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Abstract 
 

Statins are one of the most potent drugs in delaying age-related inflammatory 

changes in the arterial vessel wall, slowing down the progression of atherosclerosis. 

Statins have also been shown to abrogate telomere-attributed cardiovascular risk. 

The goal of our study was to explore a potential effect of atorvastatin on telomerase 

activity in peripheral blood mononuclear cells (PBMCs) and T-lymphocytes (T cells). 

 

Methods and Results: Treatment  with pharmacologically relevant concentrations 

(0.1-0.3 mM) of atorvastatin resulted in a 6-fold increase of telomerase activity (TA) 

(p<0.0001) in human and mouse PBMCs and CD4 T cells, translating into moderate 

proliferation of T lymphocytes. In contrast, high doses of atorvastatin (2 - 5 mM) or the 

addition of LDL cholesterol completely inhibited proliferation, thereby abrogating 

telomerase activity. The proliferative effect of atorvastatin was ablated by the 

absense of the catalytic subunit of telomerase, telomerase reverse transcriptase 

(TERT). Using transgenic GFP-mTert reporter mice, we observed a decrease in 

telomerase-positive lymphocytes from 30% to 15% during the first 5 months of age 

(p<0.01). This suggests that the decrease in immune cell turnover during normal 

development and maturation is mirrored by a reduction in telomerase activity in 

lymphocytes in-vivo. 

 

Conclusion: Atorvastatin and cholesterol have opposing effects on telomerase in 

mononuclear cells and T-lymphocytes. Our study suggests a link between 

cholesterol metabolism and telomere-related cardiovascular risk.   
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Introduction 

Telomerase is a ribonucleoprotein composed of an RNA subunit (TERC), serving as 

a template for telomere repeat addition, and a reverse transcriptase (TERT) subunit 

that facilitates the replication of telomeres, the ends of chromososmes [1,2]. TERT 

also has additional functions beyond telomere maintenance. These include the 

control of gene expression, chromatin organisation and mitochondr ia shuttling [3-5].  

Multiple studies so far have provided evidence for an association of short telomeres 

with conditions of increased oxidative stress, including smoking, obesity and 

coronary heart disease (CHD) [6-11]. In a cohort of 1500 patients the WOSCOPS 

substudy identified that the telomere-attributed risk of developing coronary heart 

disease was attenuated by treatment with pravastatin [12]. Atorvastatin has been 

demonstrated to reduce oxidative stress in various clinical studies, including patients 

with atherosclerosis, hypercholesterolemia, rheumathoid arthrits, chronic kidney 

disease and polycystic ovarian syndrome [13-18]. However, it remains unclear 

whether short telomere length is only a bystander in atherosclerosis and whether 

statins can exert a direct effect on telomere length. We previously published that 

telomere length shortening in CHD patients, when compared to age-matched 

controls, is more pronounced in T-lymphocytes (T cells) than in myeloid cells, 

suggesting that T cells could play an important role in ageing- and telomere-

mediated atherogenesis [19]. T cell mediated immune responses play important roles 

at all stages of atherosclerotic lesion development [20] with the majority of T cells in 

an atherosclerotic lesion being CD4+ T-helper cells (Th1) that produce interferon-g 

[21-23].  

 

In vitro, atorvastatin has been shown to inhibit T cell activation and proliferation, 

thereby exerting an anti-inflammatory effect [24,25]. However, these and similar 

studies used drug concentrations of up to 10 mM, 30 times higher than in the plasma 

of atorvastatin-treated patients [26]. In pharmacologically relevant dosages, statins 

have been shown to induce the Akt pathway and promote proliferation in endothelial 

cells [27]. We have also shown that statins induce telomere-repeat binding factor 

TRF2 in endothelial progenitor cells [28]. Telomere length was found to be longer in 

patients under statin therapy compared to those without [29]. A recent study of 230 

subjects showed that statin therapy was associated with higher telomerase activity 

independently of multiple covariates, including age, gender, cardiovascular risk 

factors and systemic inflammation [30]. In the same study, subjects on statin 

treatment also showed significant lower telomere erosion along with aging. The goal 
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of our study was to investigate the in-vitro effect of atorvastatin on telomerase and 

the mechanistic relation between proliferation and telomerase in this context.  

 

 

Methods 

T-cell receptor ligation and culture of human PBMCs 

Human peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll-hypaque 

density gradient (using Biochrom AG Biocoll L 6113/5) and prepared at 5x106/ml in 

supplemented RPMI 1640. For T-cell activation, 24 well plates (VQR 734-2325) were 

coated overnight with anti-CD3 (BD 550367) and anti-CD28 (BD 555725) antibodies 

prepared at 1µl/ml PBS at 4°C, except for unstimulated controls. Cells were then 

cultured in RPMI 1640 (Gibco 21875-034) supplemented by 3mM L-glutamine, 10% 

foetal bovine serum (PAA A15-151) and 30ɛg/ml of pen/strep (Gibco 15070-063). 

Buffy coats were purchased from the National Blood Service, Newcastle Upon Tyne. 

Ethical approval was granted by the Newcastle University faculty of medical sciences 

ethics committee, 000205/2009. 

 

Animals 

TERT (Jax strain B6.129S-Tert tm1Yjc/J) [31] and TERC (Jax strain B6.Cg-Terc 

tm1Rdp/J) [32] animals were purchased from Jackson Laboratory, Maine, USA. 

mTert-GFP transgene reporter mice were previously described [33,34]. To confirm 

the phenotype of GFP transgenic mice, blood from the mouse tail was taken and  

mixed with 1% of PBS/EDTA solution before lysis of red blood cells in Red Blood Cell 

Lysing Buffer (Life Technologies uk) for  20 min  at 4°C. Cells were then washed and 

resuspended in PBS solution and DAPI to confirm cell viability. All the samples were 

collected using FACS Calibur (BD Biosciences, UK) and were analysed with BD 

FACSDiva software. All work complied with the guiding principles for the care and 

use of laboratory animals in the UK. Mice were provided with sawdust  and paper 

bedding and had ad libitum access to food and water. Mice were housed at 20 +/-

2 C̄ under a 12h light/12h dark photoperiod. All mice were held under the UK Home 

office animal license PPL 60/3864. 

 

Mouse PBMC cell culture 

Cells were grown in complete RF10, RPMI 1640 (Gibco 21875-034) supplemented 

with 0.5mM 2-mercaptoethanol (Sigma M7522), 25mM Hepes Buffer (Gibco 15630-

080), 10% FBS (PAA A15 151). 24 well plates were coated overnight with anti CD3 

(BD 553238) and CD28 (BD 553295) antibodies prepared at 1µl/ml PBS at 4°C. 
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PBMCs were isolated by Ficoll-hypaque density gradient and prepared at 2x106/ml in 

supplemented RPMI 1640.  

 

Long-term culture and growth curves 

Long-term culture of human PBMCs was prepared at 5x106 cells per 2ml RPMI 1640, 

and supplemented with MACSibead human T cell activation beads at a ratio of 1 

bead to every 4 cells (Militenyi 130-091-441) in flat bottom 24 well plates. Medium 

was changed as cells were counted by Neubauer chamber, and re-stimulated at day 

14 with additional beads as per manufacturer's instructions. Mouse cultures were 

established from 2x106 cells per ml RPMI 1640 supplemented by MACSibead mouse 

T cell activation beads (Militenyi 130-093-627) at a ratio of 1 bead to every 2 cells. 

Medium was changed every 2-3 days with addition of IL-2 and atorvastatin (cells split 

1:2 if necessary) and cells re-stimulated every 7 days as per manufacturer's 

instructions. Individual wells were compiled after a total cell number of 25x10 6 was 

reached, the resultant aspirated pellet resuspended in 50ml complete mouse 

medium to achieve the required 2x106 /ml in 50ml flasks.  

 

Hypoxia and normoxia culture conditions 

Hypoxia (3%) and normoxia (atmospheric 20%) culture conditions were maintained 

throughout experiments in Heraeus Hera Cell 150 incubators. Conditions of 5% CO2 

and 37 C̄ were constant. 

 

Pharmacological activators and inhibitors 

Atorvastatin was kindly donated by Pfizer and prepared in dimethyl sulfoxide (DMSO, 

Sigma 472301) to working dilutions of 5µM, 2µM, 0.3µM, 0.1µM and 0.02µM. 

Interleukin-2 (IL-2, R&D 202­IL) was prepared from frozen stocks (-20°C) of 

100µg/ml and added in a working concentration of 1.5µg/ml. Ly294002 (Cell 

Signaling 9901) was prepared at working doses of 10µM, 2µM and 0.4µM in DMSO. 

Akt kinase 1/2 inhibitor (Sigma A6730) was prepared at working doses of 10µM, 2µM 

and 0.4µM in DMSO. For all experiments and conditions, DMSO concentrations in 

culture medium never exceeded 0.1% and 0.1% DMSO was added to control wells. 

 

Addition of LDL cholesterol in cholesterol-free media  

Human plasma LDL cholesterol (Sigma L7914) was diluted in 150 mM NaCl and 

0.01% EDTA to working stocks of 200, 100 and 50mg/dl added to RPMI 

supplemented by 10% lipoprotein deficient serum (Sigma S5394) 30ɛg/ml of 

pen/strep (Gibco 15070-063). Cholesterol was added serially at each media change 
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every 2-3 days. 

 

Immunomagnetic sorting of human CD4 and CD8 T-cells 

Single cell suspensions of PBMCs were centrifuged in a Ficoll-Hypaque gradient, 

and re-suspended in 90ɛl ice-cold MACS buffer (2mM EDTA, 0.5ml BSA per 100ml 

PBS) per 107 cells. PBMC suspensions were then incubated with 10ɛl per 107 cells 

anti-CD8 mAb labelled magnetic beads (Militenyi Biotec 130-045-201) under 

refrigerated conditions to prevent antibody capping and non-specific binding. Cells 

were then passed through a pre-cooled magnetic LS column (Militenyi 130-042-401) 

apparatus and the column was repeatedly washed with buffer. Immediately collected  

cells constituted a fraction depleted of CD8 T cells, which were retained in the 

column and forced into a separate collection tube by replacement of the column 

plunger. This fraction was passed down the column a second time to improve its 

purity. The depleted fraction was identically treated with anti-CD14 beads (Militenyi 

71-5775-40), and the depleted fraction with anti CD4 beads (Militenyi 71-5775-40). A 

multi conjugated anti CD3 (PE), CD8 (FITC), CD4 (PerCP) [BD Tritest 342445] 

antibody was added at 10ml per 5x105 cells and incubated for 20 min at 4°C to 

measure purity of CD4+ and CD8+ populations post isolation (above 80% was 

acceptable). Analysis was performed using the FACSCanto apparatus (BD 

Biosciences) with the use of FACSDiva software (BD Biosciences).  

 

Proliferation assay with CSFE 

Human PBMCs were isolated by Ficoll-Hypaque density gradients and cultured in 

RPMI 1640 (Gibco 21875-034), supplemented by 3mM L-glutamine, 10% foetal 

bovine serum (PAA A15-151) and 30ɛg/ml of pen/strep (Gibco 15070-063). Cells at 

5x106/ml in serum free RPMI 1640 were incubated at 37°C for 3 min with 0.25 µM 

carboxyfluorescein diacetate (CFSE, Invitrogen CellTrace C34554). Staining was 

terminated by addition of 10% foetal bovine serum (PAA A15-151) at 37°C for 10 

mins. Cells were cultured at 5x106/well in 100 µl of culture medium in 24 flat-bottom 

plates in a standard 37°C CO2 incubator for 3 to 5 days. Cultures were stimulated 

with 1.5µg/µl IL-2 and atorvastatin (Pfizer US). Dry cell pellets (1x106) were stained 

with anti-CD4 (BD PE Cy-7560644), CD8 (APC-H7 560273) and CD14 (Invitrogen 

Pacific Blue MHCD1428) antibodies for 20 mins in the dark at RT, washed in 1xPBS 

before aspirated pellets were suspended in 500µl FACS buffer (1xPBS 

supplemented with 1mM EDTA, 25mM HEPES and 1% FBS) and measured on 

FACSCanto II (BD) using FacsDiva. Murine PBMCs from TERT+/+ and TERT-/- mice 

were isolated by Ficoll density gradient centrifugation, and freshly Isolated PBMCs 
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were resuspended in PBS (0.1% BSA) at 1x106 cells/ml before incubation with CFSE 

(final concentration: 0.25 ɛM) for 10 min at 37ÁC. Cells were washed and 

resuspended in culture medium for 15 min to stabilize CFSE staining and then 

cultured in a 48-well plate at 1x106 per well with 10% foetal bovine serum RPMI 1640 

(Gibco 21875-034). Cultures were stimulated with 1.5µg/µl IL -2 and atorvastatin 

(Pfizer US) for 5 days in a standard 37°C CO2 incubator. For T-cell activation of 

human and murine cells, wells were coated overnight with anti-CD3 and anti-CD28 

antibodies as described above.  

 

TRAP telomerase activity assay  

Telomerase activity was measured by the telomeric repeat ampliýcation protocol 

(TRAP) assay as previously established using an end-labeled telomerase substrate 

(TS)[5'-AatorvastatinCCGTCGAGCAGAGTT-3'] primer and ACX [5'-

GCGCGG(CTTACC)3CTAACC-3'] reverse primer. The PCR mastermix volume was 

25ɛl per sample and contained 1xSYBR Green (Applied Biosystems Mastermix 

4309155), ds.H2O and 1mM EGTA supplemented by 0.1mg of each primer.  PCR 

was performed in MicroAmp Fast-tubes (Applied Biosystems 4358293) each sample 

in triplicate. The reaction mixture was first incubated at 25 °C for 30 min to allow the 

telomerase in the protein extracts to elongate the TS primer by adding TTAGGG 

repeat sequences. The PCR was then started at 95 °C for 10 min, followed by a 40 -

cycle amplification (95 °C for 15 s, 60 °C for 1min) and 60 minute melting curve stage 

(95°C for 15s, 60°C for 1min, 95°C for 15s). The fluorescent dye SYBR Green 

(Applied Biosystems 4309155) was used to bind to ds DNA as new amplicons were 

produced and generate fluorescent signals. These were collected and analysed with 

detection software (Applied Biosystems). Telomerase activity in cell lines or samples 

was calculated based on the threshold cycle (CT). 

 

Telomere length (Flow-FISH) 

Telomere length measurements were carried out as previously described [28,35,36]. 

In brief, each sample, containing 100,000 bovine thymocytes as an internal standard 

and 200,000 cells from the patient, was resuspended in a hybridization mixture 

containing telomere-specific N-terminal FITC-conjugated (C3TA2)3 peptide nucleic 

acid probe, washed and counterstained with propidium iodide before analysing by 

FACS analysis. 
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Statistics  

Significance between data was compared by one-way ANOVA followed by Tukeyôs 

post hoc analysis, or 2 way ANOVA followed by Bonferroni's post-hoc analysis. 

P<0.05 was considered statistically significant. 
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Results 

 

Atorvastatin induces telomerase at pharmacological dosages  

PBMCs were isolated from healthy volunteers and co-stimulated with a-CD3 and a-

CD28 in culture. The addition of atorvastatin lead to an 6-fold increase in telomerase 

activity, peaking at 0.3 mM concentration after 5 days (Figure 1A). A time course 

study confirmed that telomerase activity (TA) was only temporarily induced and 

reached its maximum after 5 days, then receding back to baseline levels at day 10 

(Figure 1B). Statins have been shown to exert some of their protective effects on 

vascular cells through the Akt/PI3 kinase pathway [27]. Induction of telomerase by 

atorvastatin was prevented by inhibitors of the Akt and PI3 kinase pathway, 

respectively (Figures 1B and 1C). To determine whether specific subsets of T cells 

were affected by atorvastatin, we examined populations of purified human CD4 and 

CD8 T cells seperately. Here we found that induction of TA was most pronounced in 

CD4 compared to CD8 T cells (650% vs 256%, Figure 1E). Finally, we analysed 

mononuclear cells from patients with acute ST elevation myocardial infarction 

(STEMI), a state of high inflammation. We found TA in unstimulated PBMCs to be 5-

fold reduced compared to controls (p<0.05 vs healthy controls, p<0.01 vs post-

infarction; Figure 1F). 

 

The effect of atorvastatin on T-lymphocyte proliferation is dose-dependent 

In order to test the effect of statins on T-cell proliferation, mononuclear cells from 

healthy volunteers were co-stimulated and treated with a wide dose range of 

atorvastatin. Physiologically relevant dosages of up to 0.3 mM led to a significant 

increase in cell number after 5 days in culture (Figure 2A) as well as a moderate 

increase after 28 days (Figure 2B). Proliferation assays using CSFE and co-staining 

for CD4 T cells demonstrated an increase in the rate of proliferating CD4 T cells from 

42±4% up to 73±1% under 0.3 µM atorvastatin (p<0.001, Figures 2C-D). As 

previously published, higher concentrations (2 - 5 mM) of atorvastatin inhibited T-cell 

proliferation (Figure 2D) without inducing cell death (data not shown). Baseline as 

well as statin-induced proliferation was completely abrogated by co-treatment with an 

Akt-kinase inhibitor (Figure 2E).  

 

LDL cholesterol suppresses telomerase  

We next sought to investigate whether the statin effect on telomerase was co -

dependent on cholesterol metabolism. For this we used cholesterol free media and 
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added increasing concentrations of LDL cholesterol. At 100 mg/dl TA was completely 

suppressed and no statin effect visible (Figure 3A). To exclude that the reduction in 

telomerase activity was not an artificial result of the PCR-based assay, we performed 

growth curves in human (Figure 3B) and murine (Figure 3C) T-cells. For both 

species, LDL cholesterol significantly inhibited T cell proliferation.     

 

Telomerase activation in lymphocytes declines with age  

We have previously generated an mTert-GFP transgenic mouse model in which GFP 

expression indicates endogenous mTert expression and telomerase activity. mTert-

GFP+ cells among peripheral blood lymphocytes decreased from 30% to 15% 

continuously between the 2nd and the 5th month (p<0.01, Figure 3D and 3E), 

suggesting a correlation of telomerase-positive lymphocytes with cell turnover in-

vivo. 

 

Telomerase mediates the proliferative effect of atorvastatin 

Atorvastatin induced TA under 3% (p<0.001, Figure 4A) and to a lesser degree under 

20% (Figure 4B) oxygen in murine T cells. The linearity of the TRAP assay was 

confirmed for murine cells (Figure 4C). So far we have shown that the induction of 

TA is paralleled by a moderate increase in T cell proliferation. To prove a causal 

relationship, we isolated murine splenocytes with a genetic knockdown of TERT [31], 

the catalytic subunit of telomerase, and monitored T cell proliferation over 4 weeks in 

culture. As expected, T cells from heterozygous TERT+/- mice already displayed 

reduced proliferation (p<0.05, Figure 4D). Knock-out of TERT further reduced T cell 

growth over 4 weeks (p<0.0001 vs wild type, Figure 4D). Atorvastatin only enhanced 

proliferation in TERT+/+ splenocytes with preserved telomerase activity at a dose of 

0.3 mM, but not in TERT-/- cells (Figure 4E). At the highest dose (5 mM), atorvastatin 

completely inhibited 3H-thymidine incorporation at later timepoints, independent of 

telomerase (data not shown). 

 

To exclude the possibility that differences in proliferation were secondary to telomere 

length (TL) shortening in the telomerase-deficient animals, we measured mean 

telomere length of splenocytes. As expected, splenocytes from first generation (F1) 

mTert-/- mice did not reveal any TL shortening (Figure 5A), while heterozygous 

mTerc+/- mice already displayed shorter TL (p<0.001). Finally, we attempted to 

explain the role of telomerase for statin-induced T cell proliferation. The statin-

induced increase in proliferation was completely dependent on functional mTert 

(Figure 5B) with a residual effect in TERC-/- T cells (Figure 5C). Again, shorter TL in 
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cells from second generation TERC mice (F2) had no impact on the statin effect 

(Figure 5B and 5C).  

 

Discussion 

Statins are established as a first-line therapy for secondary prevention in patients 

with documented coronary heart disease, improving morbidity and mortality. While 

the preponderance of evidence strongly suggests that a lower serum concentration 

of LDL cholesterol is the principal mechanism responsible for improved outcome, the 

benefits of statin therapy, particularly in primary prevention, may extend beyond 

those attributable to lipid-lowering (termed pleiotropic effects) [37]. Taking into 

account that atherosclerosis is an inflammatory disease characterized by intense 

immunological activity, these data suggest the possibility that statins are, in addition 

to their lipid-lowering capacity, potential ñanti-inflammatoryò drugs targeting 

monocytes, macrophages and lymphocytes. By contrast, however, a recent meta-

analysis of data from 170,000 patients showed that each 1 mmol/L LDL cholesterol 

reduction reduces the risk of occlusive vascular events by about 20%, irrespective of 

baseline cholesterol concentration [38]. Thus, although an attractive concept, the 

existence of pleiotropic effects of statins remains highly controversial. Convincing 

mechanistic support for such effects has yet to be demonstrated. Many of the  

hypothesised pleiotropic effects have been thought to occur through inhibition of 

isoprenoid synthesis with subsequent inhibition of isoprenoid-mediated activation of 

small GTP-binding proteins, such as Rho family members, Rac1 and RhoA, 

observed in vitro [24-26]. Nevertheless, the dosages of statins commonly used in 

those in-vitro studies by far exceed therapeutic concentrations. The inhibitory 

concentration IC50 for cholesterol biosynthesis is 9.8 nM, while IC50 for protein 

prenylation is 2.6 µM (lovastatin). Given that therapeutic plasma levels of statins do 

not exceed 0.3 µM, it seems unlikely that inhibition of protein prenylation will play a 

role in vivo [26]. Our results clearly show though, that the anti-proliferative effect of 

atorvastatin only occurs at suprapharmacological doses (2-5 mM) as a result of 

blocked protein prenylation. Therefore it is highly unlikely to expect that statin therapy 

exerts an anti-proliferative effect on lymphocytes in-vivo. On the other side, inhibition 

of cholesterol synthesis seems to parallel the pro-proliferative effect of atorvastatin 

and activation of telomerase. Although the principal target cell responsible for the 

effect of statins on plasma cholesterol is the hepatocyte, statins lead to inhibition of 

cholesterol synthesis in all extra-hepatic tissues [39]. A recent study suggests that 

therapeutic concentrations of statins modulate key cell signaling pathways in diverse 
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cell types as a direct consequence of cholesterol depletion [40]. The authors show 

that lovastatin induces Ras signaling in a cholesterol-dependent fashion. Depletion of 

cholesterol from kidney and endothelial cells had the same effect as lovastatin 

treatment. The PI3-kinase/Akt-kinase pathway is a downstream target of Ras 

signalling, and a positive regulator of telomerase [41]. Thus, telomere and 

telomerase dependent effects on cell metabolism could very well be a consequence 

of lower intracellular cholesterol concentrations due to statin therapy. Our study 

shows that pro-telomeric effects of atorvastatin are downstream of Akt and 

counteracted by direct addition of LDL cholesterol. Should statins prove to exert 

telomerase-dependent effects on atheroprotective lymphocyte populations, 

telomerase could become a direct target for other forms of age-decelerating therapy. 

Finally, we provide further evidence that the proliferative capacity of T -lymphocytes is 

not dependent on, but can be significantly augmented by the activation of 

telomerase. Using the TERT-GFP reporter mouse, we also show that high turnover 

in the lymphocyte compartment at an early age is paralleled by a high number of 

telomerase-positive cells in-vivo. Together, our results indicate a bidirectional 

relationship between proliferation and telomerase ï inhibition of one will negatively 

affect the other.   

Given the importance of T-lymphocytes in atherogenesis and our findings that in 

patients with CHD telomeres from peripheral blood lymphocytes shorten faster than 

in myeloid cells,[19,36] our data suggest that telomere length might be a downstream 

target in T cells. However, this does not exclude that critically short telomeres in 

subsets of human T cells will affect their proliferation by driving a senescent 

phenotype of these cells. Restoring telomerase activity in T-cells, e.g. through small 

molecule activators such as TA-65 [42,43], could prove to be a powerful therapeutic 

intervention in age-related diseases such as atherosclerosis. Future studies have to 

identify the cell-specific role of telomerase in atherogenesis. In the mouse model, this 

can be accomplished by studying cholesterol-fed Apo E null x mTert-GFP reporter 

mice. We could not find identify telomerase-independent functional differences in 

murine T cells. However, mouse telomeres are several-fold longer than human 

telomeres. In our opinion, decreased telomerase activity in human T cells might 

accelerate telomere shortening and cellular senescence over a long period of time. 

Our unpublished data from the Newcastle 85+ study (Spyridopoulos et al., 

manuscript in preparation) suggests that immunosenescence can be an independent 

predictor of outcome in the elderly, possible via accelerated atherosclerosis.  
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Figure Legends 

 

Figure 1: Atorvastatin induces telomerase in T-lymphocytes. A. Telomerase 

activity in human PBMCs, activated by T-cell receptor ligation with a-CD3 and a-

CD28 antibodies coated to wells (n=5 different donors). Atorvastatin was added at 

the appropriate concentrations and cells cultured for 5 days under normoxia .  B. 

Telomerase activity over a 10-day time course of human PBMCs (n=3 different 

donors). C-D. Telomerase activity in activated human PBMCs. An Akt kinase-specific 

inhibitor (C) and a PI3-kinase specific inhibitor (Ly294002, D) were added at day 0 at 

the indicated concentrations (n=3 different donors). E. Comparitive telomerase 

activity in MACS isolated CD4 and CD8 human T cells (n=3 different donors). F. 

Telomerase activity of human PBMCs isolated from patient blood samples. Samples 

from healthy controls (n=13), patients with acute STEMI (n=8) and 3 months post 

STEMI (n=17) were collected and measured by TRAP qPCR. ns=not significant, 

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 

 

Figure 2: Atorvastatin induces proliferation in CD4 T-lymphocytes by an Akt-

dependent pathway. A. Cell counts of human PBMCs measured after 5 days in 

culture, activated by T-cell receptor ligation with a-CD3 and a-CD28 antibodies. B. 

Long-term growth curves of isolated human CD4 T-cells grown over 28 days using 

expansion kit beads. C. Representative histograms of gated CD4 T cells from a 

single CSFE experiment. D. Proliferation of human CD4 T cells with atorvastatin, 

quantified as CD4hiCSFElo cells among all PBMCs.  E. Proliferation of human CD4 T 

cells under 0.3 µM atorvastatin treated with an Akt kinase-specific inhibitor that was 

added at day 0 at the indicated concentrations. AT = atorvastatin, IL-2 = interleukin-

2, un=unstimulated cells, co=activated cells without statin, ns=not significant, 

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. All p-values are against control, 

calculated by 1-way ANOVA and Tukey post-hoc tests. All experiments n=3 different 

donors. 

 

Figure 3. LDL cholesterol suppresses telomerase and proliferation in T-

lymphocytes. A. Telomerase activity measured by qPCR in activated human 

lymphocytes grown in lipoprotein free medium (n=5 different donors). un = 

unstimulated cells, co = control, atorvastatin concentrations in mM. B. Cell counts of 

human lymphocytes after 5 day culture with cholesterol free medium with the addition 

of LDL-cholesterol (n=2 different donors, AT = atorvastatin 0.3 µg/ml). C. Growth 
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curve of mouse splenocytes with cholesterol free medium with the addition of LDL-

cholesterol (n=3 different donors). D. Gating strategy for mTert-GFP+ lymphocytes. 

Peripheral blood was obtained from the tail vein and counterstained with DAPI. E. 

Quantification of GFP-positive lymphocytes in the peripheral blood at different ages.  

ns=not significant, **p<0.01. 

 

Figure 4. Atorvastatin-induced T-cell proliferation depends on functional TERT. 

A-B. Telomerase activity measured by qPCR of splenocytes from TERT +/- (n=6 

experiments, all from different mice) and TERT-/- (n=6) after 5 day culture under 3% 

and 20% oxygen conditions. C. Telomerase activity measured by qPCR of a titration 

of TerT+/+ splenocytes after 5 day culture under 3% oxygen. D. Long-term growth 

curve of splenocytes from TERT+/+ (n=4), TERT+/- (n=4) and TERT-/- (n=3) under 3% 

oxygen conditions. E. Proliferation of splenocytes from TERT+/+ (n=3) and TERT-/- F1 

(n=3), measured at 72 hours under 20% oxygen by gating on CSFElo cells.ô-ô 

indicates unstimulated cells, ôcoô indicates  a-CD3 and a-CD28 stimulated cells 

without atorvastatin. ns=not significant, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 

 

Figure 5. Atorvastatin-induced T-cell proliferation depends on functional TERT. 

A. Mean telomere length of T lymphocytes from TERT+/+ (n=6 experiments, all from 

different mice), F1-/- (n=3), F4-/- (n=6), TERC+/+ (n=6), TERC+/- (n=3) and TERC-/- F2 

(n=6) mice determined by Flow-FISH. Human PBMCs and bovine thymocytes served 

as a control. Long-term growth curve of splenocytes from TERT+/+ (n=4) and TerT-/- 

(n=3) under 3% oxygen conditions. AT = atorvastatin 0.3 µg/ml. All comparisons 

against TERT wt using 1-way ANOVA with Tukeyôs post-hoc tests. B. Cell counts of 

splenocytes from TERT+/- (n=3), TERT-/- F2 (n=3) and TERT-/- F3 mice after 5 day 

culture under 3% oxygen conditions. C. Cell counts of splenocytes from TERC+/- 

(n=3) and TERC-/- F2 (n=3) mice  after 5 day culture under 3% and 20% oxygen 

conditions. For dose response curves, 2-way ANOVA with Bonferoniôs multiple 

comparison test was used. p-values were calculated of each statin dose against 

control (co). ns=not significant, *p<0.05, ***p<0.001, ****p<0.0001. 
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Figure 1 
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Figure 2 
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Figure 4 
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Figure 5 

 


