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Abstract 

In recent years, the study of complex networks has been applied to many areas of research, 

including: mathematics, social sciences, biological systems and computer science.  It is often cited 

that Euler’s celebrated solution of the Konigsberg bridge problem, in 1735, is the first true proof in 

the theory of networks (Newman, 2003) and since this date several ‘notable’ advances in this area 

have been made.  This paper presents some of the more important advances, made in this field, that 

are applicable to the understanding of infrastructure networks.  The European air traffic network is 

then used as an example to demonstrate that graph theory can inform us about the change in 

performance of our infrastructure networks when they are subjected to different types of ‘disasters’. 

 



1 Introduction  

It could be argued that, the first ‘notable’ advance in network graph theory, relating to the 

application of real world problems, is the development of different network models.  The first 

network model developed was the random graph model (Erdos and Renyi, 1960) and has since been 

followed by the small-world network (Watts and Strogatz, 1998), the scale-free network (Barabasi 

and Albert, 1999) and most recently the exponential network (Liu and Tang, 2005).  Each of these 

network models has different evolutionary rules for attaching links between pairs of nodes, resulting 

in networks with different architectures (i.e. different arrangements of the links between nodes in 

the network).  The development of these different network models has been driven by the desire to 

model real world networks (e.g. the Internet, social networks) with increasing accuracy.  Today, 

many real world networks can be classified into one of the four main network architectures (classes) 

of network model. 

Another ‘notable’ advance is the identification of the hazard tolerance of each network class.  For 

example, it has been shown that the scale-free network is resilient to random hazard but vulnerable 

to targeted attack when compared to the random network (Albert et al., 2000) and this difference is 

due to their different network architectures.   

This paper expands upon these important advances and considers other more recent developments, 

including the extension of the theory to include spatial and interdependent networks and presents a 

number of examples that demonstrate the utility of complex graph theory in the analysis of these 

networks. 

2 Types of Networks and Network Modelling 

Probably the major contribution of network theory is its ability to describe generic properties of a 

network and in so doing give an indication of the behaviour of seemingly different systems.  

Different types of networks with different arrangements of links (connecting the nodes) have been 

discovered and some of their generic properties described.  The first developed network model was 

the Erdos and Renyi random graph model (Erdos and Renyi, 1960).  This is arguably the simplest 

graph possible (Albert and Barabasi, 2002) and has been shown to be a poor representation of real 

world network architectures (Newman, 2003); however, random graphs are useful and are normally 

used as a baseline for comparison with more structured networks (Lewis, 2009).  An example of 

this can be found in tests for network robustness presented in Batagelj and Brandes (2005).   

 

Figure 1 A sample random network and (b) the shape of its degree distribution (Barabasi and Oltvai, 2004). 

Figure 1 shows a sample random network and its associated degree distribution.  The degree 

distribution of a network is defined as the cumulative probability distribution of the number of 
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connections that each node has to other nodes (see Figure 2 for a further explanation).  From the 

degree distribution (Figure 1b) it can be seen that the nodes in a random graph model tend to have 

the same value of degree (this can also be identified from a visual inspection of the network in 

Figure 1a). 

  

Figure 2 The calculation of degree distribution is made by obtaining the degree of each node.  The degree of 

a node, k, is the number of links attached to this node from other nodes; for example if a node has 3 links 

attached to it, then it has a degree of 3.  (a) Shows a small sample from a scale-free network, created using 
Network Workbench, and shows the degree of each node (the dashed lines indicate links to other nodes in the 

network that have been removed from this figure for clarity).  The degree distribution of the network, P(k), 

gives the cumulative probability that a selected node has k or greater links.  P(k) is calculated by summing 
the number of nodes with k=1, 2,… links divided by the total number of nodes.  It is this distribution which 

allows for the distinction between different classes of network.  The degree distribution for the scale-free 

network (partly shown in (a)) is shown in (b) (Wilkinson et al., 2012). 

To more accurately model real world systems, Watts and Strogatz modified the random graph 

model by using the concept of ‘six degrees of freedom’ (Milgram, 1967) forming ‘small-world’ 

networks (Watts and Strogatz, 1998).  The main characteristic of small-world networks is that the 

majority of nodal pairs are not directly connected, but can be reached via very few edges.  The 

degree distribution is very similar to that of a random network (Figure 1b) (Barthelemy, 2011).   

Both the random graph model and the small-world network are characterised by a Poisson degree 

distribution (Network Workbench, 2009).  However, Barabasi and Albert discovered that real world 

networks (including, the Internet (Albert et al., 2000) and the World-Wide-Web (Barabasi and 

Albert, 1999, Barabasi et al., 2000) tend to form a power law degree distribution.  Networks that 

follow this power law are more commonly known as scale-free networks.   
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Figure 3 (a) A sample scale-free network and (b) its degree distribution (Barabasi and Oltvai, 2004) 

These scale-free networks include a small number of highly connected nodes (nodes with a high 

degree) and a large number of poorly connected nodes (nodes with a small degree).  This can be 

seen visually in the sample network shown in Figure 3a and by the associated degree distribution in 

Figure 3b.   

Other real world networks, such as power grids, have been found to have an exponential degree 

distribution and so can be classed as exponential networks (Liu and Tang, 2005).  The origins of 

exponential networks are unclear and no one individual (or group) appears to be cited with their 

discovery; however, they have been used in many studies of real world networks including those by, 

Albert et al. (2004), Amaral et al. (2000), Bompard et al. (2011).   

 

Figure 4 Degree distribution for the North American Power Grid, a real world example of an exponential 

network (Deng et al., 2011) 

The degree distribution for exponential networks is shown in Figure 4; in these networks the value 

of degree for the high degree nodes is lower than that of scale-free networks, but higher than those 

in a random network (for a network with the same number of nodes and links)  (Albert et al., 2004).   

When the previous studies described the various classes of network, they did so assuming that they 

were ‘isolated systems’ - meaning that they were independent of each other and therefore could 

function and grow without relying on resources provided by other systems.  While this assumption 

holds true for the network generation algorithms, to accurately model real world systems it could be 

argued that these systems should be modelled as ‘networks of networks’ (i.e. modelling the 

dependence of one system on another) (Gao et al., 2011, Pederson et al., 2006).  For example, the 

successful operation on an electrical distribution system relies on a supply of water for cooling and 

ICT systems for control and management; i.e. the system relies on other networks to function and 

therefore, when considering its hazard tolerance, should be modelled as a ‘network of networks’.  

Figure 5 shows an example of an interdependent network, where network ‘A’ (show in orange) is 
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connected to network ‘B’ (shown in blue).  The nodes in the system which are reliant on each other 

are indicated by the red dashed lines. 

 

Figure 5 model of an interdependent network, where the ‘A’ nodes belong to one network and the ‘B’ nodes 

to another network.  The single system links in these networks are shown by the solid lines and the 

interdependency links are represented by the dashed lines (Fu et al., 2012).   

3 Previous Research using Network Theories 

Previous research has used network theory to examine the properties of many real world networks, 

including; social networks (Amaral et al., 2000, Newman et al., 2002, Arenas et al., 2003), neural 

networks (Sporns, 2002, Stam and Reijneveld, 2007), biological networks (Rual et al., 2005) and 

computer science (Valverde and Solé, 2003), to name but a few. 

Recently network theory has also been applied to infrastructure networks, aiming to classify them 

into one of the four main classes of network model.  This research has primarily focused on the 

analysis of transportation systems, communication systems and electrical distribution systems 

(power grids). 

Transportation Systems - Subway networks have been analysed and shown to belong to the small-

world class of network (Latora and Marchiori, 2002).  However, within this area it appears that 

airline networks receive the most attention, being analysed at a country (Li and Cai, 2004, Bagler, 

2008, Han et al., 2008), continental (Wilkinson et al., 2012) and whole world (Guimera and Amaral, 

2004) scale.  These networks have been analysed as both un-weighted and weighted network 

models (in the case of the weighted networks, the links are given an increased importance 

depending on the number of flights on a particular day (Chi et al., 2003)).  Both directed networks 

(where the direction of flights between airports is considered (Han et al., 2008)) and undirected 

networks (where only the presence of a flight route is considered (Wilkinson et al., 2012)) have also 

been analysed.  Airline networks cannot easily be placed into a single network class because they 

include elements of both the scale-free and exponential network architectures.  This architecture has 

been classed as a truncated scale-free distribution (or a scale-free distribution with an exponential 

‘tail’).  Figure 6 shows the degree distributions for the airline networks of China and the US.   



 

Figure 6 Degree distribution for (a) the China airline network and (b) the US airline network (Li et al., 2006) 

Communication Systems – The Internet and the World-Wide-Web are the two most analysed 

networks within communication systems.  They have been shown to belong to the scale-free 

network class (Albert et al., 2000, Cohen et al., 2000, Albert et al., 1999), the degree distribution of 

the World-Wide-Web is shown in Figure 7. 

 

Figure 7 Degree distribution of the World-Wide-Web (Strogatz, 2001) 

Electrical Distribution Systems (Power Grids) – These systems are perhaps one of the most 

complex human-constructed networks (Costa et al., 2007), comprising of transmission lines, which 

connect power sources (e.g. nuclear power station) to power consumers (e.g. industry and 

residences etc.).  Studies have focused on the analysis of the North American (Kinney et al., 2005), 

European (Sole et al., 2008) and Italian power grids (Crucitti et al., 2004), classifying them as 

exponential networks (Rosas-Casals et al., 2006).  Figure 8 shows the degree distribution for the 

Italian power grid. 
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Figure 8 Degree distribution for the Italian power grid (Crucitti et al., 2004) 

4 Network Generation Algorithms 

Each of the four main network classes has its own set of ‘rules’ which govern the formation of links 

between pairs of nodes in the network model (i.e. they define how the network ‘grows’ with time).   

Random Networks – The network generation algorithm for random networks is possibly the 

simplest of all the network models.  The network starts with the total number of nodes and each pair 

of nodes is considered in turn and a connection (link) is made between them based upon the value 

of linking probability (the higher this value the more likely it is that a link will be generated) (Erdos 

and Renyi, 1960).  If the linking probability is equal to 1, then the network will be fully ‘saturated’ 

(i.e. it will have the maximum possible number of links) and if this value equals 0 there will be no 

links in the network.  It is possible to have isolated nodes (nodes without any connecting links) in 

the network using this generation algorithm, usually occurring when the value of linking probability 

is very small. 

Small-World Networks – Similarly to the random network model, the algorithm starts with the total 

number of nodes in the network; although, these nodes are connected (via links) to a number of 

initial neighbours.  It is the number of initial neighbours which determines the total number of links 

in the network (as no new links are added).  For example, for a network with 20 nodes and a 

number of initial neighbours as 2, there will be 40 links in the network (i.e. each node starts with 

two links).  These initial links are then ‘rewired’ using a rewiring probability, the higher the value 

of this probability the higher the number of links that are rewired.  Figure 9 shows the effects of the 

rewiring probability, p.  For p = 0 no links are rewired and the resulting network is regular in 

structure, for p = 1 all links are rewired resulting in a random network. 

 

Figure 9 Showing the effects of the rewiring probability (p) in the small-world generation algorithm (Watts 

and Strogatz, 1998) 



Scale-Free Networks – The Barabasi and Albert (1999) scale-free network is based upon the ideas 

of growth and preferential attachment (Boccaletti et al., 2006).  These networks are formed by 

starting with an initial number of isolated nodes, m0 (usually a small percentage of the total number 

of nodes in the network).  New nodes are then added to the network at each ‘timestep’ 

(i.e. ’growing’ the network) until the total number of nodes in the network is reached.  These added 

nodes have between 1 and m0 links attached to them and attach to the existing nodes in the network 

based upon the idea of ‘preferential attachment’.  The probability of attaching to each existing node 

is calculated based upon its degree, with the nodes with a high degree being more likely to ‘attract’ 

a link from the new node (i.e. the rich get richer).  It is this ‘preferential attachment’ rule which 

results in a few high degree nodes and many small degree nodes in the network. 

Exponential Networks – This network class is not as well documented as the other three classes and 

few network generation algorithms exist for creating exponential networks.  However, Liu and 

Tang (2005) propose a model based upon the Barabasi-Albert scale-free network (including the 

ideas of growth and preferential attachment).  In their model, the network starts with a few fully 

connected nodes (m0), unlike the Barabasi-Albert scale-free model in which these initial nodes are 

not connected.  At each ‘timestep’ a new node is introduced to the network with a number of links 

between 1 and m0 (this continues until all nodes have been added to the network).  The idea of 

preferential attachment is still used to connect to existing nodes to in network; however, this is 

modified so that the probability of attachment is not based upon the degree of the existing node, it is 

based on the degree of the connected nodes (to this node).  Meaning that a node with a low degree 

can still ‘attract’ links from new nodes if it is connected to existing high degree nodes.  This results 

in a network where the high degree nodes have a degree higher than those in random networks, but 

lower than those in scale-free networks.   

Until recently, networks have only been generated as topological network models and a spatial 

element has not been considered in their generation (i.e. only the physical connection between nodal 

pairs was considered, not the physical distance between nodal pairs).  However, as the analysis of 

real world networks turns from the Internet and the World-Wide-Web (both requiring only very 

little space to operate) to airline and electrical distribution systems (requiring large amounts of 

space) the spatial element of these networks is becoming increasing important in their analysis.  

Network generation algorithms are therefore beginning to explore ways to include a spatial element, 

using the topological networks generation algorithms as a starting point.   

For example, Gastner and Newman (2006) propose a model for connecting links between pairs of 

nodes, based upon their separation distance.  They include a variable parameter, λ, in their 

algorithm, which is used to simulate users’ preference.  For example, when λ = 0 the resulting 

network resembles an airline network, in which users want to minimise the number of flights in 

their journey; and when λ = 0 the resulting network resembles a road network where users want to 

minimise the length of their journey (Figure 10).  A similar model is constructed by Qian and Han 

(2009), where a variable can be altered and at the two extreme values for this parameter the 

resulting network again resemble airline and road networks. 



  

Figure 10 Generating networks with different spatial layouts, depending on user preference (λ), where: (a) λ 

= 0, (b) λ = 1/3, (c) λ = 2/3 and (d) λ = 1 (Gastner and Newman, 2006). 

In these spatial network algorithms, the locations of the nodes are generally pre-allocated and are 

usually based upon a real system (i.e. the main aim is to define the rules which govern link 

formation between pairs of nodes, rather than to understand the rules that govern nodal location.   

One of the few studies not to have used pre-allocated node locations is that of Wilkinson et al. 

(2012).  In this work they showed that the location of nodes within the European Air Traffic 

Network exhibited a bilinear form; meaning that they were uniform with distance from the 

geographical centre of the air traffic network up to radius of approx. 1,500 km, after which the 

distribution of both airports and their degrees becomes sparser but remains relatively uniform.  The 

reason for this change in grade was because the considered area extended into the Atlantic Ocean in 

the west, and the border of the European Union in the east.  They went on to demonstrate that 

accurate degree distribution could be obtained by randomly selecting nodal locations so that they 

fitted this distribution.  This study also demonstrated that space does play a role in the degree 

distribution of a network as poorly connected nodes can capitalise on their close proximity to a 

highly connected hub by attracting links that were bound for the high degree hub.  This 

modification also leads to the network having an exponential degree distribution. 

5 Hazard Tolerance of Network Architectures and Failure 

Modes 

Studies have shown that each class of network has its own hazard tolerance when subjected to 

different types of hazard.  The two most researched and best documented network classes are the 

random and scale-free networks.   

The random network model is normally used as a baseline for tests of network robustness (Batagelj 

and Brandes, 2005) and responds with the same level of resilience for different types of hazards.  

This is due to each node in the network having approximately the same number of links (and 

therefore the same effect to the network then removed) (Albert et al., 2000).  Whereas the scale-free 

network, has been shown to have different levels of robustness to different hazard types.  This class 

of network is robust to random hazards (which are more likely to remove one of the numerous low 

degree nodes, rather than one of the few high degree nodes) and vulnerable to targeted attack 

(which is likely to remove one of the few high degree nodes in the network) (Albert et al., 2000).   

The robustness of small-world networks is not well documented, however considering the degree 

distribution (which is similar to that of a random network) it could be argued that they respond in a 

similar way to random networks.  Similarly, the hazard tolerance of exponential networks is not 

well documented and could be considered to be in between that of the random and scale-free 
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networks (as exponential networks have high degree nodes with values of degree that are higher 

than that of random networks, but not as high as scale-free networks).   

Studies have also shown that real world networks respond to hazards in the same way as their 

network class.  For example, Cohen et al. have considered the resilience of the Internet to random 

breakdown (Cohen et al., 2000) and to targeted attack (Cohen et al., 2001); finding that the Internet 

(a scale-free network (Albert et al., 2000)) is resilient to random hazard, but vulnerable to targeted 

attack, corresponding with the hazard tolerance of its network class (Albert et al., 2000). 

With the development of spatial network models, the spatial hazard tolerance of these networks is 

starting to be considered (i.e. subjecting spatial network models to hazards that have a spatial 

component).  This hazard tolerance does not necessarily correspond to the topological hazard 

tolerance of the network.  For example, the European airline network is a truncated scale-free 

network and should be resilient to random hazards (Wilkinson et al., 2012).  However, when 

considering the spatial component in both the layout of the network (the nodes and links) and the 

random hazard (which was spatially coherent) in the analysis the results suggested that this class of 

network is vulnerable to spatial hazard.  This is due to the combination of geographical distribution 

and network architectures jeopardising the inherent hazard tolerance of the network (Wilkinson et 

al., 2012).   

The hazard tolerance of interdependent networks has also been considered in previous studies, and 

these networks have been shown to be more vulnerable to hazard (when compared to analysing 

these systems in isolation).  For example, building on the work of Buldyrev et al. (2010), Fu et al 

(2012) coupled two random networks (using a model similar to that shown in Figure 5) and showed 

that interdependent networked systems can be more vulnerable than an individual (uncoupled) 

network.  In this study nodes were removed randomly from the network and the network 

performance was assessed using the relative size, P, of the largest connected component in the 

remaining network (Figure 11, Figure 12). 

 

Figure 11 Performance comparison of an interdependent network against that of a single network, where q 

is the fraction of the nodes removed in the network (using random node removal) and P is the relative size of 

the largest connected component in the remaining network.  Each curve represents the mean performance of 
100 simulations of interdependent networks that couple two 10,000 node random networks (Fu et al., 2012).  

 



 

Figure 3: Aggregate performance of interdependent networks A and B when K (the average 

interdependent degree or number of supporting nodes that a dependent node is directly connected to) 
and F (the portion of dependent nodes that a network has) are varied. Each point represents the mean 

performance of 100 simulations of interdependent networks that couple two 10,000-node Erdős–Rényi 

networks (Fu et al., 2012). 

6 Network Measures 

There are two different categories of network measure, one category considers the performance of 

the network and the other category considers the importance of individual nodes in the network. 

In the performance category, there are numerous measures that can be used to show different 

aspects of network performance.  The most commonly used are: 

Shortest Average Path Length (APL) –captures the concept of efficiency in a network (Boccaletti et 

al., 2006).  It is defined as the average number of steps along the shortest paths for all pairs of nodes 

in the network.  The higher the value of shortest average path length the more inefficient the 

network (as on average there are more steps between each pair of nodes).   

Diameter (D) – this is the maximum shortest path length in the network (Boccaletti et al., 2006).  If 

the network is fragmented (i.e. contains groups of nodes that are not connected via links) then this 

value refers to the maximum shortest path length in the largest cluster (Nojima, 2006).   

Number of Clusters (NC) – if the network is fragmented this measure represents the number of 

clusters which contain two or more nodes (i.e. it does not contain isolated nodes) (Nojima, 2006).  

For fully connected network (i.e. one that is not fragmented) this value is equal to 1. 

Maximum Cluster Size (MCS) – the total number of nodes in the largest cluster of the network 

(Nojima, 2006).  For a network that is not fragmented this value is equal to the total number of 

nodes in the network. 

Studies have used these measures to show how a network ‘degrades’ when different attack 

strategies are used to assess hazard tolerance.  For example, Nojima (2006) used these measures to 

show how the Japanese airline network responds to random node removal and preferential node 



removal (based upon node degree, i.e. nodes are removed in order of high to low degree).  This 

study found that removing nodes preferentially degraded the network much quicker than using 

random node removal (the maximum cluster size of the network decreased sharply and the diameter 

and average path length increased noticeably with the removal of only a small percentage of the 

total nodes in the network).  Another study by Albert et al. (2000) also subjected networks to two 

different attack strategies to assess their impact on network performance.  Again, a random node 

removal strategy and an attack strategy (based upon node degree) were used.   

Other researchers have tried to develop more sophisticated measures of establishing the importance 

of nodes, rather than just using node degree.  The most widely used measures are known as 

centrality measures and have been used to show that these high degree nodes are not necessarily the 

most important in the network (for example, Guimera et al. (2005)).   

Betweenness Centrality – is the proportion of all shortest average path lengths between pairs of 

other nodes that include this node (Freeman, 1979, de Nooy et al., 2005) and is based on concept 

that central nodes are included on the shortest average path length of pairs of other nodes (de Nooy 

et al., 2005). 

Closeness Centrality – is defined as the mean shortest path between that node and all other nodes 

reachable from it (nodes that tend to have a small shortest path length between other nodes in the 

network have a higher value of closeness) (de Nooy et al., 2005, Freeman, 1979) and comprises the 

idea of speed of communication between pair of nodes in a network (de Nooy et al., 2005, Cadini et 

al., 2009). 

Centrality measures have been previously applied to social networks (Everett and Borgatti, 1999) 

with the aim of identifying the central person / figure or group / class in a social network.  Recently, 

these measures have also been applied to infrastructure networks (Choi et al., 2006, Crucitti et al., 

2006).  However, these studies do not consider how the services that the network provides flows 

around the network, nor do they stress the network (by removing nodes and / or links) to gauge the 

effect on performance.  It is therefore unproven as to whether the node with the highest value of 

centrality would have more of an effect on the network, when removed, compared to the node with 

the highest value of degree.   

7 Example Vulnerability Assessment of the European Air 

Traffic Network 

In this paper, we demonstrate how graph theory can be applied to an infrastructure network to 

quantify the change in network performance when subjected to different hazards.  We use the 

European air traffic network (Figure 12) and stress the network using four different ‘attack 

strategies’ and quantify the change in performance using four different measures. 



 

 

Figure 12 Showing (a) the European air traffic network (the black circles are the airports and the red circle 
is the geographical centre of the network, weighted by airport degree, the air routes have been omitted for 

clarity) and (b) its degree distribution. 

The European airline network consists of 525 airports and 3886 air routes and has previously been 

analysed by Wilkinson et al. (2012) and shown to follow a truncated scale-free distribution (Figure 

12b); as such it should be resilient to random hazard but vulnerable to targeted attack.  Nodes are 

removed from the network in four different orders to enable the range of hazards to be simulated: 

 Random Node Failure – nodes are removed randomly from the network.   

 Degree – nodes are removed from the network in the order of highest to lowest degree.  

Previous studies have used this attack strategy to simulate a targeted attack, i.e. the ‘worst 

case’ scenario. 

 Betweenness Centrality – similar to the ‘degree attack’ nodes are removed from the network 

based upon their value of betweenness centrality (highest to lowest).  Previous studies have 

shown that the node with the highest value of degree is not necessarily the most ‘central’ or 

‘important’ node in the network and therefore may not have the largest effect when removed 

(i.e. basing node removal on degree may not simulate the ‘worst case’ scenario).   

 Spatial Hazard – this hazard is based entirely upon the spatial layout of the network (unlike 

the other three attack strategies, which are based upon topological measures).  The hazard 

starts in the geographical centre of the network (calculated using the position of the airports, 

weighted by their degree, Figure 12a) and then ‘grows’ outwards, removing nodes from the 

network in order of their distance from the geographical centre. 

To assess how the network changes (in terms of performance and connectivity) when the attack 

strategies are applied, we use four measures, two describing the connectivity of the network (NC, 

MCS) and two describing the change in network performance (APL, D) (Nojima, 2006).  



  

  

Figure 13 Correlating the percentage of airports (nodes) removed from the European air traffic network, 

when subjected to different attack strategies, and network performance measures: (a) shortest average path 

length, (b) diameter, (c) maximum cluster size, and (d) number of clusters. 

Figure 13 shows the results of correlating the percentage of airports removed, with the performance 

and connectivity measures.  For all measures it can be seen that removing nodes based upon their 

degree or betweenness centrality have similar results (i.e. the red and green lines follow similar 

trends) and the random node failure and spatial hazard attack strategies also follow similar trends 

(blue and purple).   

Considering the network performance measures (Figure 13 a, b) removing nodes based upon their 

degree has the ‘worst’ effect to the network.  Both the APL and D both increase significantly when 

around 20% of the nodes are removed, meaning that the network is now inefficient at transporting 

air passengers.  Then, when around 30% of the nodes in the network have been removed, the values 

of APL and D dramatically reduce.  This is because the network has broken into many small 

clusters each having small APL and D (i.e. the MCS has collapsed - reducing to 15 when 30% of 

the nodes have been removed).  Both the decrease in MCS and the increase in NC (Figure 13d) 

suggest that these two attack strategies quickly fragment the network, rendering it impossible to 

travel to all parts of the network.   

Both the random node failure and spatial hazard, remove nodes that do not significantly affect the 

APL and D (Figure 13a, b); however, the spatial hazard is slightly worse.  Both of these attack 

strategies affect the connectivity of the network in much the same way, i.e. they both cause the 

MCS (Figure 13c) to decrease almost linearly with the percentage of nodes removed and do not 

cause the network to break into a significant number of clusters (Figure 13d).   

From these results it can be argued that the network is vulnerable to targeted attack (based upon 

both the degree and betweenness centrality) when compared to a random hazard.  It can also be 

argued that the network is resilient to spatial hazards; however, these results are misleading as we 

are not plotting the degradation in performance in terms of size of the hazard.  A previous study by 
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Wilkinson et al. (2012) showed that the European airline network is in fact vulnerable to spatial 

hazards as shown in Figure 14; and is a strong argument for further research in determining the 

hazard tolerance of geographically distributed networks.  Other future research that needs to be 

conducted is to assess the effects of edge weighting (i.e. number of flights on each route) as well as 

considering the knock on effects due to interdependence between networks.  For example how are 

other types of infrastructure system (e.g. the train network) affected when parts of the airline 

network are removed e.g. can they cope with an influx of extra passengers due to the cancellation of 

flights, or alternatively can they offer sufficient redundancy by providing other modes of travel.  

 

Figure 14 Plotting the maximum cluster size of the network and (a) percentage of closed airports and (b) 

percentage of closed airspace, when subjecting the network to two types of spatial hazard.  The results show 

in (a) show a similar trend to those shown in Figure 13c, for the spatial hazard, and seem to indicate that the 
network is resilient to spatial hazards.  However, when the size of the hazard is considered (d) the network is 

shown to be vulnerable (Wilkinson et al., 2012).   

8 Conclusions 

In this paper, we have presented some of the important advances in the field of graph theory and its 

applications to analysing real world networks (including: social, biological and infrastructure 

networks).  We have discussed the current advances and research in the field which aims to increase 

the accuracy with which we can model real world systems. 

We have used the European airline network to show how graph theory can be used to analyse the 

effects of four different ‘disaster’ scenarios.  The simulations presented quantified the change in 

network performance and connectivity and demonstrated that the resilience of this network is 

different for all four hazards.  We have also demonstrated that when considering real world 

networks, it is important to consider the spatial distribution of the network because, not only does 

space influence the architecture of the network, but simple metrics that just consider network 

connectivity may not give the full picture of hazard tolerance.  We suggest that more research is 

required to better understand the hazard tolerance of spatially distributed networks and the influence 

that weighted edges may have on this tolerance.  We also suggest that research is required on how 

other networks may be affected by their dependency on a failed network or conversely, the 

possibility of other networks providing redundancy by carrying the services of the failed network in 

different modes. 
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