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in species assemblages are evident among the samples, with
the most notable transition at c 320 cm depth, when the
abundance of P. levanderi and C. rossii decline markedly and
the abundance of the small Staurosira/Staurosirella species
increasingly dominate. In the larger size fraction (>38mm),
28 different diatom species were identified. The assemblages
are dominated by six species (Didymosphenia geminata,
Surirella robusta, Surirella splendida, Pinnularia turnerae,
Rhopalodia gibba and Campylodiscus hibernicus), with a
combined relative abundance of 85% across all samples
(Fig. 4A). The diatom assemblage in this larger fraction is

distinctly different from that of the smaller size fraction; they
are not merely larger specimens of the same species. The
transition at �320 cm depth is also evident in the larger size
fraction, with a marked increase in D. geminata, P. turnerae
and R. gibba, which replace C. hibernicus and Surirella
species. The unprocessed bulk sediment samples are com-
posed of the same diatom assemblages found in both the
purified d18Odiatom size fractions (Fig. 4C). However, the
larger >38-mm diatoms only represent �1% of the relative
abundance across all bulk sediment samples.

d18Odiatom values

The d18Odiatom values from Heart Lake range from þ28.8 to
þ33.4‰ (Fig. 5). Comparing the two size fractions, d18Odiatom

values differ by 0–1.2‰ (r2¼ 0.75, P<0.05), with a mean
difference of �0.01‰. Duplicate analyses of d18Odiatom

indicate an analytical reproducibility (1s) of� 0.19‰ for the
smaller (3–38mm) fraction,� 0.49‰ for the larger (>38mm)
fraction and� 0.31‰ for the BFCmod laboratory diatom
standard. All 20 pairs have d18Odiatom values within the
combined analytical uncertainty of� 1.06‰ (2s) for the two
size fractions. Neither fraction is consistently more isotopical-
ly positive or negative relative to the other, and the two
values are similar down core, aside from two samples at
147.5 and 161.5 cm depth where they diverge.
The relationships between d18Odiatom and diatom assemb-

lages were evaluated using principal components analysis
(PCA) (Fig. 5B, C) (ter Braak and Prentice, 1988). A PCA was
applied to a correlation matrix based on the dominant diatom
species in all 20 samples, in both size fractions. The
stratigraphic changes are captured in the first and second
PCA axes, which account for 49.9 and 29.9% of variance in

Figure 3. Fourier transform infrared Spectra (FTIR) of purified Heart
Lake diatom samples (thin lines) and the BFCmod diatom standard
(thick dashed line) composed of pure diatomite. The grey shaded
areas indicate the separate hydroxyl (–OH) and silica components.
This figure is available in colour online at wileyonlinelibrary.com.

Figure 4. Stratigraphic changes in Heart Lake dominant diatom assemblages in the (A) large >38-mm, (B) small 3- to 38-mm and (C) bulk
(unprocessed) sediment diatom size fractions. Corresponding SEM images of selected diatom species are presented below each graph.
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the small size fraction (Fig. 5B), and 55.3 and 17.0% in the
large fraction (Fig. 5C).

Discussion

All 20 pairs of diatom size fractions have differences in
d18Odiatom within the 2s uncertainty range of this technique.
Furthermore, the mean difference between the two data sets is
close to zero (m¼�0.01‰) and indicates the two d18Odiatom

records are not statistically different (Fig. 6).
The diatom assemblages from the two size fractions are

composed of entirely different species, and the relative
abundance of each species varies through time (Fig. 4). The
main growing season of diatoms identified in Heart Lake
occurs in spring following winter snow melt, when sediment
and nutrient input to the lake is high and temperatures begin
to increase. While some species such as D. geminata are
known to reside in freshwaters year-round, the main bloom
occurs in late spring and summer (Whitton et al., 2009).
C. hibernicus, which is dominant in the lower section of the
core, also blooms in both spring and autumn (Griffiths, 1923;
Ramrath et al., 1999). Autumn diatom blooms are typically
caused by the breakdown of summer stratification and
entrainment of nutrients while there are still sufficient light
levels for growth (Round et al., 2007). Temperatures in Heart
Lake are consistently low year-round and the lake water is
well mixed, meaning autumn blooms are unlikely to occur.
As a result, both size fractions of the diatom sample capture
the spring/summer d18Odiatom signal when their silica frustule
is formed (Moschen et al., 2005), and this rules out possible
‘seasonal-effects’ on d18Odiatom values.

Aside from the planktonic/tychoplanktonic species C.
rossii, all the dominant diatom species in Heart Lake are
generally benthic and occupy the same habitat and pool of
water (d18Owater). Heart Lake is 7.6m deep and is likely to be
well mixed. Given the similarity between the d18O value of
precipitation and lake water at Heart Lake, isotopic enrich-
ment due to evaporation is insignificant. Any so-called water
column effect is probably only applicable to deeper lakes
than Heart Lake, or within the marine environment where
there may be variations associated with different water
masses. We can therefore assume all pairs of diatom fractions
analysed for d18Odiatom formed their silica frustules under the
same environmental conditions (i.e. depth, temperature,
d18Owater). Although there are subtle differences between
species habit, with some being solitary (e.g.C. hibernicus),
some colonial (e.g. D. geminata), others motile (i.e.C. rossii),
attached to substrata (e.g. R. gibba) or a combination of the
above, these attributes appear insignificant given there is no
discernible difference in d18Odiatom.
Evidence of a size-related species effect on d18Odiatom has

previously been documented in the marine environment,
although these results are rather inconclusive. Swann et al.
(2007) report more positive values of d18Odiatom in smaller
diatoms compared with larger ones, but further research
suggested the opposite (Swann et al., 2008). Diatom size is
also inherently linked to growth rate, with most diatoms
exhibiting a gradual reduction in size/growth with increasing
maturity and successive cell division (Round et al., 2007).
We cannot quantify the growth rate of specific diatoms within
our sediment record, but we note in each size fraction the
diameter of any given species does not vary visibly (Fig. 4).

Figure 5. (A) Heart Lake d18Odiatom records from diatom size fractions of 3–38mm and >38mm with analytical error. Principal components
analysis of Heart Lake d18Odiatom and dominant diatom assemblages are displayed in the biplots showing the (B) 3–38-mm size fraction, and (C)
the >38-mm size fraction. This figure is available in colour online at wileyonlinelibrary.com.
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While it would be incorrect to assume growth rates are
consistent across all species, there is no evidence for a
relationship between diatom size and the amount of fraction-
ation in our samples, with no one size fraction consistently
more positive or negative in d18Odiatom relative to the other
(and within analytical error).
Visual inspection of all samples by light microscopy

and SEM revealed no obvious sign of contamination (e.g. SPT,
minerals, tephra), which is further confirmed by FTIR analysis.
As the fluorination process will liberate oxygen from any
oxygen-bearing mineral in the sample (Brewer et al., 2008),
having ensured the diatoms are clean and free from contami-
nant, we consider the d18Odiatom data to be reliable.

Species-specific effects

In the large size fraction (>38mm), the diatom species C.
hibernicus and R. gibba show the strongest correlation with
downcore variation in d18Odiatom, in positive and negative
associations (i.e. with more positive d18Odiatom, the abundance
of C. hibernicus increases and the abundance of R. gibba
decreases) (Fig. 5C). In the small (3–38mm) diatom fraction,
C. rossii and S. construens are most closely related with
d18Odiatom, in positive and negative associations (Fig. 5B). The
remaining dominant diatom species, in both size fractions,
appear unrelated to the d18Odiatom vector in the PCA, with
several species being orthogonal to the d18Odiatom gradient (D.
geminata, S. splendida, P. turnerae, P. brevistriata, R. pusillum;
Fig. 5B, C). Given only two different species drive �50% of
the variance in each size fraction, and there is no discernible
difference in the d18Odiatom signal from these two fractions, we
therefore find no evidence to suggest there is a species-driven
effect controlling d18Odiatom. C. hibernicus disappears from
Heart Lake above 254.5 cm, but there is no evidence of a
concurrent shift in the d18Odiatom record at this time. The data
therefore suggest stratigraphic shifts in diatom assemblages are
ecological responses to climatic and environmental changes,
as well as in the d18Odiatom record, rather than driving the
isotopic signal thorough differences in species-specific fraction-
ation. Determining the precise environmental and ecological
factors driving species assemblages and changes to d18Odiatom

is, however, beyond the scope of this paper.
The diatom composition of the two size fractions analysed

here represents different species assemblages and are consid-
ered independent of each other. If species-dependent vital
effects were present, we would expect the d18Odiatom data for
each size fraction to deviate and be consistently offset from

one another. While the data do not establish whether diatoms
precipitate their silica in isotopic equilibrium with lake water,
they demonstrate different species of diatoms fractionate
oxygen isotopes at a similar magnitude.

Conclusions

d18O from diatom silica is generally presumed to precipitate
in isotopic equilibrium with the surrounding water, but the
presence of species-dependent vital effects on fractionation
has, until now, been unclear. Our d18Odiatom data from Heart
Lake reveal only small differences (0–1.2‰, n¼20) between
two size fractions containing different diatom species assemb-
lages. Given all differences are within the combined analyti-
cal error of the technique, it suggests there is no species- or
size-related effects controlling fractionation of d18Odiatom and
bulk d18Odiatom samples are suitable for investigating palae-
oenvironmental change at Heart Lake.
Diatom species analyses of both the raw sediment and the

purified diatom samples reveal some diatom species were lost
during preparation for diatom oxygen isotopes. However,
considering these species account for <1% of overall
abundance across all samples, we conclude the purified
samples analysed for d18Odiatom are representative of the
species found within the raw sediment. It is therefore advised
that samples for d18Odiatom follow the same rigorous prepara-
tion and analytical procedures employed here.
d18Odiatom measurements from lacustrine diatom silica are

a reliable and valuable method for reconstructing past
d18Owater. As diatoms are found in nearly all aquatic environ-
ments, d18Odiatom records offer an important source of
information in regions devoid of other proxies available for
isotopic analysis (e.g. carbonates), such as in the high-latitude
regions. Considering the presence of small offsets in our two
records, we advise interpreting shifts in d18Odiatom only where
the magnitude of change is greater than the combined
analytical error for those samples.
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