is signalled by the controller protected
object if any component indicates that an exception has been raised and not handled locally in one
of the components. The abortable part contains the actual code of the component. If this code
executes without incident, the controller is informed that this component is ready to commit the
action.

If any exceptions are raised during the abortable part, the controller is informed and the identity
of the exception passed. If the controller has received notification of an unhandled exception, it
releases all tasks waiting on the Wait_Abort triggering event (any task late in arriving will receive
the event immediately it tries to enter into its select statement). The tasks have their abortable
parts aborted (if started), and the exception is raised in each task by the statement after the
entry call to the controller. If the exception is successfully handled by the component, the task
indicates that it is prepared to commit the action. If not, then it indicates that the action must be
aborted. If any task indicates that the action is to be aborted, then all tasks will raise the exception
Atomic_Action_Failure. Figure 1 shows the approach using a simply state transition diagram.

3.1 Modelling the Ada Implementation in P/T nets

We now consider Petri nets for this Ada code. We first look at ordinary P/T nets, i.e. nets without
token typing (colouring). Each of the client tasks will have an identical PN, specialised only in
its labelling of transitions and places. The controller will also be modelled as a single Petri net.
Our graphical support for capturing the Petri nets is a Petri net editor PED [15], which allows
hierarchical and fragmented construction of P/T nets, and their export to an extensive range of
formats including those accepted by analysis tools like PEP and INA. Figure 2 presents the task
model (a) and the controller model (b).

Places and transitions which are not shaded, such as startl and arrl are individual for the task net
(here we show the net for Task 1). Those places and transitions which are shaded are so called (in
PED) logical places and transitions — they are used to interconnect subnets to form larger nets. In
other words, by declaring places or transitions in different subnets as logical in PED, we virtually
merge such places and transitions in the overall net provided that they have the same label, e.g.

CS-TR-706, Dept. of CS, Newcastle University 6

startl
waitAbort
notKilled d
Killed sigAbort Killed sigAbort2
nolntTasks
ntiasks
handlingl c
L ed
sendAbComm voteNotAbort
5 sendComm1
@ voteNotAbort
I 0
voteAbort
doneAll 1]
1 abortAll vdteAbort
2
succes3 i
a ' faill abortAll

restartl2 ¥ doneAll

Figure 2: P/T net models: (a) Task model (b) Controller model

restartll

waitAbort and sigAbortl. Note that the net models use the so called test or read-only arcs (arcs
with a black dot at the transition end), and weighted arcs. The former are used to show the fact
that transitions in the task net can test the state of shared variable, such es e.g. Killed, which is
modelled by two complementary (cannot be simultaneosuly marked with a token) places notKilled
and Killed in the controller net.

Our basic idea of modelling the Ada code for the Atomic Action behaviour with P/T nets is as
follows. We represent states of each task as (unshaded) places and key actions local for the task
as unshaded (solid bars) transitions. Arriving in the Atomic Action by the task is represented by
transition arrl. This also generates a token in the place waitAbort, which belongs to the controller
and counts the number of tasks that have actually entered the Atomic Action. The place labelled
coml corresponds to the state of the task in which the task performs normal computation. From this
state the task may either: (a) execute transition donel and go to the Local Done state of normal
completion of the action (place locDonel), or (b) it may raise an exception by firing transition
sigAbortl (this corresponds to executing the Signal_Abort procedure, which switches the state of
the Killed flag from false to true — a token is toggled from place notKilled to Killed), or (c) it may
be forced to go to the Error-Handling state (place handlingl), either from the Normal Computation
state or from the the Local Done state because of some task’s (even itself) rasing an exception, in
which case transition exceptl2 will be fired.

Subsequent action of the task depends on whether the task ends in the Local Done or in the Error-
Handling state. If the former, the task provides a condition for the controller to fire a shared
transition doneAll (corresponding to the execution of the Done entry by all tasks). If the task is in
the Error-Handling state, it handles the exception and depending on the result of the handling it
votes either for Action Commit or Action Abort.

The voting mechanism used in Atomic Actions allows one task voting for Abort to force the
entire operation into Failure. In our Petri net model, this is achieved by using the following three
transitions sendAbortl, sendComml or sendAbComm1, individual for the task. These transitions are

CS-TR-706, Dept. of CS, Newcastle University 7

connected to two complementary places voteNotAbort and voteAbort in the controller net. Initially,
when the voting begins, a token is assumed to be placed into place voteNotAbort. While none
of the tasks votes for Abort, the token remains in this place, and if the task votes for Commit
(this corresponds of the handling_ok flag being set in the task), transition sendComm1 fires due to
the reading arc from place voteNotAbort. As soon as one of the tasks votes for Abort the token is
switched from it fires transition sendAbortl, which toggles the token from voteNotAbort to voteAbort
in the controller. This corresponds to assigning the state of the global flag Final_result to aborted
in the Cleanup entry. After that, in all tasks, regardless of their individual voting, transition
sendAbComm1 will fire due to the reading arc from place voteAbort.

The voting is complete when the task is in the state where it is ready to check the value of the
decision flag. This corresponds to a token in the votedl place. At this point all tasks synchronise
on firing shared transitions commitAll or abortAll, which are respectively preconditioned by the
controller’s places voteNotAbort and voteAbort. If the former fires it puts a token in the local
successl place, if the latter the local faill is marked. After that the task fires one of the two
possible restart transitions which corresponds to bringing the task to the state where it is ready to
execute the Atomic Action again.

Using the PED tool we constructed the model of the system from the task and controller frag-
ments. Once the appropriate places and transitions are merged the actual behavioural interaction
between task and controller is achieved through the following two main mechanisms: (i) synchro-
nisation on shared transitions, which is similar to rendez-vous (blocking) synchronisation, and (ii)
communication via shared places, which is similar to asynchronous (non-blocking) communication.

3.2 Verification of the P/T-net model

This P/T net model of the Ada code can be exported from PED to analysis tools, such as INA or
PEP. We used PEP, in which we could simulate the token game and perform reachabilty analysis to
verify by Model Checking the key properties of the algorithm. First, if ‘Taskl’ is in place successl
then it must not be possible for any of the other tasks (say 2) to be in fail2. This is presented to
the reachability analysis tool by the following logic statement: successl,fail2. This test gives
the <NO> result, i.e. such a marking in which these two places are marked is not reachable.

Similarly, to the test for reachability of a marking in which both tasks end in success state:
successl,success2. The tool reacts with <YES> and produces:

_SEQUENCE:
arr2,done2,arrl,donel,doneAll

which is a firing sequence leading to the global success state.

When setting the option Calculate all paths to true, the tool produces the following list of firing
sequences:

_SEQUENCE:
arr2,done2,arrl,donel,doneAll
arr2,arrl,done2,donel,donelAll
arrl,arr2,done2,donel,donelAll
This set, however, includes only those paths which go through the locDone states, but not those
which are the result of succcesful handling and overall Commit voting. This is caused by the fact
the system searches for all paths satisfying the shortest length criterion.

arrl,donel,arr2,done2,donelAll
arr2,arrl,donel,done2,doneAll
arrl,arr2,donel,done2,doneAll

The effect of a coherent error handling can be tested by: faill,fail2. This results in:

_SEQUENCE:
arrl,donel,arr2,sigAbort2,except21,sendAbort2,except12,sendAbComml,sync,abortAll
arr2,arrl,donel,sigAbort2,except21,sendAbort2,except12,sendAbComml,sync,abortAll

all together over 600 paths. These assertions imply inconsistency is not possible.

CS-TR-706, Dept. of CS, Newcastle University 8

We have also used tool INA to verify the various behavioural (safety and liveness) properties. The
results of this analysis are:

Safety Properties:
Safe - No Resettable, reversable (to home state) - Yes

Bounded - Yes Dead transitions exist - No

Dead State Reachable - No
Covered by Transition-Invariants - Yes

The computed reachability graph has 76 states.

Live - Yes
Live and Safe - No

The INA tool allows to state properties in the form of CTL (Computational Tree Logic) [8] formulas.
We can formulate properties of interest, such as whether there exists a path which leads to a state
where one task ends in success while the other in fail:

EF((P18 &P21)V(P19 &P20))

Here P18 (P19) stands for successl (success2) and P21(P20) for fail2 (faill). The result of the check
is:

sl sat EF((P18 &P21)V(P19 &P20)): FALSE

Another intersting property would be, whether there is a path that leads to a state in which both
tasks end in success but the flag Killed (place P7 below) has been set to true:

sl sat EF(P7 &(P18 &P19)): FALSE

For comparison, we have tried a modified net model for a task — we omitted a read arc leading to
transition donel which tests flag notKilled. This modification may correspond to allowing the code
for a task to be non-sequential — a task may signal abort and at the same time pass to Local Done
(the effect of inertia or delay in reacting to the abort). Interestingly, such a modification does not
lead to the violation of deadlock-freeness or the property of both tasks ending either in success or
fail. But for the last property above it returns:

sl sat EF(P7 &(P18 &P19)): TRUE

Our preliminary results on using Colured Petri nets for modelling and analysing the Atomic Action
scheme were recently reported in [6].

4 Developing Design Abstractions

In this section we outline abstractions which are important for reliable concurrent programming
in Ada and our reasons for choosing them. Our understanding has been built on analysing the
existing schemes supporting some abstractions. We believe that it is vital to develop a systematic
approach for choosing and developing such abstractions. In particular, this choice has to be driven
by our ability to check the abstractions (this might depend on the Ada features used to develop
them). Other important issues to address are expressing general abstraction properties in the way
in which they can be formally checked and developing guides for applying the abstractions correctly.
Our first experiments with modelling and checking the atomic action abstraction have contributed
to better understanding of these topics [6]. This section discusses some preliminary results of the
on-going research.

Abstraction Overview There has been a considerable body of research on developing reliable
abstractions in Ada (see, for example, [26, 21, 14]. The first stage of our research builds on analyses
of several existing schemes as possible candidates for formalisation and model checking. These
include conversation schemes of different types (e.g. concurrent recovery blocks), different atomic
action schemes (with backward or forward error recovery, action nesting, detecting the entry and
the exit deserters, with or without entry synchronisation), N-version programming with concurrent
version execution [22], replicated systems [25], etc.

CS-TR-706, Dept. of CS, Newcastle University 9

The following step is to come up with a systematic approach for developing such abstractions.
The intention here is to propose a range of schemes which work under different fault assumptions
(including software design faults, environmental faults, transient errors, exceptions raised by the
underlying support, hardware faults) and which are suitable for designing concurrent systems and
applications of different types.

Our further intention is to propose a set of basic abstractions which are useful for developing
both reliable decentralised applications and decentralised controls for the above-mentioned reliable
abstractions such as atomic actions and replicated systems [25]. These can include some of the
following mechanisms: message ordering, broadcast protocols, agreement protocols, group mem-
bership support.

Another important avenue to explore here is the development of new abstractions suitable for
designing real-time Ada systems (e.g. periodic and sporadic tasks, scheduling) and extending the
abstractions discussed above for dealing with time concerns (e.g. by including time constraints).

Principles. In this research we are following several general principles:

- making the schemes implementing the design abstractions as reusable and as general as possible;
- relying on basic building blocks which can be used for designing several abstractions (for example,
features detecting deserter processes are common for conversations, atomic actions and N-version
programming);

- separating the re-usable code from the application code as much as possible.

Special measures have to be taken to make modelling and checking simpler. This can be done by
applying an evolutionary development with developing the right abstractions in the right order. For
example, paper [14] presents a basic distributed atomic action scheme and its several extensions,
which, we believe, are much easier to model and to check when the basic scheme is checked. Model
checking can be facilitated by applying several architectural solutions:

- composability: developing several simple basic abstractions and demonstrating how more complex
ones can be composed;

- separating concerns: developing abstractions which are concerned with different orthogonal prop-
erties related to reliability (and dependability in general). This can make the construction of more
complex abstractions and their verification simpler;

- layering: building new abstractions on the top of existing and verified ones which are designed as
the underlying service layers.

Another important issue to be taken into account is developing a better understanding of how
different Ada constructs can complicate the checking and cause state explosion. This will allow
us to program abstractions which are easier to check. One of the solutions could be to define an
Ada subset (although it is clear for us that the Ravenscar subset [3] is too simple for our needs).
Furthermore, composability might make it difficult to subset. For example, nested ATC blocks add
complexity but it is unlikely that we would want to disallow them.

Some of these principles as well as the intentions outlined in the previous subsection are contradic-
tory and finding a right balance is a very important issue in this research.

Abstraction Properties. To ensure the correctness of an abstraction we should be able to
formulate and check a complete set of its properties (generally speaking, it might be reasonable to
develop a necessary and sufficient set of properties). To avoid any ad hoc approaches we should
rely on rigorous definitions of such abstractions. Their properties are usually defined in terms of
system design and use to help programmers rather than formally. For example, hardware fault
tolerance schemes often rely on the fact that data saved in a stable storage can be recovered after a
crash. To verify the ability of the system to be recovered we should be able to model and to check
that such schemes always save data sufficient for the restart and for guaranteeing the continuous
service. Other examples of such properties are: atomicity and isolation of atomic actions (absence of

CS-TR-706, Dept. of CS, Newcastle University 10

information exchange with the outside world), absence of the deserter processes in conversations,
all-or-nothing effect of actions, mutual exclusion of the access to shared, correct action nesting.
These properties should be modelled in a formal way suitable for checking the correctness of the
abstractions. Developing systematic approaches for describing and formalising a complete set of
properties for each abstraction is the only general way for ensuring their correctness.

Guides. After the correctness of the design abstractions has been demonstrated, the programmers
can apply them for system design. Unfortunately this can be an error prone process because it
is not supported by the compiler or run-time checks and because the correctness of the design
abstractions does not mean that they are always applied correctly. Although some schemes may
perform several run-time checks, it is usually not practical to develop and to use schemes which are
able to detect and tolerate all possible types of misuse. This is why all schemes supporting design
abstractions of interest assume that there are some rules and restrictions on using them and that
the programmers follow them. This shows the importance of developing guides explaining how to
apply design abstractions implemented as the concrete Ada schemes. These guides will include
templates and a set of conventions for programmers. They are to be prepared by system or fault
tolerance programmers. For example, it is nearly impossible to prove or to guarantee in the run
time that a set of Ada tasks inside an atomic action do not exchange information with the outside
world. The only practical solution is to describe how this can be achieved in a programmers’ guide.

In addition it might be possible to develop some supplementary tools which work with the designed
Ada code (maybe with some annotations included as comments) to check that such rules have been
followed while applying the design abstractions. In this case the guides can be applied together
with such tools.

5 Conclusion

This paper is only a preliminary attempt in pursuing our chosen direction of research, in which we
would like to develop a more comprehensive methodology for verifying high-integrity systems built
of Atomic Actions and implemented in Ada 95.

The major new aspects of this work, which also reveal the potentially exploitable advantages of
the Petri net approach over the State Machine one [5], are: (i) refinement of both states and
transitions; (ii) analysis of behaviour at the true concurrency and causality level; (iii) high-level
aspects of modelling, such as parametrisation, are possible using high-level Petri nets.

For example, if refinement with threads (e.g., task spawning), recursive atomic actions, etc. were
possible in the modelled systems, then Petri nets would provide a much more efficient way of
modelling than state machines. We have only shown the way of modelling interaction mechanisms
at the semantical level. Part of the intended future work would be to adopt the existing or develop
new methods of extracting Petri nets from the Ada 95 syntax.

We have outlined the important aspect of the development of new design abstractions, which must
be more amenable to model checking in general and use of Petri nets in particular. We have also
identified a way for formulating properties of these abstractions to be checked, and proposed an
approach to develop practical guidelines for applying the abstractions in real designs.

References

[1] Ada 95: Information technology - Programming languages - Ada. Language and Standard Libraries.
ISO/IEC 8652:1995(E), Intermetrics, Inc., 1995.

[2] E.Best and B.Grahlmann: PEP - more than a Petri Net Tool. Proc. of Tools and Algorithms for
the Construction and Analysis of Systems, 2nd Int. Workshop, TACAS’96, Passau, March 1996, T.
Margaria, B. Steffen (eds), LNCS 1055, Springer-Verlag (1996) 397-401.

CS-TR-706, Dept. of CS, Newcastle University 11

3]
[4]

[5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]

[21]

[22]

[23]

[24]

A. Burns. The Ravenscar Profile. Ada Letters, v. XIX, N 4, 1999, pp.49-52.

A .Burns and A.J.Wellings: Real-Time Systems and Programming Languages (2nd ed.) Addison Wesley
(1996).

A.Burns and A.J.Wellings: How to Verify Concurrent Ada Programs - The Application of Model
Checking. Ada Letters, Volume XIX, Number 2 (1999) 78-83.

A. Burns, A.J. Wellings, F. Burns, A.M. Koelmans, M. Koutny, A. Romanovsky, A. Yakovlev. Towards
Modelling and Verification of Concurrent Ada Programs Using Petri Nets. Accepted for Int. Work. on
Soft. Eng. and Petri nets (SEPN’2000), to be held within the 22nd Int. Conf. on Appl. and Theory of
Petri Nets (PN’2000), June 2000, Aarhus, Denmark.

R.H.Campbell and B.Randell: Error Recovery in Asynchronous Systems. IEEE Transactions on Soft-
ware Engineering SE-12 (1986) 811-826.

E.M.Clarke and E.A. Emerson: Synthesis of synchronization skeletons for branching time temporal
logic. In Dexter Kozen, editor, Logic of Programs: Workshop, LNCS, vol. 131, Springer-Verlag, 1981.

E.M.Clarke and J.Wing: Formal Methods: State of the Art and Future Directions. Report, Carnegie
Mellon University (June 1996).

R.K. Gedela and S.M. Shatz. Modeling of advanced tasking in Ada-95: a Petri net perspective. Proc.
2-nd Int. Workshop on Software Engineering for Parallel and Distributed Systems (PDSE’97), Boston,
MA, pp. 4-14 (May 1997).

K.Jensen:Coloured Petri Nets. Basic Concepts. EATCS Monographs on Theor. Comp. Sci. (1992).

K.H.Kim: Approaches to Mechanization of the Conversation Scheme Based on Monitors. IEEE Trans-
actions on Software Engineering SE-8 (1982) 189-197.

D.B.Lomet: Process Structuring, Synchronisation and Recovery using Atomic Actions. Proc. of ACM
Conference Language Design for Reliable Software. SIGPLAN (1977) 128-137.

S.E. Mitchell, A.J. Wellings, A. Romanovsky. Distributed Atomic Actions in Ada 95. Computer J., v.
41, N 7, 1998, pp.486-502.

PED. http://www-dssz.Informatik.TU-Cottbus.DE/ wwwdssz/ — the home page of PED (a Hier-
achical Petri Net Editor).

PEP. http://www.informatik.uni-hildesheim.de/~pep/HomePage.html — the home page of PEP
(a Programming Environment Based of Petri Nets).

M. Pezze, R.N. Taylor and M. Young: Graph Models for Reachability Analysis of Concurrent Programs.
ACM Transactions on Software Engineering and Methodology 4/2 (April 1995) 171-213.

B. Randell: System Structure for Software Fault Tolerance. IEEE Trans. Soft. Eng. 1(2) 220-232 (1975).
W.Reisig: Petri Nets. An Introduction. EATCS Monogr. on Theor. Comp. Sci., Springer-Verlag (1985).

S. Roch and P.H. Starke: INA: Integrated Net Analyzer, Version 2.2, Manual Humboldt-Univeritit zu
Berlin, Instutut fiir Informatik, April 1999.

A. Romanovsky. A Study of Atomic Action Schemes Intended for Standard Ada. J. of Systems and
Software, v. 43, 1998, pp.29-44.

A. Romanovsky. Class Diversity Support in Object-Oriented Languages. J. of Systems and Software.
v. 48, 1999, pp.43-57.

S.M. Shatz, S. Tu, T. Murata and S. Duri: An Application of Petri Net Reduction for Ada Tasking
Deadlock Analysis. IEEE Trans. on Par. and Distr. Syst. 7 (12), 1309-1324 (December 1996).

S.K.Shrivastava, G.N.Dixon and G.D.Parrington: An Overview of the Arjuna Distributed Programming
System. IEEE Software 8 (1991) 66-73.

CS-TR-706, Dept. of CS, Newcastle University 12

[25] A.J. Wellings, A. Burns. Programming Replicated Systems in Ada 95, Computer J. v. 39, N 5, 1996,
pp-361-373

[26] A.J.Wellings and A.Burns: Implementing Atomic Actions in Ada 95, IEEE Transactions on Software
Engineering 23 (1996) 107-123.

[27] The Home page of Petri net Tools on the Web: http://www.daimi.aau.dk/“petrinet/tools/

[28] The Home page of the Design/CPN tool: http://www.daimi.au.dk/designCPN/

