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Abstract 

 
Genome comparison and analysis can reveal the 

structures and functions of genome sequences of 
different species. As more genomes are sequenced, 
genomic data sources are increasing in size and 
availability such that their analysis is beyond the 
processing capabilities of most research institutes. The 
Grid is a powerful solution to support large-scale 
genomic data processing and genome analysis. This 
paper presents the Microbase project that is 
developing a Grid-based system for genome 
comparison and analysis, and discusses the first 
implementation of the system (called MicrobaseLite). 
MicrobaseLite uses a scalable computing environment 
to support computationally intensive microbial genome 
comparison and analysis, employing state-of-the-art 
technologies of Web Services, notification, 
comparative genomics and parallel computing. 
Microbase will support not only system-defined 
genome comparison and analysis but also user-
defined, remotely conceived genome analysis.  
 
1. Introduction 
 

Genome sequences provide abundant information 
about species from microorganisms to human beings. 
The comparison and analysis of genome sequences 
(including nucleotides and proteins) allows us to 
investigate genome structure and make predictions 
about the functions and activities of organisms [1]. 
Genome analysis can enhance our understanding of 
life science, and the discoveries in genome analysis 
can drive advances in medicine, agriculture and other 
sciences and technologies.  

One application of genome comparison and analysis 
is in the design of therapeutic drugs. For example, say 
a new bacterium is found to cause a severe disease in 
humans. Scientists can experimentally determine the 

genome sequence of the bacterium. As proteins 
determine the functions and activities of an organism, 
the protein sequences of the new bacterial genome can 
be compared against the databases of all known 
bacterial genomes and even higher mammals’ genomes 
to find the relationship between the new genome and 
the known genomes. This comparative analysis can 
identify proteins unique to the new bacterium that may 
be the target for the design of new antibacterial drugs 
[2].  

In such an application, large genome databases will 
need to be searched and extensive comparison and 
analyses performed. To date, large genome databases 
have been established to accommodate genome data 
for public use such as EMBL (European Molecular 
Biology Laboratory) database [3], GenBank [4] , 
UniProt (Universal Protein Resource)/Swiss-Prot [5], 
PDB (Protein Data Bank) [6], and PIR (Protein 
Information Resource) [7]. Genome databases are 
experiencing rapid expansion as the rate of complete 
genome sequencing is continually increasing. This 
advancement presents a growing need for effective 
storage and querying approaches to the genome data.  

With the accumulation of genome data, genome 
comparison and analysis has become a data-intensive 
and compute-intensive task. Many tools have been 
developed to perform genome comparison and analysis 
in different ways. The BLAST programs [8] are widely 
used tools for searching protein and nucleotide (DNA) 
databases to identify sequence similarities by 
performing local alignment between a query sequence 
and each of the sequences in a database. The BLAST 
family includes a number of variants. For example, 
BLASTP is a standard protein-protein comparison 
tool; BLASTN is for nucleotide-nucleotide 
comparison; BLASTX translates a nucleotide sequence 
to proteins that are compared against a protein 
database, and PSI-BLAST can find very distantly 
related proteins by a two-round protein-protein 



comparison. MUMmer [9] is a fast comparison tool 
that can rapidly align two large nucleotide sequences 
using a suffix-tree based algorithm. PROmer is a 
variant of MUMmer that generates the protein-level 
alignment for two nucleotide sequences based on the 
translation of nucleotide sequence to proteins. Ssearch 
[10] is a rigorous comparison program for global 
similarity between a database of sequences and a query 
sequence using the Smith-Waterman method [11] 
which is an extremely time-consuming algorithm.  

These recent developments in biology and 
bioinformatics present a considerable challenge to the 
efficient management of genomic data sources and the 
high-performance systems for genome analysis. Grid 
computing has been proposed as a potential solution to 
these requirements [12-14]. The Grid can be used to 
integrate genome data sources and computing 
resources to build integrated genome databases and 
powerful computing platforms for genomic data 
processing, in particular for genome analysis and 
comparative genomics. As the Grid is a new 
technology for genome analysis, only a limited number 
of projects have been reported in this field.  

The Microbase project aims to develop a Grid-
based system to support large-scale genome 
comparison and analysis, in response to the influx of 
new genomes, by harnessing the data resources and 
computing resources on the Grid. As the first prototype 
developed by the project, MicrobaseLite provides a 
pre-computed dataset of all-against-all microbial 
genome comparisons generated by a suite of genome 
comparison tools, and creates a scalable computing 
environment to perform computationally intensive 
genome comparison and analysis. Based on the pre-
computed dataset, extensive genome analysis can be 
conducted, for example, to discover the homologues 
(including orthologues and paralogues) of the genes. 
The pre-computed dataset is dynamically integrated 
with an authoritative genome data source, the EMBL 
database [3]. When new genomes are published there, 
a Web Services based notification mechanism is used 
by MicrobaseLite to automatically import the new 
genome data and compare the new genomes against all 
existing genomes, to update the pre-computed dataset. 
A task scheduler has been developed that assigns this 
large number of genome comparison jobs to run on 
Grid resources to accelerate the execution process. 
MicrobaseLite acts as a prototype for gathering further 
requirements from biology and bioinformatics 
community to improve the design and implementation 
of the complete Microbase system. 

The analysis of the large volume of genome data 
usually exceeds the computing resources in individual 
research institutes. The Microbase project will 

ultimately provide a Web Services interface for 
external clients to submit user-defined, remotely 
conceived genome analyses that can access and use the 
pre-computed dataset. It will accept and run the user-
submitted algorithms on Grid resources on behalf of 
the clients.  

The Microbase project also concerns the Grid-based 
approaches to interpret the genome comparison results 
in the context of a range of relevant biological 
principles including gene expression, protein function, 
metabolic pathways, and taxonomy. An object-based 
tool OGRE is being designed to represent and analyse 
genome rearrangement features in a formally defined 
ontology.  

 The rest of this paper is organised as follows. 
Section 2 introduces the related work. Section 3 
describes the MicrobaseLite architecture. Section 4 
discusses the implementation and performance of 
MicrobaseLite. Section 5 presents a use case, and 
Section 6 gives the conclusions and future work. 
 
2. Related Work 
 

Grid-based technologies are on the frontier of 
comparative genome analysis, although a number of 
projects have been undertaken in large research 
centres. 

PUMA [15] is an integrated computational 
framework developed by the computational biology 
group of Argonne National Laboratory. It uses Grid 
technology to support high-throughput analysis of 
genomes for comparative and evolutionary analysis of 
metabolic processes on various levels of biological 
organisation in the context of phenotypic and 
taxonomic information derived from authoritative 
sources.  

The TIGR Grid project [16] provides an in-house 
repository of protein and nucleotide data made 
available by major genome data repositories such as 
GenBank, PIR, and Swiss-Prot. In order to create non-
redundant protein databases for annotation (i.e., 
identifying the features of a genome sequence), TIGR 
performs an all-against-all search on all proteins from 
these sources to create clusters of similar proteins. The 
data set of proteins is partitioned into multiple subsets 
and runs BLAST searches in parallel on an in-house 
Grid using Condor [17].  

GADU (Genome Analysis and Database Update 
tool) [18] is a collaborative project between the Globus 
project and the Argonne bioinformatics group that  has 
developed an automated, high-performance, scalable 
computational pipeline for data acquisition and 



analysis of newly sequenced genomes, based on DOE 
Science Grid backend [19].  

GPSA (Grid Protein Sequence Analysis) [20] 
provides a web portal that allows users to submit 
protein sequences for homology searches. Users can 
select among BLAST, FASTA [10] or other tools to 
run the search. GPSA will dispatch the tool to run on 
the Grid infrastructure provided by the EGEE 
(Enabling Grids for E-science in Europe) project [21] 
to search the homologous sequences against certain 
databases. 

Compared to this related work, MicrobaseLite 
features a pre-computed dataset generated by a suite of 
genome comparison tools, that reveal the similarities of 
genome sequences at different levels. This dataset 
allows users to efficiently conduct further genome 
analyses without the need to regenerate the vast 
volume of data. MicrobaseLite also provides a 
notification service for automatic dataset update. 
Furthermore, the Microbase project will be unique 
with its support for users to submit their own genome 
analysis computations. It will accept user-defined 
algorithms through a Web Services interface to be 
executed using its pre-computed dataset and Grid 
resources, enabling biologists to conduct extensive 
genome analysis using customised algorithms.  
 
3. MicrobaseLite Architecture 
 

MicrobaseLite is composed of distinct components 
deployed at the server side or client side. The 
components interoperate through Web Services 
interfaces and their operation is orchestrated through a 
Web Service-based notification mechanism.  
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Figure 1. The MicrobaseLite architecture 

 
As Figure 1 shows, the server-side components 

include the Microbial Genome Pool, the Genome 
Comparison Pool, the Notification Service, and the 
OGRE tool (discussed below). Web Services interfaces 

are provided by each component to support 
interoperability between the components and provide 
services to clients. The client-side component is the 
Client Application Interface. There is also an 
administrator component for system administration 
purpose.  
 
3.1. Microbial Genome Pool 
 

The Microbial Genome Pool (or the genome pool) 
shown in Figure 2 provides a local database of 
complete microbial genome sequences. The genome 
pool collects the microbial genomes published at an 
authoritative genome data source (at present, the 
EMBL database). Genome data is stored in the local 
microbial genome database and used as the data source 
for the genome comparisons performed in the Genome 
Comparison Pool (see Section 3.2).  

The local database is automatically updated when 
new genomes are published in the EMBL database. 
The update is activated by the Notification Service 
which will be discussed in Section 3.4. When a new 
genome is published, the Notification Service sends a 
notification message to the genome loader. The 
notification initiates the genome loader to download 
the new genome file from that site, and then parses and 
loads the genome sequence into the local database. The 
genome pool also sends a notification to subscribed 
clients to announce the new genome sequence.  
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Figure 2. The Microbial Genome Pool 

 
The Web Services API of the genome pool allows 

remote users to access the microbial genome database. 
Users can flexibly query the nucleotide and protein 
sequence information as well as the annotations and 
features of the genomes.  
 
3.2. Genome Comparison Pool 
 

The Genome Comparison Pool (or the comparison 
pool) shown in Figure 3 is a core component. It 
performs all-against-all comparisons for the genomes 
loaded in the Microbial Genome Pool, and populates 



the comparison results into the comparison database as 
the pre-computed dataset. The all-against-all genome 
comparison is performed using a suite of tools 
including BLASTP, BLASTN, MUMmer, PROmer 
and Ssearch to identify the similarities of the genomes 
at different levels. MSPcrunch [22] is also used as the 
post-processing for the BLASTN results to filter the 
most relevant data. The comparison database provides 
the pre-computed genome comparison dataset for users 
to browser the similarities of the genomes and to 
perform further genome analysis.  
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Figure 3. The Genome Comparison Pool 

 
The all-against-all genome comparison generates a 

large number of computations. The Microbial Genome 
Pool currently has 165 genomes loaded in the local 
database, 137 of which are bacterial genomes. The 
length of a bacterial genome sequence is typically in 
the order of 106 bps (nucleotide base pairs) and 103 
proteins; each protein is approximately 200-400 amino 
acids long. In total, 163,350 (=165×165×6) 
comparisons need to be performed for these genomes 
with the six tools. The majority of the comparisons are 
computationally intensive, particularly for BLASTP 
and Ssearch. For example, the BLASTP comparison 
between two bacteria: Bacillus cereus and Bacillus 
anthracis, requires two input files of 1.5MB each and 
produces 95MB output data. The comparison takes 12 
minutes on a 2.8GHz Intel Xeon processor. 
Consequently, the overall execution of the all-against-
all comparison is extremely time-consuming. Hence, 
Grid resources are needed to run the comparisons 
simultaneously. A task scheduler has been developed 
to support the parallel execution of the comparisons on 
the Grid or on a cluster of computers. Section 3.3 will 
discuss the task scheduler in detail. 

The comparison pool provides a parser for each of 
the comparison tools to analyse the comparison output 
produced by the tool. When a comparison is 
completed, a corresponding parser is invoked to extract 
the required data from the raw output. The comparison 
database is then populated with the extracted data to 
form the pre-computed dataset for further use. 

The Web Services API of the comparison pool 
allows external users to access the pre-computed 
dataset, for example, retrieving the protein similarities 
between two genomes generated by the BLASTP 
result. In next stage of the project, the Web Services 
API will be enhanced to allow users to submit user-
defined genome analysis algorithms that operate on the 
pre-computed dataset. The task scheduler will manage 
the execution of the algorithms. The results will be 
returned to the users through the Web Services 
interface. User-defined algorithms will be archived in 
the algorithm and tool base for reuse. A use case will 
be discussed in Section 5 that identifies COGs (clusters 
of orthologous groups) of proteins using the pre-
computed BLASTP results.  
 
3.3. Task Scheduler 
 

In the comparison pool, a task scheduler has been 
developed to support the parallel execution of the 
comparison jobs on a networked system such as a 
cluster of computers or the Grid. The task scheduler 
calls a general-purpose job management middleware, 
e.g. N1 Grid Engine (formerly Sun Grid Engine) [23], 
to submit the comparison jobs for execution. A 
comparison job is submitted by calling the job 
submission command of the middleware. The latter in 
turn allocates a computer node to run the job. A 
genome comparison job includes the following 
operations: retrieving the genome sequences from local 
database; running a tool to compare the sequences; 
invoking a parser to analyse the comparison results; 
and loading the result into the comparison database. 
Figure 4 shows the framework of the task scheduler. 
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Figure 4. The task scheduler 

 
The task scheduler coordinates the whole execution 

procedure of all jobs. As hundreds of thousands 



comparison jobs can be created, the task scheduler 
applies a threshold control to job submission in order 
to prevent submitted jobs from overwhelming the 
system. Under the threshold control, the total number 
of running jobs will not exceed the capacity of the 
available computer nodes. The task scheduler 
continually checks the states of the running jobs. Once 
a job has completed, the task scheduler immediately 
submits a new job to be executed. The task scheduler 
will terminate the whole comparison procedure when 
all jobs have completed. 

The execution time of a genome comparison 
depends on the length of the sequences and the 
complexity of a comparison algorithm. The time varies 
significantly between different comparisons. As 
presented in Section 3.2, the BLASTP comparison of 
Bacillus cereus and Bacillus anthracis takes 12 
minutes, whereas the MUMmer comparison for the 
same sequences takes only 22 seconds. Along with the 
underlying job management middleware, the task 
scheduler can maintain the asynchronous execution of 
the comparison jobs which have different execution 
times. Subsequent jobs are gradually submitted for 
execution in accordance with the completion of 
preceding jobs. Hence, the workload of the 
comparisons can be dynamically distributed to the 
computer nodes and the overall execution time of all-
against-all genome comparison can be minimized.  
 
3.4. Notification Service 
 

The Notification Service in MicrobaseLite is 
implemented using the myGrid notification system [24]. 
The myGrid notification is a Web Service based system 
for event notification that supports topic-based 
publisher and subscriber messaging, push and pull 
notification model, and asynchronous delivery. Clients 
can subscribe to receive notification messages on a 
registered topic. A client can be a user or a software 
component. The push model delivers a notification by 
calling back to client code deployed as a Web Service 
at the client side, or sending an email to a registered 
address. MicrobaseLite uses the push model with client 
code call-back to notify users of the availability of a 
new genome - the Microbial Genome Pool uses this 
notification to update the local genome database. There 
is a probe deployed to periodically check the EMBL 
database. When a new microbial genome is published 
there, the probe will push a notification message to the 
genome loader of the genome pool. The notification 
triggers the genome loader to download the new 
genome file and store the genome sequence into the 
local database after parsing. The genome pool can also 
notify the comparison pool to activate the task 

scheduler to start the comparison of the new genome 
against all previously loaded genomes in the local 
database and hence to update the pre-computed 
dataset. The Notification Service also allows external 
clients to subscribe to the notification of new genome. 
A notification message will thus be sent to the clients 
when MicrobaseLite has loaded a new genome.  
 
3.5. OGRE 
 

A further novel component provided by the 
Microbase system is a research tool called OGRE 
(Object based Genome REarrangements). Genome 
rearrangements such as insertions, deletions, and 
inversions can be visualised by existing tools [25, 26]. 
OGRE intends to develop a formally defined set of 
terms relating to genome rearrangement in the form of 
ontology. Formal definitions can be rigorously 
checked to ensure that they are logically consistent. 
The aim of OGRE is to use these definitions as a basis 
on which to develop an object-oriented data model and 
algorithms for the comparison and analysis of genome 
sequences. OGRE is a sister project to Microbase, but 
will be fully integrated; OGRE will provide a service 
interface to facilitate integration with MicrobaseLite or 
other tools. The ontology used to describe genome 
rearrangements is currently under development, and 
there is a working prototype capable of detecting some 
simple features.  
 
3.6. Client Application Interface 
 

The Client Application Interface is built on the Web 
Services APIs of the server-side components for 
remote users to easily access the pre-computed dataset 
and associated information provided by MicrobaseLite. 
The client interface provides users with an integrated 
view of the data stored in different components, such 
as the pre-computed dataset in the Genome 
Comparison Pool and the genome sequences in the 
Microbial Genome Pool, and supports the cross-
reference of related data. The interface allows users to 
submit queries to MicrobaseLite by specifying the 
parameters of query and reference genomes, which 
comparison tool to use and the range of comparison 
results, for example, the BLASTN result between two 
genomes. The interface calls the Web Services APIs to 
retrieve the required data from the databases in 
MicrobaseLite and returns the data to the users which 
can be displayed in graphic or textual format 
depending on the type of information to be shown. The 
interface also provides the cross-references of a query 
by which users can find further information associated 



to the query such as the detailed description of the 
compared genome sequences, the description of a 
comparison tool and the hyperlinks to related genome 
databases. As future work, the client interface will 
allow users to submit their own comparisons for 
execution and receive the results.   
 
4. MicrobaseLite Implementation 
 

MicrobaseLite has implemented the components 
discussed in Section 3. The Microbial Genome Pool 
takes the genome data in EMBL files from the EMBL 
database. It uses BioJava API [27] to parse the EMBL 
files and load the genome sequences into the microbial 
genome database that is a PostgreSQL database with 
the BioSQL schema [27]. The Web Services API is 
implemented using Apache Tomcat and Axis. 

At present, the Genome Comparison Pool runs the 
comparison jobs on a cluster of dual-processor 
computers. The task scheduler is based on N1 Grid 
Engine which is middleware that can build and manage 
Grid resources and allows users to access the Grid. 
With the support of the N1 Grid Engine or other Grid 
middleware, we plan to extend the computing system 
to the Grid. The pre-computed comparison dataset is 
stored in a MySQL database. The all-against-all 
comparison has been performed amongst the 165 
genomes, and a 16GB dataset of comparison results 
has been generated.  

The Client Application Interface is implemented as 
graphical user interface (GUI) that calls the Web 
Services APIs of the server-side components. Users 
can query the data provided by MicrobaseLite through 
this interface. Firstly, the interface presents users with 
a selection panel that displays a complete list of 
reference and query genomes and comparison tools 
available in MicrobaseLite. Users can query any 
genome comparison result by selecting a pair of 
reference and query genomes and choosing a tool in 
the list. The query is then sent to MicrobaseLite, and 
the required data is retrieved from the pre-computed 
dataset and returned to the client side via the Web 
Services API. The result of the query is displayed to 
the users in the graphical browser as shown in Figure 
5, which depicts the BLASTN result between two 
genomes. The graph shows the similarities between the 
nucleotide sequences and uses arrows to highlight the 
genes that encode genome features including proteins, 
tRNA, mRNA, etc. Users can flexibly zoom in the 
graph to view the details of the sequences by sliding 
the resolution scale on the right side. Users can also 
click on the arrows to get the cross-references of 
detailed information of the features. 

 

 
Figure 5. The client application interface for 
genome comparison results  
 

MicrobaseLite is available for external use. A 
description of the service APIs can be found at 
http://vindaloo.ncl.ac.uk:8090/microbase/index.html.  
 
4.1. Performance 
 

The performance test of MicrobaseLite is focused 
on the scalability of the system in supporting large-
scale genome comparison. The scalability is tested by 
running all-against-all comparisons on a cluster of 
computer nodes; each node contains dual 2.8GHz 
Xeon processors. The N1 Grid Engine is installed on 
the cluster. In the test, all-against-all comparison is 
executed amongst a group of genomes selected from 
the local database, using five tools (BLASTP, 
BLASTN, MSPcrunch, MUMmer and PROmer). As 
Ssearch is an extremely slow program, it will be 
separately executed later. The task scheduler manages 
the parallel execution of the comparison jobs.  
 
Table 1. Execution times of all-against-all 
genome comparison (minutes) 

       Processors 
 
Genomes 

1 10 20 30 40 

10 genomes 978.0 103.0 57.7 48.5 37.3 
20 genomes 2387.7 251.5 147.0 116.1 94.5 
30 genomes 5064.5 533.5 295.7 226.2 178.5 

 
Scalability is assessed by the execution time and 

speedup obtained in running the all-against-all 
comparison on different numbers of genomes and 
different number of processors. Table 1 shows the 
execution times of these comparisons which include 
both the execution time of the tools and the time of 
data loading and analysis. Figure 6 shows the speedup 
achieved.  
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Figure 6. Speedup of all-against-all genome 
comparison 
 

The test shows that useful speedup can be achieved 
when employing more processors to run the 
comparisons. The best speedup appears in the case of 
the largest dataset, 30 genomes. The performance 
verifies that MicrobaseLite has demonstrated 
satisfactory scalability in running all-against-all 
genome comparison with the support of the task 
scheduler. The all-against-all comparison between 165 
genomes using the five tools has also been tested on 40 
processors. The entire execution time was 68 hours. 
This is an encouraging time scale for such a large-scale 
comparison. Considering the Grid computing support 
provided by the underlying N1 Grid Engine, better 
performance can be expected when the computing 
environment is extended to utilise Grid resources.  
 
5. Use Case 
 

The pre-computed dataset of MicrobaseLite has 
been used to search for COGs (clusters of orthologous 
groups) in proteins. The relationships of the proteins 
from different genomes can be classified by the 
homologues (i.e. the similarities) including orthologues 
and paralogues. Paralogues are homologous proteins in 
a same genome. Orthologues are homologous proteins 
in different genomes that evolved from a common 
ancestral gene. Orthologues often retain the same 
function in the process of evolution. The identification 
of orthologues is an important methodology for the 
prediction of the functions of a protein or a group of 
proteins, in particular for newly sequenced genomes 
[28]. The orthologues and paralogues can be identified 
based on the similarities of the proteins found by 
genome comparison.  

We use the COG construction algorithm proposed 
by the COG database project [28-30] to identify COGs 
using the BLASTP results provided by the pre-
computed dataset. The best hits, that is the most similar 

proteins, are extracted from the BLASTP results based 
on the similarity score. The COGs can be identified 
from the best hits. The algorithm has identified 8945 
COGs which consist of 24832 different proteins 
among the 165 genomes in MicrobaseLite. At the same 
time, the algorithm has found 8045 paralogue groups 
that include 18583 different proteins. These results can 
be used to reveal the evolutionary relationships of the 
proteins in the genomes.  
 
6. Conclusions 
 

The Microbase project will exploit a Grid-based 
environment to support both biologists and 
bioinformaticians in carrying out comprehensive 
genome comparison and analysis. The MicrobaseLite 
prototype system has provided a pre-computed dataset 
of microbial genome comparisons integrated with the 
service-based API to access it. The ultimate goal of 
Microbase is to provide a remotely accessible system 
to perform user-defined genome analysis. The future 
work will concentrate on two issues. First, the 
Microbase system will implement seamless integration 
with Grid resources to meet the computational and data 
requirements of analysing an almost exponential influx 
of new genomes. Second, Microbase will support user-
defined, remotely conceived genome analysis. For this 
purpose, a workflow framework is a promising model 
to enable users to define, submit, and enact genome 
analysis algorithms. The Taverna project supports 
Grid-based workflows [31] that potentially provides 
useful mechanisms to implement the user workflow 
submission and enactment in the Microbase system.  
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