

Newcastle University ePrints

Glenis V, McGough AS, Kutija V, Kilsby C, Woodman S.

Flood modelling for cities using Cloud computing.

Journal of Cloud Computing: Advances, Systems and Applications 2013, 2: 7.

Copyright:

© 2013 Glenis et al.; licensee Springer.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and

reproduction in any medium, provided the original work is properly cited.

DOI link to article:

http://dx.doi.org/10.1186/2192-113X-2-7

Date deposited: 20th January 2014

This work is licensed under a Creative Commons Attribution 2.0 Generic License

 ePrints – Newcastle University ePrints

http://eprint.ncl.ac.uk

Glenis et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:7 Page 4 of 14
http://www.journalofcloudcomputing.com/content/2/1/7

Cloud Enactor

Deploy

Terminate

Monitor

D
elta C

loud

U
ser interface

Figure 1 Architecture for Cloud parameter sweep. Outline architecture for Cloud parameter sweep system.

Cloud interaction is handled through the Cloud enactor
module. The archives are first uploaded to the Cloud data
store (such as Amazon S3 [11]) before Cloud instances
are deployed. Once deployed the Cloud enactor gives
each instance the locations of the archive(s) in Cloud
storage. The instance can then download and decom-
press these before executing them. The system provides
two execution models. If the maximum number of Cloud
instances is smaller than the number of parameter sweep
jobs then the tasks will be deployed through a HTCon-
dor [17] cluster, provisioned by the Cloud enactor, formed
from the deployed instances. We use HTCondor here
as our own deployment mechanism does not support
load-balancing of work across resources. However, if the
number of Cloud instances matches the parameter sweep
count then the jobs will just be deployed on the Cloud
instances. This removes the overheads of deploying and
using HTCondor on the Cloud just to execute a single job
per instance.

Once a task has completed then the files which remain
will be compressed before uploading to the Cloud stor-
age. Due to data transfer costs the application developer
is encouraged to delete any superfluous files as part of
his/her executable (or script) before the job terminates.

Once all tasks are completed on a given instance
then the instance will be terminated. All result data are
uploaded to the user’s own storage space on the Cloud for
later retrieval through the (command line) interface.

Parameter sweep enabling the CityCat application
“CityCat” is an urban flood modelling, analysis and visu-
alisation tool. It is based on the solution of the shallow
water equations using the method of finite volume with
shock-capturing schemes. Originally, CityCat was devel-
oped and compiled as a 32-bit application using Borland
Delphi [19], under the Windows operating system with an
integrated Graphical User Interface (GUI) for data prepa-
ration and visualisation of results. Figure 2 shows the

Figure 2 User interface of the original CityCat application. The Graphical User Interface for the Original CityCat application.

Glenis et al. Journal of Cloud Computing: Advances, Systems and Applications 2013, 2:7 Page 5 of 14
http://www.journalofcloudcomputing.com/content/2/1/7

original GUI. Note that, as well as dividing the landscape
up into a regular grid of cells, buildings are ‘stamped’
out of this grid. However, this configuration of CityCat
is not easily usable in a parameter sweep consisting of
many invocations as it requires the interaction of the user
through the GUI in each invocation. In order to over-
come this limitation a new version was developed by
separating the computational engine from the GUI. The
computational engine can be controlled through the use of
configuration scripts which contain the initial parameters
and the input/output file names.

The maximum addressable memory of 4GB for the
32-bit CityCat application limited the number of compu-
tational cells to less than one million. To overcome this
limitation a 64-bit version of the application was devel-
oped and this enabled simulations of much larger domains
using the high memory instances on the Cloud.

Deployment of a Windows application on the Cloud
requires the installation of the Windows OS at each Cloud
instance and this incurs additional costs. In order to avoid
unnecessary expenditure and allow for 64-bit compila-
tion (increasing the size of models that could be run),
the model was ported and compiled under Linux using
the Lazarus Linux IDE [20] and the Free Pascal compiler
[21]. This had an impact on the performance of the code,
increasing the execution time by approximately 10% –
assumed to be a consequence of moving from 32-bit to 64-
bit code and the Free Pascal compiler not optimising the
code as well as the Delphi compiler. However, as the sav-
ing in cost for using Linux based instances was at least 20%
this increase in execution time was considered acceptable
as it was felt that the increase in the number of instances
which could be run offset the increased execution time.

Scientific experimental environment
We have been able to apply the computational engine
of CityCat to much larger domains and for more exten-
sive event durations (through the ability to run multiple
long-running simulations on the Cloud). Three different
domains, ranging in size from one million to 16 million
cells were tested, much larger than the domains used in
current engineering practice – normally of the order of
5,000 to 50,000 cells. Additionally, for one of the domains,
four different grid sizes were used which resulted in very
different model sizes. Table 1 shows the different areas
used within this work. All of the pluvial flood models were
then run using a set of 36 rainfall events, containing a
combination of six different return periods and six dif-
ferent storm durations. See Table 2 for the storm details.
Rainfall events were generated following the standard
FEH procedure [22]. All these simulations required differ-
ent memory and computational effort leading to differing
run times. Table 3 presents the system requirements, in
terms of memory, for these simulations. Note that the

index for these simulations (column 1) matches with the
index (column 1) of Table 1.

Cost-time analysis for the CityCat simulations
Here we investigate the cost-time analysis of using
different Cloud options along with the relative cost
for performing the same work on locally provisioned
resources. The CityCat application is a single threaded
simulation model which is memory dominant – we
use the memory requirements which were presented in
Table 3.

As it is not possible to tell a priori the exact amount
of time that these simulations will take to perform we
instead define two metrics by which to compare the cost
of using each offering: cost per simulation hour and max-
imum number of hours available within a single month.
The cost per simulation hour for Cloud offerings is com-
puted as p/c where p is defined as the unit cost per hour,
for the Cloud instance, and c is the number of concurrent
runs of CityCat that the instance can handle without each
run affecting the others. For locally provisioned resources
we can define the cost per unit hour as p = E/M, where E
is the cost of purchasing the resource and M is the num-
ber of hours during which the work we are conducting
must be completed – in our case one month. We appreci-
ate that this artificially gives higher values for purchasing
resources locally and hence do not use this as justifica-
tion for using Cloud resources over local resources, only
including it here for comparison.

Although (in theory) the number of Cloud hours avail-
able per month is infinite there are practical limitations on
this, cost and vendor capping being the most significant.
Each vendor provides a capping limit on the maximum
number of instances which can be running concurrently –
Amazon for example limits this to 20 per region – though
this limit can be overcome through prior arrangement
with the vendor. We therefore provide a figure for the
number of hours available as c× i×h, where c is the num-
ber of concurrent runs of CityCat on the resource, i is the
number of resources that can be run (the lower of 36 or
the maximum number of resources which keeps us within
budget) and h is the number of hours per month. The
same equation is used for locally provisioned resources
with i limited to the number of resources which can be
purchased.

Note that a selection of Cloud providers have been eval-
uated here, though not all. All evaluations were conducted
in November 2011. Note that although each offering will
exhibit different run-times – a consequence of variations
in processor speed and memory bandwidth – these con-
siderations are not being taken into account here as we
expect these to be marginal. We present below only the
cost-time analysis for the small data problem (simulation
sets 1 and 4) – i.e. 3GB memory requirement, and the very

