
School of Computing Science,
University of Newcastle upon Tyne

A Grid-based System for Microbial
Genome Comparison and Analysis

Sun Y., Wipat A., Pocock M., Lee P., Watson P.,
Flanagan K. and Worthington J.

Technical Report Series

CS-TR-881

December 2004

Copyright c©2004 University of Newcastle upon Tyne
Published by the University of Newcastle upon Tyne,

School of Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, UK.

A Grid-based System for Microbial Genome Comparison and Analysis

Yudong Sun, Anil Wipat, Matthew Pocock, Pete A. Lee, Paul Watson, Keith Flanagan and
James T. Worthington

School of Computing Science, University of Newcastle upon Tyne, UK
{Yudong.Sun, Anil.Wipat, Matthew.Pocock, P.A.Lee, Paul.Watson, Keith.Flanagan,

j.t.worthington}@ncl.ac.uk

Abstract

Genome comparison and analysis can reveal the

structures and functions of genome sequences of
different species. As more genomes are sequenced,
genomic data sources are increasing in size and
availability such that their analysis is beyond the
processing capabilities of most research institutes. The
Grid is a powerful solution to support large-scale
genomic data processing and genome analysis. This
paper presents the Microbase project that is
developing a Grid-based system for genome
comparison and analysis, and discusses the first
implementation of the system (called MicrobaseLite).
MicrobaseLite uses a scalable computing environment
to support computationally intensive microbial genome
comparison and analysis, employing state-of-the-art
technologies of Web Services, notification,
comparative genomics and parallel computing.
Microbase will support not only system-defined
genome comparison and analysis but also user-
defined, remotely conceived genome analysis.

1. Introduction

Genome sequences provide abundant information
about species from microorganisms to human beings.
The comparison and analysis of genome sequences
(including nucleotides and proteins) allows us to
investigate genome structure and make predictions
about the functions and activities of organisms [1].
Genome analysis can enhance our understanding of
life science, and the discoveries in genome analysis
can drive advances in medicine, agriculture and other
sciences and technologies.

One application of genome comparison and analysis
is in the design of therapeutic drugs. For example, say
a new bacterium is found to cause a severe disease in
humans. Scientists can experimentally determine the

genome sequence of the bacterium. As proteins
determine the functions and activities of an organism,
the protein sequences of the new bacterial genome can
be compared against the databases of all known
bacterial genomes and even higher mammals’ genomes
to find the relationship between the new genome and
the known genomes. This comparative analysis can
identify proteins unique to the new bacterium that may
be the target for the design of new antibacterial drugs
[2].

In such an application, large genome databases will
need to be searched and extensive comparison and
analyses performed. To date, large genome databases
have been established to accommodate genome data
for public use such as EMBL (European Molecular
Biology Laboratory) database [3], GenBank [4] ,
UniProt (Universal Protein Resource)/Swiss-Prot [5],
PDB (Protein Data Bank) [6], and PIR (Protein
Information Resource) [7]. Genome databases are
experiencing rapid expansion as the rate of complete
genome sequencing is continually increasing. This
advancement presents a growing need for effective
storage and querying approaches to the genome data.

With the accumulation of genome data, genome
comparison and analysis has become a data-intensive
and compute-intensive task. Many tools have been
developed to perform genome comparison and analysis
in different ways. The BLAST programs [8] are widely
used tools for searching protein and nucleotide (DNA)
databases to identify sequence similarities by
performing local alignment between a query sequence
and each of the sequences in a database. The BLAST
family includes a number of variants. For example,
BLASTP is a standard protein-protein comparison
tool; BLASTN is for nucleotide-nucleotide
comparison; BLASTX translates a nucleotide sequence
to proteins that are compared against a protein
database, and PSI-BLAST can find very distantly
related proteins by a two-round protein-protein

comparison. MUMmer [9] is a fast comparison tool
that can rapidly align two large nucleotide sequences
using a suffix-tree based algorithm. PROmer is a
variant of MUMmer that generates the protein-level
alignment for two nucleotide sequences based on the
translation of nucleotide sequence to proteins. Ssearch
[10] is a rigorous comparison program for global
similarity between a database of sequences and a query
sequence using the Smith-Waterman method [11]
which is an extremely time-consuming algorithm.

These recent developments in biology and
bioinformatics present a considerable challenge to the
efficient management of genomic data sources and the
high-performance systems for genome analysis. Grid
computing has been proposed as a potential solution to
these requirements [12-14]. The Grid can be used to
integrate genome data sources and computing
resources to build integrated genome databases and
powerful computing platforms for genomic data
processing, in particular for genome analysis and
comparative genomics. As the Grid is a new
technology for genome analysis, only a limited number
of projects have been reported in this field.

The Microbase project aims to develop a Grid-
based system to support large-scale genome
comparison and analysis, in response to the influx of
new genomes, by harnessing the data resources and
computing resources on the Grid. As the first prototype
developed by the project, MicrobaseLite provides a
pre-computed dataset of all-against-all microbial
genome comparisons generated by a suite of genome
comparison tools, and creates a scalable computing
environment to perform computationally intensive
genome comparison and analysis. Based on the pre-
computed dataset, extensive genome analysis can be
conducted, for example, to discover the homologues
(including orthologues and paralogues) of the genes.
The pre-computed dataset is dynamically integrated
with an authoritative genome data source, the EMBL
database [3]. When new genomes are published there,
a Web Services based notification mechanism is used
by MicrobaseLite to automatically import the new
genome data and compare the new genomes against all
existing genomes, to update the pre-computed dataset.
A task scheduler has been developed that assigns this
large number of genome comparison jobs to run on
Grid resources to accelerate the execution process.
MicrobaseLite acts as a prototype for gathering further
requirements from biology and bioinformatics
community to improve the design and implementation
of the complete Microbase system.

The analysis of the large volume of genome data
usually exceeds the computing resources in individual
research institutes. The Microbase project will

ultimately provide a Web Services interface for
external clients to submit user-defined, remotely
conceived genome analyses that can access and use the
pre-computed dataset. It will accept and run the user-
submitted algorithms on Grid resources on behalf of
the clients.

The Microbase project also concerns the Grid-based
approaches to interpret the genome comparison results
in the context of a range of relevant biological
principles including gene expression, protein function,
metabolic pathways, and taxonomy. An object-based
tool OGRE is being designed to represent and analyse
genome rearrangement features in a formally defined
ontology.

 The rest of this paper is organised as follows.
Section 2 introduces the related work. Section 3
describes the MicrobaseLite architecture. Section 4
discusses the implementation and performance of
MicrobaseLite. Section 5 presents a use case, and
Section 6 gives the conclusions and future work.

2. Related Work

Grid-based technologies are on the frontier of
comparative genome analysis, although a number of
projects have been undertaken in large research
centres.

PUMA [15] is an integrated computational
framework developed by the computational biology
group of Argonne National Laboratory. It uses Grid
technology to support high-throughput analysis of
genomes for comparative and evolutionary analysis of
metabolic processes on various levels of biological
organisation in the context of phenotypic and
taxonomic information derived from authoritative
sources.

The TIGR Grid project [16] provides an in-house
repository of protein and nucleotide data made
available by major genome data repositories such as
GenBank, PIR, and Swiss-Prot. In order to create non-
redundant protein databases for annotation (i.e.,
identifying the features of a genome sequence), TIGR
performs an all-against-all search on all proteins from
these sources to create clusters of similar proteins. The
data set of proteins is partitioned into multiple subsets
and runs BLAST searches in parallel on an in-house
Grid using Condor [17].

GADU (Genome Analysis and Database Update
tool) [18] is a collaborative project between the Globus
project and the Argonne bioinformatics group that has
developed an automated, high-performance, scalable
computational pipeline for data acquisition and

analysis of newly sequenced genomes, based on DOE
Science Grid backend [19].

GPSA (Grid Protein Sequence Analysis) [20]
provides a web portal that allows users to submit
protein sequences for homology searches. Users can
select among BLAST, FASTA [10] or other tools to
run the search. GPSA will dispatch the tool to run on
the Grid infrastructure provided by the EGEE
(Enabling Grids for E-science in Europe) project [21]
to search the homologous sequences against certain
databases.

Compared to this related work, MicrobaseLite
features a pre-computed dataset generated by a suite of
genome comparison tools, that reveal the similarities of
genome sequences at different levels. This dataset
allows users to efficiently conduct further genome
analyses without the need to regenerate the vast
volume of data. MicrobaseLite also provides a
notification service for automatic dataset update.
Furthermore, the Microbase project will be unique
with its support for users to submit their own genome
analysis computations. It will accept user-defined
algorithms through a Web Services interface to be
executed using its pre-computed dataset and Grid
resources, enabling biologists to conduct extensive
genome analysis using customised algorithms.

3. MicrobaseLite Architecture

MicrobaseLite is composed of distinct components
deployed at the server side or client side. The
components interoperate through Web Services
interfaces and their operation is orchestrated through a
Web Service-based notification mechanism.

Genome
Databases

Computer
Nodes

Grid Resources
Notification

Service
Client

Application
Interface

Client Side

Administrator Side

Server Side

Microbial
Genome

Pool

Genome
Comparison Pool

Task
Scheduler

OGRE
Tool

Web
Services

API

Web
Services

API

Web
Services

API
Administration

Console

Figure 1. The MicrobaseLite architecture

As Figure 1 shows, the server-side components

include the Microbial Genome Pool, the Genome
Comparison Pool, the Notification Service, and the
OGRE tool (discussed below). Web Services interfaces

are provided by each component to support
interoperability between the components and provide
services to clients. The client-side component is the
Client Application Interface. There is also an
administrator component for system administration
purpose.

3.1. Microbial Genome Pool

The Microbial Genome Pool (or the genome pool)
shown in Figure 2 provides a local database of
complete microbial genome sequences. The genome
pool collects the microbial genomes published at an
authoritative genome data source (at present, the
EMBL database). Genome data is stored in the local
microbial genome database and used as the data source
for the genome comparisons performed in the Genome
Comparison Pool (see Section 3.2).

The local database is automatically updated when
new genomes are published in the EMBL database.
The update is activated by the Notification Service
which will be discussed in Section 3.4. When a new
genome is published, the Notification Service sends a
notification message to the genome loader. The
notification initiates the genome loader to download
the new genome file from that site, and then parses and
loads the genome sequence into the local database. The
genome pool also sends a notification to subscribed
clients to announce the new genome sequence.

To Client Side

To Notification Service

Web Services
API

Genome
Loader

Microbial
Genome
Database

Figure 2. The Microbial Genome Pool

The Web Services API of the genome pool allows

remote users to access the microbial genome database.
Users can flexibly query the nucleotide and protein
sequence information as well as the annotations and
features of the genomes.

3.2. Genome Comparison Pool

The Genome Comparison Pool (or the comparison
pool) shown in Figure 3 is a core component. It
performs all-against-all comparisons for the genomes
loaded in the Microbial Genome Pool, and populates

the comparison results into the comparison database as
the pre-computed dataset. The all-against-all genome
comparison is performed using a suite of tools
including BLASTP, BLASTN, MUMmer, PROmer
and Ssearch to identify the similarities of the genomes
at different levels. MSPcrunch [22] is also used as the
post-processing for the BLASTN results to filter the
most relevant data. The comparison database provides
the pre-computed genome comparison dataset for users
to browser the similarities of the genomes and to
perform further genome analysis.

Comparison
Database

(pre-computed
dataset)

Web Services
API

Algorithm &
Tool Base

Task
Scheduler

From Notification
Service

To Computer
Nodes

To Client Side

Figure 3. The Genome Comparison Pool

The all-against-all genome comparison generates a

large number of computations. The Microbial Genome
Pool currently has 165 genomes loaded in the local
database, 137 of which are bacterial genomes. The
length of a bacterial genome sequence is typically in
the order of 106 bps (nucleotide base pairs) and 103
proteins; each protein is approximately 200-400 amino
acids long. In total, 163,350 (=165×165×6)
comparisons need to be performed for these genomes
with the six tools. The majority of the comparisons are
computationally intensive, particularly for BLASTP
and Ssearch. For example, the BLASTP comparison
between two bacteria: Bacillus cereus and Bacillus
anthracis, requires two input files of 1.5MB each and
produces 95MB output data. The comparison takes 12
minutes on a 2.8GHz Intel Xeon processor.
Consequently, the overall execution of the all-against-
all comparison is extremely time-consuming. Hence,
Grid resources are needed to run the comparisons
simultaneously. A task scheduler has been developed
to support the parallel execution of the comparisons on
the Grid or on a cluster of computers. Section 3.3 will
discuss the task scheduler in detail.

The comparison pool provides a parser for each of
the comparison tools to analyse the comparison output
produced by the tool. When a comparison is
completed, a corresponding parser is invoked to extract
the required data from the raw output. The comparison
database is then populated with the extracted data to
form the pre-computed dataset for further use.

The Web Services API of the comparison pool
allows external users to access the pre-computed
dataset, for example, retrieving the protein similarities
between two genomes generated by the BLASTP
result. In next stage of the project, the Web Services
API will be enhanced to allow users to submit user-
defined genome analysis algorithms that operate on the
pre-computed dataset. The task scheduler will manage
the execution of the algorithms. The results will be
returned to the users through the Web Services
interface. User-defined algorithms will be archived in
the algorithm and tool base for reuse. A use case will
be discussed in Section 5 that identifies COGs (clusters
of orthologous groups) of proteins using the pre-
computed BLASTP results.

3.3. Task Scheduler

In the comparison pool, a task scheduler has been
developed to support the parallel execution of the
comparison jobs on a networked system such as a
cluster of computers or the Grid. The task scheduler
calls a general-purpose job management middleware,
e.g. N1 Grid Engine (formerly Sun Grid Engine) [23],
to submit the comparison jobs for execution. A
comparison job is submitted by calling the job
submission command of the middleware. The latter in
turn allocates a computer node to run the job. A
genome comparison job includes the following
operations: retrieving the genome sequences from local
database; running a tool to compare the sequences;
invoking a parser to analyse the comparison results;
and loading the result into the comparison database.
Figure 4 shows the framework of the task scheduler.

Task Scheduler

Job Submission

Microbial
Genome
Database

Microbial
Genome Pool

Genome
Comparison Pool

Job Management Middleware

Job State Checking

Job Creation

Threshold
Control

Job Execution

Input

Output

Pre-load

Cluster/Grid

Comparison
Database

Figure 4. The task scheduler

The task scheduler coordinates the whole execution

procedure of all jobs. As hundreds of thousands

comparison jobs can be created, the task scheduler
applies a threshold control to job submission in order
to prevent submitted jobs from overwhelming the
system. Under the threshold control, the total number
of running jobs will not exceed the capacity of the
available computer nodes. The task scheduler
continually checks the states of the running jobs. Once
a job has completed, the task scheduler immediately
submits a new job to be executed. The task scheduler
will terminate the whole comparison procedure when
all jobs have completed.

The execution time of a genome comparison
depends on the length of the sequences and the
complexity of a comparison algorithm. The time varies
significantly between different comparisons. As
presented in Section 3.2, the BLASTP comparison of
Bacillus cereus and Bacillus anthracis takes 12
minutes, whereas the MUMmer comparison for the
same sequences takes only 22 seconds. Along with the
underlying job management middleware, the task
scheduler can maintain the asynchronous execution of
the comparison jobs which have different execution
times. Subsequent jobs are gradually submitted for
execution in accordance with the completion of
preceding jobs. Hence, the workload of the
comparisons can be dynamically distributed to the
computer nodes and the overall execution time of all-
against-all genome comparison can be minimized.

3.4. Notification Service

The Notification Service in MicrobaseLite is
implemented using the myGrid notification system [24].
The myGrid notification is a Web Service based system
for event notification that supports topic-based
publisher and subscriber messaging, push and pull
notification model, and asynchronous delivery. Clients
can subscribe to receive notification messages on a
registered topic. A client can be a user or a software
component. The push model delivers a notification by
calling back to client code deployed as a Web Service
at the client side, or sending an email to a registered
address. MicrobaseLite uses the push model with client
code call-back to notify users of the availability of a
new genome - the Microbial Genome Pool uses this
notification to update the local genome database. There
is a probe deployed to periodically check the EMBL
database. When a new microbial genome is published
there, the probe will push a notification message to the
genome loader of the genome pool. The notification
triggers the genome loader to download the new
genome file and store the genome sequence into the
local database after parsing. The genome pool can also
notify the comparison pool to activate the task

scheduler to start the comparison of the new genome
against all previously loaded genomes in the local
database and hence to update the pre-computed
dataset. The Notification Service also allows external
clients to subscribe to the notification of new genome.
A notification message will thus be sent to the clients
when MicrobaseLite has loaded a new genome.

3.5. OGRE

A further novel component provided by the
Microbase system is a research tool called OGRE
(Object based Genome REarrangements). Genome
rearrangements such as insertions, deletions, and
inversions can be visualised by existing tools [25, 26].
OGRE intends to develop a formally defined set of
terms relating to genome rearrangement in the form of
ontology. Formal definitions can be rigorously
checked to ensure that they are logically consistent.
The aim of OGRE is to use these definitions as a basis
on which to develop an object-oriented data model and
algorithms for the comparison and analysis of genome
sequences. OGRE is a sister project to Microbase, but
will be fully integrated; OGRE will provide a service
interface to facilitate integration with MicrobaseLite or
other tools. The ontology used to describe genome
rearrangements is currently under development, and
there is a working prototype capable of detecting some
simple features.

3.6. Client Application Interface

The Client Application Interface is built on the Web
Services APIs of the server-side components for
remote users to easily access the pre-computed dataset
and associated information provided by MicrobaseLite.
The client interface provides users with an integrated
view of the data stored in different components, such
as the pre-computed dataset in the Genome
Comparison Pool and the genome sequences in the
Microbial Genome Pool, and supports the cross-
reference of related data. The interface allows users to
submit queries to MicrobaseLite by specifying the
parameters of query and reference genomes, which
comparison tool to use and the range of comparison
results, for example, the BLASTN result between two
genomes. The interface calls the Web Services APIs to
retrieve the required data from the databases in
MicrobaseLite and returns the data to the users which
can be displayed in graphic or textual format
depending on the type of information to be shown. The
interface also provides the cross-references of a query
by which users can find further information associated

to the query such as the detailed description of the
compared genome sequences, the description of a
comparison tool and the hyperlinks to related genome
databases. As future work, the client interface will
allow users to submit their own comparisons for
execution and receive the results.

4. MicrobaseLite Implementation

MicrobaseLite has implemented the components
discussed in Section 3. The Microbial Genome Pool
takes the genome data in EMBL files from the EMBL
database. It uses BioJava API [27] to parse the EMBL
files and load the genome sequences into the microbial
genome database that is a PostgreSQL database with
the BioSQL schema [27]. The Web Services API is
implemented using Apache Tomcat and Axis.

At present, the Genome Comparison Pool runs the
comparison jobs on a cluster of dual-processor
computers. The task scheduler is based on N1 Grid
Engine which is middleware that can build and manage
Grid resources and allows users to access the Grid.
With the support of the N1 Grid Engine or other Grid
middleware, we plan to extend the computing system
to the Grid. The pre-computed comparison dataset is
stored in a MySQL database. The all-against-all
comparison has been performed amongst the 165
genomes, and a 16GB dataset of comparison results
has been generated.

The Client Application Interface is implemented as
graphical user interface (GUI) that calls the Web
Services APIs of the server-side components. Users
can query the data provided by MicrobaseLite through
this interface. Firstly, the interface presents users with
a selection panel that displays a complete list of
reference and query genomes and comparison tools
available in MicrobaseLite. Users can query any
genome comparison result by selecting a pair of
reference and query genomes and choosing a tool in
the list. The query is then sent to MicrobaseLite, and
the required data is retrieved from the pre-computed
dataset and returned to the client side via the Web
Services API. The result of the query is displayed to
the users in the graphical browser as shown in Figure
5, which depicts the BLASTN result between two
genomes. The graph shows the similarities between the
nucleotide sequences and uses arrows to highlight the
genes that encode genome features including proteins,
tRNA, mRNA, etc. Users can flexibly zoom in the
graph to view the details of the sequences by sliding
the resolution scale on the right side. Users can also
click on the arrows to get the cross-references of
detailed information of the features.

Figure 5. The client application interface for
genome comparison results

MicrobaseLite is available for external use. A
description of the service APIs can be found at
http://vindaloo.ncl.ac.uk:8090/microbase/index.html.

4.1. Performance

The performance test of MicrobaseLite is focused
on the scalability of the system in supporting large-
scale genome comparison. The scalability is tested by
running all-against-all comparisons on a cluster of
computer nodes; each node contains dual 2.8GHz
Xeon processors. The N1 Grid Engine is installed on
the cluster. In the test, all-against-all comparison is
executed amongst a group of genomes selected from
the local database, using five tools (BLASTP,
BLASTN, MSPcrunch, MUMmer and PROmer). As
Ssearch is an extremely slow program, it will be
separately executed later. The task scheduler manages
the parallel execution of the comparison jobs.

Table 1. Execution times of all-against-all
genome comparison (minutes)

 Processors

Genomes

1 10 20 30 40

10 genomes 978.0 103.0 57.7 48.5 37.3
20 genomes 2387.7 251.5 147.0 116.1 94.5
30 genomes 5064.5 533.5 295.7 226.2 178.5

Scalability is assessed by the execution time and

speedup obtained in running the all-against-all
comparison on different numbers of genomes and
different number of processors. Table 1 shows the
execution times of these comparisons which include
both the execution time of the tools and the time of
data loading and analysis. Figure 6 shows the speedup
achieved.

0

5

10

15

20

25

30

1 10 20 30 40

Number of Processors

Sp
ee

du
p 10 genomes

20 genomes

30 genomes

Figure 6. Speedup of all-against-all genome
comparison

The test shows that useful speedup can be achieved
when employing more processors to run the
comparisons. The best speedup appears in the case of
the largest dataset, 30 genomes. The performance
verifies that MicrobaseLite has demonstrated
satisfactory scalability in running all-against-all
genome comparison with the support of the task
scheduler. The all-against-all comparison between 165
genomes using the five tools has also been tested on 40
processors. The entire execution time was 68 hours.
This is an encouraging time scale for such a large-scale
comparison. Considering the Grid computing support
provided by the underlying N1 Grid Engine, better
performance can be expected when the computing
environment is extended to utilise Grid resources.

5. Use Case

The pre-computed dataset of MicrobaseLite has
been used to search for COGs (clusters of orthologous
groups) in proteins. The relationships of the proteins
from different genomes can be classified by the
homologues (i.e. the similarities) including orthologues
and paralogues. Paralogues are homologous proteins in
a same genome. Orthologues are homologous proteins
in different genomes that evolved from a common
ancestral gene. Orthologues often retain the same
function in the process of evolution. The identification
of orthologues is an important methodology for the
prediction of the functions of a protein or a group of
proteins, in particular for newly sequenced genomes
[28]. The orthologues and paralogues can be identified
based on the similarities of the proteins found by
genome comparison.

We use the COG construction algorithm proposed
by the COG database project [28-30] to identify COGs
using the BLASTP results provided by the pre-
computed dataset. The best hits, that is the most similar

proteins, are extracted from the BLASTP results based
on the similarity score. The COGs can be identified
from the best hits. The algorithm has identified 8945
COGs which consist of 24832 different proteins
among the 165 genomes in MicrobaseLite. At the same
time, the algorithm has found 8045 paralogue groups
that include 18583 different proteins. These results can
be used to reveal the evolutionary relationships of the
proteins in the genomes.

6. Conclusions

The Microbase project will exploit a Grid-based
environment to support both biologists and
bioinformaticians in carrying out comprehensive
genome comparison and analysis. The MicrobaseLite
prototype system has provided a pre-computed dataset
of microbial genome comparisons integrated with the
service-based API to access it. The ultimate goal of
Microbase is to provide a remotely accessible system
to perform user-defined genome analysis. The future
work will concentrate on two issues. First, the
Microbase system will implement seamless integration
with Grid resources to meet the computational and data
requirements of analysing an almost exponential influx
of new genomes. Second, Microbase will support user-
defined, remotely conceived genome analysis. For this
purpose, a workflow framework is a promising model
to enable users to define, submit, and enact genome
analysis algorithms. The Taverna project supports
Grid-based workflows [31] that potentially provides
useful mechanisms to implement the user workflow
submission and enactment in the Microbase system.

Acknowledgments

The Microbase project is supported by the BBSRC
e-Science and Bioinformatics initiative and the DTI
(Grant number 13/BEP17027). We gratefully
acknowledge the support of the North-East Regional e-
Science Centre, UK.

References

[1] A. K. Bansal and T. E. Meyer, "Evolutionary analysis

by whole-genome comparisons," Journal of
Bacteriology, vol. 184, no. 8, 2002, pp. 2260-2272.

[2] A. M. Lesk, Introduction to Bioinformatics. Oxford
University Press, Oxford, 2002.

[3] EMBL nucleotide sequence database,
http://www.ebi.ac.uk/embl/index.html

[4] GenBank overview,
http://www.ncbi.nlm.nih.gov/Genbank/GenbankOvervi
ew.html

[5] UniProt: the universal protein resource,
http://www.ebi.uniprot.org/index.shtml

[6] PDB: the protein data bank, http://www.rcsb.org/pdb/
[7] PIR: the protein information resource,

http://pir.georgetown.edu/
[8] S. Altschul, T. Madden, A. Schaffer, J. Zhang, Z.

Zhang, W. Miller, and D. Lipman, "Gapped BLAST
and PSI-BLAST: a new generation of protein database
search programs," Nucleic Acids Research, vol. 25, no.
17, 1997, pp. 3389-3402.

[9] S. Kurtz, A. Phillippy, A. Delcher, M. Smoot, M.
Shumway, C. Antonescu, and S. Salzberg, "Versatile
and open software for comparing large genomes,"
Genome Biology, vol. 5, no. 2, 2004, pp. R12.

[10] W. R. Pearson, "Empirical statistical estimates for
sequence similarity searches," Journal of Molecular
Biology, vol. 276, no. 1, 1998, pp. 71-84.

[11] T. Smith and M. Waterman, "Identification of common
molecular subsequences," Journal of Molecular
Biology, vol. 147, no. 1, 1981, pp. 195-197.

[12] R. Stevens, A. Robinson, and C. Goble, "myGrid:
personalised bioinformatics on the information grid,"
Bioinformatics, vol. 19 Suppl 1, 2003, pp. i302-i304.

[13] E. Huedo, U. Bastolla, R. Montero, and I. Llorente,
"Computational proteomics on the Grid," New
Generation Computing, vol. 22, no. 2, 2004, pp. 191-
192.

[14] A. Konagaya, F. Konishi, M. Hatakeyama, and K.
Satou, "The superstructure toward open bioinformatics
grid," New Generation Computing, vol. 22, no. 2, 2004,
pp. 167-176.

[15] M. D'Souza, J. Huan, S. Sutton, M. Romine, and N.
Maltsev, "PUMA2 - An environment for comparative
analysis of metabolic subsystems and automated
reconstruction of metabolism of microbial consortia
and individual organisms from sequence data," Report,
ANL/MCS-TM-240, 1999.

[16] TIGR Grid Computing, http://www.tigr.org/grid/
[17] Condor high throughput computing,

http://www.cs.wisc.edu/condor/
[18] A. Rodriguez, D. Sulakhe, E. Marland, V. Nefedova,

G. Yu, and N. Maltsev, "GADU - Genome analysis and
database update pipeline," Report, ANL/MCS-P1029-
0203, 2003.

[19] DOE ScienceGrid: summary of progress, Feb. 2002 to
Feb. 2003,
http://www.doesciencegrid.org/Grid/management

[20] GPSA: Grid protein sequence analysis,
http://gpsa.ibcp.fr/

[21] EGEE: enabling grids for e-science in Europe,
http://public.eu-egee.org/

[22] E. L. Sonnhammer and R. Durbin, "MSPcrunch: a blast
enhancement tool for large-scale sequence similarity
analysis," Report, 1997.

[23] N1 Grid Engine 6 user's guide,
http://docs.sun.com/db/doc/817-6117

[24] A. Krishna, V. Tan, R. Lawley, S. Miles, and L.
Moreau, "myGrid notification service," presented at
UK e-Science All Hands Meeting, Nottingham, 2-4
September 2003.

[25] ACT: Artemis comparison tool,
http://www.sanger.ac.uk/Software/ACT/

[26] J. Yang, J. Wang, Z. Yao, Q. Jin, Y. Shen, and R.
Chen, "GenomeComp: a visualization tool for
microbial genome comparison," Journal of
Microbiological Methods, vol. 54, no. 3, 2003, pp. 423-
426.

[27] BioJava, http://www.biojava.org/
[28] R. L. Tatusov, E. V. Koonin, and D. J. Lipman, "A

genomic perspective on protein families," Science, vol.
278, 1997, pp. 631-637.

[29] R. L. Tatusov, M. Y. Galperin, D. A. Natale, and E. V.
Koonin, "The COG database: a tool for genome-scale
analysis of protein functions and evolution," Nucleic
Acids Research, vol. 28, no. 1, 2000, pp. 33-36.

[30] COGs, phylogenetic classification of proteins encoded
in complete genomes,
http://www.ncbi.nlm.nih.gov/COG/

[31] T. Oinn, M. Addis, J. Ferris, D. Marvin, M.
Greenwood, T. Carver, M. Pocock, A. Wipat, and P.
Li, "Taverna: a tool for the composition and enactment
of bioinformatics workflows," Bioinformatics, 2004.

