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Abstract :  

Now and in the future, the flows of the Upper Indus Basin (UIB) are and will be depended upon by hundreds of millions 
of people for their food security and economic livelihoods. Communities in the headwater reaches of the UIB – which 

contribute the bulk of runoff for the basin – are equally deserving of improved living conditions, but often lag behind 

downstream communities in benefitting from infrastructure. Harsh and highly variable climatic conditions pose specific 

challenges for local agricultural activities in the headwater reaches. Improved scientific understanding of tributary basin 

scale hydrology should support local development work as well as improvements to large scale infrastructure and water 

resource management. 

This study focuses on the challenge of providing meaningful quantitative information at the village/valley scale in the 

upper reaches of the UIB. The typology of the UIB hydrological regimes – as observed in large gauged basins – are 

examined, with special emphasis on annual cycles and interannual variability. Variations in river flows (as relative 

anomalies of discharge rates or runoff) are compared to observations of climate parameters (2m air temperature, 

precipitation) from both local (point-based) observations and analogous parameters from remote sensing data products 

from the MODIS instrument. Although the temporal overlap is limited between river gauging data available to this 
study and the MODIS observational record, numerical analysis of relationships between relative anomalies in the spatial 

data and river gauging observations demonstrate promising potential of the former to serve as quantitative indicators of 

runoff anomalies. In order to translate these relationships to the scale of ungauged village/valley catchments, the 

available remotely sensed spatial data – snow covered area (SCA), land surface temperature derived (LST) – are 

assessed as analogues for meteorological point observations. The correlations between local (point-based) observations 

and remotely-sensed spatial data products are tested across a wide range of spatial aggregations. These spatial units 

range from the primary contributing area (nearly 200,000km2) of the UIB at its downstream gauging station Besham to 

a small valley serving a minor settlement (10km2). The shape and timing of annual cycles in SCA and LST are 

consistent across the range of spatial scales although the magnitudes of both intra-annual and interannual variability 

differ with both spatial scale and hydrological regime. The interannual variability exhibited by these spatial data 

products is then considered in terms of its potential implications for the smaller hydrological units. Opportunities for 
improvement and extension of this methodology are also discussed. 

 

Keywords :  Indus ; remote sensing ; snow ; temperature ; MODIS  

 

1 Introduction  

1.1 Context of the Upper Indus Basin and its headwater reaches 

The Upper Indus Basin (UIB) covers a vast expanse of high-mountain Asia. Its water resources are of the utmost 

importance to the wellbeing of Pakistan. It underpins local incomes and nutrition through irrigated agriculture and 

electricity supplies through hydropower. To partially summarise the comprehensive overview of water resources 

management issues in the Indus Basin by Archer et al (2010) : 

· Agricultural output from irrigated land provides 85% of cereal grain (wheat, rice) harvests as well as all sugar 
production. 

· The agricultural sector accounts for 45% of the total labour force in Pakistan, and exports are dominated by 

goods derived from agricultural production – textiles (67%) and food items (11%). 

· The hydropower generation of the Tarbela dam alone supplies nearly 20% of national electricity demand. 

Thus without the contribution of the Indus, Pakistan's existing problems of food security & electrical load-shedding 

would be much greater. Pakistan’s further socio-economic development thus depends largely on optimisation of its 

precious water resources. 
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Although the rugged headwaters of the UIB generate nearly all of the water for Pakistan's massive hydropower and 

irrigated agriculture schemes, local development has lagged behind much of the rest of the country.  Analysis of local 

scale hydrological variability will focus on answering key questions posed by the development initiatives of two locally 

active international NGOs: the Aga Khan Rural Support Programme (AKRSP) & World Wildlife Fund (WWF)-

Pakistan. AKRSP focuses primarily on improving community welfare through development of small-scale 

infrastructure – irrigation and mini-hydropower – to support local agriculture, industry and commerce. WWF focuses on 

sustainable natural resource management and ecosystem protection. Both NGOs place great emphasis on training and 

capacity building for community members. The analyses presented here aim to support the design of small-scale 

infrastructure and operational water resources management by assessment of the variability and interlinkages found in 
data available from both local observations and remote sensing. Techniques for extrapolating the hydrological 

implications of local weather observations for large basins have previously been established. This study will modify 

these techniques for application to the individual selected village/valley catchments by using remote sensing-derived 

data products as analogues for point measurements. 

 

1.2 Description of practical outputs needed from hydrological studies 

Present water resources management challenges in the headwater reaches of the UIB, like those further downstream, are 

primarily due to the considerable interannual variability in flows and in the timing of the rising limb of the meltwater-

driven hydrograph. In the future this variability will continue to complicate resource management, but water stresses in 

Pakistan will above all be driven by high demographic growth [Archer et al 2010]. Unlike downstream areas where 

absolute per capita water scarcity will be the primary challenge in the future, for upstream reaches potential national 

pressure to limit abstractions – thus maintaining runoff transmission to the lower basin – combined with very limited 
arable land area to meet food security needs may become the driving concerns. 

Given the current composition of local economic activities, the primary water resources management imperatives in the 

headwater reaches are to maximise crop yields from irrigated agriculture and electricity production from small and 

medium-scale hydropower. Local electricity demands are greatest during the (cold, dark) winter season when flows are 

low and exhibit relatively low variability. Electrical grid transmission infrastructure necessary to export electricity to 

other regions at present is, and for the foreseeable future will be, lacking. The primary nexus of opportunity and need 

for improvement in water resources management is thus to support irrigated agricultural activities concentrated in the 

warm, hydrologically variable, summer season. 

The two principal potential applications of hydrological insight in the UIB for support of local development initiatives 

are : i) improvement of present operational water resources management (water allocation in irrigation) via skilled 

seasonal forecasts; & ii) improved infrastructure design and long term planning via confident characterisation of future 
water availability, including its variability. Specific examples of this infrastructure include irrigation systems covering 

tens or hundreds of hectares and mini-hydropower systems with rated capacities in the hundreds of kilowatts. 

Agricultural infrastructure is most often funded by bilateral or multilateral donor agencies from industrialised countries. 

Development of mini-hydropower is presently funded via the Clean Development Mechanism (CDM) defined under the 

United Nations Framework Convention on Climate Change (UNFCCC). These funding sources are limited so there is a 

pressing need to optimise the efficiency and impact of investment. 

Skilled seasonal forecasts depend upon precise assessment of availability of mass (precipitation) and energy 

(temperature) inputs to the meltwater-runoff generation system and upon accurate understanding of system responses to 

variability in these inputs. In the UIB, to be of practical use, forecasts of summer runoff are necessary at the end of 

winter (late March / early April), thus requiring a lead-time of between 3 and 6 months. For large nival-regime 

catchments (in the Western Himalaya) where runoff is primarily governed by mass inputs, Archer & Fowler (2008) 
have shown that skilled forecasts with this length lead-time are possible. For glacial-regime catchments where summer 

runoff is primarily governed by energy inputs, skilled forecasting remains challenging due to the difficulty of accurately 

predicting temperature anomalies with an adequate lead-time. 

The core understanding of the hydrological behaviour of subcatchments of the UIB needed to enable skilled forecasting 

is also crucial to providing insight into likely water availability in the next few decades. Further prerequisites for this 

output are the assessment of the plausibility of available climate projections for the region and then the translation of 

these projections into likely changes in the mean values and interannual variability of regional hydrological cycles. 

Relationships identified between the meteorological point observations of temperature and precipitation – two 

parameters which are also key output variables in regional climate model (RCM) simulations -- and the remotely sensed 

spatial data products capturing variability at the village/valley catchment scale will guide assessment of the implications 

of future climate projections on local water availability. These projections will themselves be the result of a rigorous 

bias assessment and correction methodology applied to the available RCM outputs. 

 

2 Study area and data limitations 

2.1 Study spatial extents & limitations of observed record 
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A substantial challenge at present for local water resources management initiatives in the UIB is the availability of 

hydroclimatological data at the appropriate scales. Sparse, but spatially representative, point observations of 

temperature and precipitation are available from long record meteorological stations operated by the Pakistan 

Meteorological Department (PMD). The relatively low station spatial coverage density, however, leaves doubt as to 

whether this data adequately represents the heterogeneities which may occur at smaller spatial scales. Furthermore, at 

present, the river gauging data – collected by the Pakistan Water and Power Development Authority (WAPDA) -- 

available to this project is only at the spatial scale of tributary river basins and has little temporal overlap with existing 

validated spatial climate data products derived from remote sensing imagery. The geographical situation of the primary 

gauged basins and locations of available local meteorological observations are shown in Figure 1. A propos, the 
geographical area referred to as “the NW UIB analysis unit [X]” in later figures is shown in Figure 1 with hash marks 

and is comprised of primary gauged catchments ([1] through [4]) plus the Indus main channel gorge from Besham Qila 

upstream to the gauging stations at Kharmong and Yugo. The Upper Indus to Besham [0] comprises the NW UIB plus 

the primary catchments [5] & [6]. The same number system for the primary gauged catchments is retained in Figure 2 

which shows the geographic location of the village/valley scale case study subcatchments. 

The complex geopolitical situation in South Asia, and especially the tensions and suspicions over finite water resources, 

make data providers hesitant to offer international researchers access to data. We have access to temperature 

observations up to 31 December 2007 and precipitation observations to 31 August 2010 for primary long record 

stations. Records of river discharge are deemed more sensitive however and therefore we have only limited access for 

the period overlapping the MODIS observational record: Astore river 2000-2008; Gilgit river 2000-2008; Hunza river 

2001-2004 + 2008; Indus main channel at Besham Qila 2000-2002. Furthermore, we have access to temperature and 

precipitation data from more than a dozen automatic weather stations (AWS) – installed at significantly higher 
elevations than valley-based meteorological stations – for only 1994-1998, which does not overlap with the MODIS 

record. Even if these issues were resolved, however, they would address only the tributary basin scale and not resolved 

issues of direct local observations at the scale of the village/valley water resource management. 

To overcome these ground-based data limitations, the adequacy of spatial remotely-sensed climate data products to act 

as analogues for point meteorological observations and the scalability in the climate drivers of hydrological variability 

between tributary basins and village/valley catchments will be tested. Then the variability of these drivers at the local 

scale will be directly analysed to characterise the potential hydrological implications for six different spatial 

aggregations, for each of two different spatial scales. The large scale includes individual (WAPDA) gauged tributary 

basins and aggregations of the same. The surface area of these spatial units ranges from several thousand to nearly 

200,000 km2. The second scale is comprised of “case study” examples at the village/valley scale. The cases were chosen 

in concert with the NGO’s AKRSP and WWF. They represent the catchment areas either : i) from which individual 
communities abstract a portion of available streamflow to provide water for domestic and irrigation purposes; or ii) 

distinct ecological zones of interest for conservation and ecosystem services studies. The size of these case study 

catchments ranges from a dozen km2 to a few hundred km2. 

2.2 Using remote sensing for application in hydrological studies 

2.2.1 General limitations of radiometrically-derived spatial climate data products 

While providing valuable insights into predominant meteorological conditions over vast often sparsely instrumented 

areas, spatial climate data products do have substantial limitations and shortcomings. 

The temporal frequency of remote sensing observations is one important example of these. At present there is an inverse 

relationship between frequency and (horizontal) spatial resolution. The Moderate Resolution Imaging Spectrometer 

(MODIS)  data products have a maximum horizontal resolution of 500m to 1km and are derived from twice-daily 

overpasses of the target area. The consistent timing and frequency of observation is a result the sun-synchronous (polar) 
orbits of the “Terra” and “Aqua” Earth Observation System (EOS) satellites on which the MODIS instrument is carried. 

This spatial resolution provides adequate detail to assess subcatchment-scale conditions, i.e. on the order or tens to 

hundreds of square kilometres. However, data products with better horizontal resolution (sub 100m) are necessary for 

studying smaller spatial areas, such as individual glaciers, and these often have observational frequencies of only once 

every two weeks or more (e.g. sixteen days for ASTER and Landsat ETM+). In contrast, the remotely-sensed data 

products with the best frequency of observation – from geostationary satellites – have very coarse spatial resolutions (> 

250km), only detailed enough for continental (or synoptic) scale studies. 

Radiometrically-derived data products, such as MODIS, also have important limitations in their capacity to accurately 

assess parameters of interest. The spatial data products have their theoretical basis in identified relationships between 

the intensity of emission of electromagnetic radiation at specific wavelengths (spectral bands) and specific surface or 

atmospheric properties. While MODIS data products are quite robust due to the high number of available spectral bands 

(thirty-six) there is still potential for misidentification of radiometrically similar climate features. This is perhaps best 
illustrated by the challenge of accurately differentiating snow versus cloud (both are cold and “bright”); crucial as 

algorithms for determination of snow cover (SCA) and land surface temperature (LST) routinely employ “cloud-

masking” approaches. Even the sophisticated MODIS products are sensitive in this regard to a number of thresholds and 

viewing conditions (Ackerman, 2008). In other mountainous study areas, the systematic misidentification of snow as 
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cloud in the transition zone between snow-covered and snow-free areas has been found to occur in earlier versions of 

the MODIS snow algorithm (Klein, 2003). The ground-based data available to this study does not allow assessment of 

whether such issues have been resolved in the current version of the algorithm. Independent of cloud-masking issues, 

the topography of the study area for mountainous regions may also affect accuracy of snow-cover detection. In winter 

large shadows resulting from low sun angles can also result in under-detection of snow in steep terrain (Sorman, 2007). 

Given these limitations, it may be prudent to consider spatial data products as quantitative indicators of 

hydrometeorological conditions rather than as absolute measures of the physical state of the target catchment. 

2.2.2 Remotely-sensed datasets  

This study, in the main, uses snow covered area (SCA) and land surface temperature (LST) data products from the 
MODIS instrument aboard the NASA Earth Observation Terra platform. The MODIS data presented here were 

acquired as eight-day temporal aggregates over the period from March 2000 to July 2010. The temporal aggregates 

cover consecutive Julian days: 01 January to 08 January, 09 January to 16 January, etc. Thus there are forty-six time-

steps for each calendar year, with the last aggregate – starting Julian day 361 – overlapping the following year by two or 

three days. For SCA the eight-day rasters provide 500m horizontal resolution maximum snow cover extent (product 

MOD10A2) (Hall et al, 2001). For LST the eight-day rasters provide 1km horizontal resolution mean surface 

temperature for day-time (near local noon) and night-time (near local midnight) overpasses (product MOD11A2) (Wan, 

2008). In order to compare the MODIS data to local observations, the eight-day rasters were further aggregated by 

calculating pixel by pixel means from groups of four eight-day rasters to provide proxies of calendar month averages. 

This spatio-temporal aggregation is summarised in Table 1. 

2.2.2.1 Assessment of MODIS LST and SCA validity using local air temperature observations 

In addition to the extensive correlation analyses presented in sections 3 and 4 of this paper, a site-specific direct 
assessment of the coherence and reasonability of the MODIS data products was conducted for the Astore PMD station 

and the Astore catchment. While the Astore PMD station measures air temperature at height of 2m rather than LST, the 

values for air temperature at the Astore station and LST in the surrounding MODIS pixels would be expected to track 

closely throughout the common observation period. In order to avoid issues of precision in geolocation, the LST values 

for direct comparison were extracted from the pixel of the MOD11C3 data product (5km resolution) covering the 

Astore PMD station. Average LST was taken as the mean of LST values from daytime (approximately local solar noon) 

and nightime (approximately local midnight) satellite overpasses. Average air temperature was taken as the mean of 

monthly means for daily minimum temperature (Tmin) and maximum temperature (Tmax). LST and air temperature 

values were compared both as an eight-year (2000-2007) time series and as mean values for each month of the year. 

In order to assess the SCA data product an approach used by Jain et al (2008) for assessment of snow cover mapping for 

the Satluj (Sutlej) basin was applied here. This method uses the simplified assumption that for mountainous semi-humid 
catchments SCA will be equal to the fraction of the catchment were mean daily temperature is below freezing (0°C). To 

determine the later value, the monthly value for Tavg was applied to the hypsometric information for the catchment – 

derived from the NASA SRTM 90m digital elevation model – via a linear lapse rate of 7°C per 1000m. When the 

elevation of 0°C isotherm had been calculated, the nominal locally-observed SCA was taken to be equal to 100% minus 

the cumulative fraction of the catchment below isotherm elevation. These nominal values SCA were compared to the 

spatial average MODIS SCA values for the Astore catchment both as an eight-year (2000-2007) time series and as 

mean values for each month of the year. 

The results of the comparisons of LST to air temperature and nominal SCA to MODIS SCA are show in Figure 3. As 

can be seen in the upper left panel, LST and air temperature do in fact track very well together as a time series. Of 

particular note is the agreement in interannual variability of summertime annual maxima. Wintertime annual minima do 

diverge but this can be understood through annual cycle (Figure 3, lower left panel) of LST and air temperature. During 
the winter snow cover is nearly complete and the snow pack surface temperate is becomes appreciably colder than the 

overlying air temperature through the accumulation of thermal inertia, also known as “cold content” (Bras, 1990). 

During the spring and summer as the snow pack warms then melts and SCA diminishes the LST and air temperature 

converge. They then diverge again in autumn and winter as the snow pack accumulates and SCA and snowpack cold 

content increase. 

The plots comparing nominal SCA to MODIS SCA as a time series (Figure 3 upper right panel) and annual cycle 

(lower right panel) also demonstrate this relationship. From the time series comparison, interannual variability in the 

timing and magnitude of annual maximum SCA agree well between the nominal and MODIS values. The divergence 

appears during the ablation phase while the reduction in SCA (from snow melt) lags the air temperature. Also the 

simplified nominal SCA from air temperature method does not take into account the presence of a small glaciated area 

in the Astore catchment, hence underestimation of annual SCA minima. The nominal and MODIS SCA values do, 

however, converge once again during the accumulation phase (Autumn and Winter). 

2.2.2.2 Assessment of the TRMM 3b43 data product 

A preliminary assessment was also made of the usefulness of the Tropical Rainfall Monitoring Mission (TRMM) 

precipitation estimates for the region; further detailed analysis is given in Forsythe et al. (in prep.). These are derived 
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from a multi-sensor system which assimilates observations from multiple satellites gauge-adjusted with the Global 

Precipitation Climatology Project (GPCP) dataset (Huffman, 2011). This constellation of data sources includes the 

TRMM instrument itself which carries a passive microwave imager and space-borne rainfall radar which provide high 

resolution assessment of precipitation rates within the satellite’s window of view (swath width). These high resolution 

observations are very limited in observational frequency with direct repeat observations only approximately twice per 

month. The TRMM specific observations, however, are merged with additional passive microwave observations from 

several other satellite-borne instruments (SSM/I, DMSP, AMSR-E, AMSU-B, etc) as well as the near continuous low-

resolution infrared and thermal imagery from geostationary weather satellites. This multi-sensor composite can thus 

provide a balance between good spatial resolution and high frequency observation, although due to the present limited 
number of passive microwave-equipped satellites there are substantial gaps in the spatiotemporal coverage of the higher 

resolution data needed to calibrate the lower resolution continuous imagery from the geostationary platforms (Huffman, 

2007). 

The data are from the 3B43v006 data product which provides a continuous time series of monthly estimated 

precipitation totals at 0.25 decimal degree horizontal resolution from Jan 1998 to present. Comparisons to available 

local long-record observations of precipitation and limited river discharge data strongly suggests that the TRMM 

estimates provide a quantitative indicator of monthly rainfall abundance rather than a measure of absolute magnitude. In 

this they are similar to the local long-record meteorological observations which also do not directly represent catchment 

wide precipitation but do correlate well as indicators of mass inputs for seasonal snowmelt driven catchments (Archer, 

2003; Archer and Fowler, 2008). 

Specific indications that TRMM does not provide an absolute measure of precipitation over the UIB include: 

[a] for the very limited time series of overlapping available gauge records of seasonal snowmelt-driven (nival regime) 
catchments, the TRMM catchment-average accumulated precipitation for each hydrological year is only a fraction (~ 40 

to 60%) of the observed river discharge (when converted to runoff depths). 

[b] the monthwise-contributions to annual total precipitation show substantial disagreement in the seasonality of 

precipitation distribution between TRMM and both long record valley observations and AWS located at higher 

elevations (see Figure 4). Local observations show a stronger mode of precipitation in spring (March-April-May) with 

more limited contributions in summer (June-July-August) in comparison with TRMM. This issue of inhomogeneity 

between TRMM and local observations is further evidenced when comparing scatter plots of TRMM estimates versus 

local observations filtered by season. As Figure 5 shows, the ratio of TRMM to local observations is clearly greater in 

summer than in spring. This may be due to the underestimation of stratiform precipitation – enhanced in the UIB by 

orographic lifting – compared with the convective precipitation that traditionally dominates in the tropics and sub-

tropics where the TRMM initiative is focused. Orographic precipitation poses technical problems for both infrared-
derived and passive microwave-based rainfall estimation algorithms (Dinku, 2008). 

[c] the TRMM data do not exhibit the marked orographic gradient (increasing precipitation with increasing elevation) 

that is shown by comparing precipitation totals recorded in PMD valley stations to those measured by the higher-

elevation AWS units, when comparing pixels overlying areas of different mean elevation. This again may be due to the 

underestimation of orographically-driven stratiform precipitation. 

More practically, the focus in this study is on identifying opportunities to use spatial data products for assessing 

conditions within specific contributing areas drawn upon by villages and ecological areas for their water resources. As 

such, the limited spatial resolution – 0.25 decimal degrees, roughly 28km – of TRMM is not best suited for this 

purpose. In this context, the role of TRMM data is best considered as equivalent to the observations from (distant) long-

record meteorological stations in the primary regional towns, i.e. a strong quantitative indicator but not providing 

village/valley-scale specificity. For the case studies used here, a minimum horizontal resolution would be 5 km with 
much better definition resulting from a shift to 1km resolution. This is precisely the scale of the available MODIS data 

products. Therefore the analysis will focus on these products. 

 

3 Characterisation of UIB hydrological regimes 

3.1 Characterisation of nival and glacial regimes from local observations 

Runoff in the UIB is primarily composed of meltwater from ephemeral snow and perennial glacial masses with a 

smaller contribution from direct winter or monsoon rainfall from foothill catchments (Archer 2003). The relative 

contributions from these three sources of runoff (direct rainfall, seasonal snow and perennial ice) define three observed 

hydrological regimes characterising the sub-catchments within the UIB (Archer 2003). For the case study areas where 

seasonal snowfall (nival) and glacial regimes dominate, the timing of annual hydrological cycles are shaped by the 

accumulation of snow and ice from October through March followed by melting of ephemeral snowpack from April 

through June, with significant ablation of glacial ice in July and August. These cycles are thus driven by the 
predominant temperature conditions, which can be characterised as the fraction of the catchment where night-time 

temperatures remain above 0°C. Examples of the annual cycles for nival, glacial and mixed nival-glacial regimes are 

shown in Figure 6. In nival regimes, the accession limb of the melt hydrograph rises quickly in spring with warming 
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Figure 14 Annual SCA cycle and interannual variability in example village/valley catchments. [a] Kunjekshal nallah, 

[b] Hassanabad nallah, [c] Ahmedabad nallah, [d] Langkar meadows, [e] Kasundar nallah & [f] Ishkoman valley. 

 

 

Figure 15 Annual continuous melt area cycle and interannual variability in major gauged tributary basins. [0] Upper 

Indus to Besham, [1] Hunza river to Dainyor bridge; [2] Shigar river to Shigar town; [3] Gilgit river to Gilgit town; [4] 

Astore river to Doyian, [X] NW UIB. 

 



Figure 16 Annual continuous melt area cycle and interannual variability in example village/valley catchments. [a] 

Kunjekshal nallah, [b] Hassanabad nallah, [c] Ahmedabad nallah, [d] Langkar meadows, [e] Kasundar nallah & [f] 

Ishkoman valley. 

 

 



Table 1 Spatial and temporal resolution  

MODIS parameter snow covered area (SCA) land surface temperature (LST) 

MODIS dataset designation MOD10A2 MOD11A2 

MODIS source spatial resolution 500m nominal one kilometre nominal 

MODIS source temporal resolution eight-day maximum eight-day mean 

analogous to local observation parameter precipitation (cumulative cold season) two-metre air temperature 

further temporal aggregation means of four eight-day rasters centred 
on calendar months  

means of four eight-day rasters 
centred on calendar months  

 

Table 2 Hydrological characteristics of the large-scale UIB basins. 

Catchment // 

River Gauge 
Area 

Mean 

Elevation 

Annual 

Total 

runoff 

Summer 

(JJA) 

runoff 

Ratio 

Summer/ 

Annual total 

for runoff 

Std. Dev. 

Summer 

runoff 

Summer 

runoff 

coeff. of 

variation 

units (km2) (m) (mm) (mm) fraction (mm) fraction 

Shyok river to 
Yogo 

65,025 4900 160.0 117.0 0.731 30.1 0.257 

Indus river to 
Kachura 

146,100 4789 222.7 152.1 0.682 28.8 0.189 

Hunza river to 
Dainyor Bridge 

13,925 4472 695.3 501.1 0.720 130.6 0.260 

Gilgit river to 
Alam Bridge 

27,525 4094 681.1 475.7 0.698 63.7 0.133 

Astore river to 
Doyian 

3,750 3921 1122.9 729.7 0.649 182.8 0.250 

Indus river to 
Besham 

196,425 4505 375.9 252.3 0.671 37.5 0.148 

 

Table 3 Correlations of March Snow Covered Area (SCA) vs Cumulative Winter (Oct-Mar) Precipitation.1  

Station 
Precipitation 

at Gilgit 

Precipitation 

at Astore 

Precipitation at  

Skardu 

Wetdays at 

Gilgit 

Wetdays at 

Astore 

Wetdays at 

Skardu 

Indus to Besham .358 .590 .086 .466 .455 .307 

NW UIB .800 .760 .647 .825 .678 .776 

Hunza to Dainyor .683 .796 .654 .710 .687 .679 

Shigar to Shigar .696 .732 .604 .692 .686 .847 

Gilgit to Gilgit .587 .452 .496 .634 .378 .666 

Astore to Doyian .673 .722 .265 .816 .671 .535 

Ahmedabad nallah -.526 -.229 -.460 -.364 -.058 -.268 

Hassanabad nallah .727 .475 .528 .616 .414 .721 

Ishkoman valley .433 .328 .446 .465 .279 .622 

Kasundar nallah .481 .300 .460 .460 .162 .468 

Kunjekshal nallah .521 .578 .478 .637 .542 .731 

Langkar meadows .311 .385 .351 .389 .312 .578 

                                                             
1
 Formatting of Tables 3 to 5 :  values for Pearsons “r” (correlation coefficient) are underlined bold italic if the 

corresponding  significance (p) is less than 0.01, highlighted in simple bold if  p is less than 0.05, and grayed-

out if p is greater than 0.10. 



 

Table 4 Correlations of Land Surface Temperature (LST) vs 2-m air temperature (point observations). 

Station 
Astore Tmax 

vs Tday 

Gilgit Tmax 

vs Tday 

Skardu Tmax vs 

Tday 

Astore Tmin vs 

Tnight 

Gilgit Tmin vs 

Tnight 

Skardu Tmin 

vs Tnight 

Indus to Besham .457 .453 .358 .283 .016 .184 

NW UIB .489 .474 .309 .299 -.082 .227 

Hunza to Dainyor .725 .694 .657 .660 .335 .527 

Shigar to Shigar .736 .655 .679 .665 .310 .528 

Gilgit to Gilgit .671 .709 .590 .662 .219 .564 

Astore to Doyian .747 .710 .647 .664 .339 .532 

Ahmedabad nallah .548 .462 .466 .493 .154 .336 

Hassanabad nallah .637 .613 .587 .571 .198 .401 

Ishkoman valley .603 .576 .543 .590 .261 .477 

Kasundar nallah .591 .666 .552 .606 .184 .535 

Kunjekshal nallah .592 .541 .604 .525 .173 .420 

Langkar meadows .520 .563 .437 .556 .194 .510 

 

Table 5 Correlation between spatial variables within individual sub-catchments.  

Correlation besham nwuib hunza shigar gilgit astore 
ahmed-

abad 

hassan-

abad 

ishko-

man 

kasun-

dar 

kunjek-

shal 
langkar 

Tday to 

Tnight 
.779 .858 .860 .856 .852 .756 .656 .804 .815 .775 .656 .809 

Tday to 

SCA 
-.443 -.414 -.561 -.552 -.603 -.648 -.427 -.509 -.548 -.541 -.454 -.524 

Tnight to 

SCA 
-.339 -.286 -.477 -.473 -.496 -.560 -.473 -.410 -.393 -.478 -.315 -.487 

 

 


