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Abstract   It is well-understood that a given gain in life expectancy can, in principle, be generated by 

any one of an infinite number of different types of perturbation in an individual’s survival function. 

Since it seems unlikely that the typical individual will be indifferent between these various types of 

perturbation, the idea that there exists a unique willingness to pay-based Value of a Statistical Life 

Year (VSLY), even for individuals within a given age-group, appears to be ill-founded. This paper 

examines the issue from a theoretical perspective. Within the context of a simple multi-period model 

it transpires that if gains in life expectancy are computed on an undiscounted basis then it will indeed 

be necessary to adjust the magnitude of the VSLY to accommodate the nature of the perturbation in 

the survival function, as well as the age of those affected. If, by contrast, gains in life expectancy are 

computed on an appropriately discounted basis then a unique VSLY will be applicable in all cases. 
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Under the standard definition, the Value of Statistical Life (VSL)1 is the aggregate current 

willingness to pay for marginal reductions in the probability of premature death which, taken over 

the group of people affected, will reduce the expected number of deaths during the forthcoming 

period by precisely one - see, for example, Jones-Lee (1989) or Viscusi (1998) 2. It therefore follows 

that since a gain in life expectancy for an individual can only be achieved by reducing her probability 

of death in some future period or periods (or equivalently, by an outward shift in the individual’s 

survival curve), then the Value of a Statistical Life Year (VSLY)3, defined as aggregate current 

willingness to pay for marginal gains in individual life expectancy that sum to one year, is 

conceptually intimately related to the VSL. Appropriately defined and estimated, the VSL and 

VSLY therefore constitute alternative but basically compatible ways of expressing the willingness to 

pay (WTP) - based value of a safety improvement.  

 

More specifically, consider a large group of n individuals each enjoying a 1/n reduction in the risk of 

death during the coming year, thereby reducing the mathematical expectation of the number of 

deaths by one and hence preventing one “statistical fatality”. Denoting the ith individual’s marginal 

rate of substitution of wealth for risk of death during the coming year by mi, then her current 

willingness to pay for the risk reduction will be closely approximated by mi × 1/n. It therefore 

follows that, summed over the affected group of n individuals, aggregate current willingness to pay 

for the  reduction in the risk of death during the coming year (i.e. the VSL) is given by the mean of 

mi for the group concerned. In turn, the ith individual’s gain in life expectancy resulting from the risk 

reduction is - to a close approximation - given by Eli × 1/n, where Eli is her current life expectancy4. 

Hence, summed across the n individuals, the aggregate gain in life expectancy is equal to the mean 

of Eli. Aggregate current willingness to pay per year’s gain in aggregate undiscounted life 

expectancy will therefore be given by the mean of mi (i.e. the VSL) divided by the mean of Eli. For a 

more detailed discussion, see Mason et al (2009).  

 

However, the argument just developed has focused on a first-period risk reduction and it is important 

to appreciate the fact that - as noted in Hammitt (2007) - a given gain in life expectancy could, in 

principle, be generated by any one of an infinite number of different types of perturbation in an 

individual’s survival function or, equivalently, in his/her future hazard rates (where the hazard rate in 

period t is the individual’s probability of death during that period, conditional on having survived all 

                                              
1
 Or as it is now more commonly referred to in the UK, the Value of Preventing a Statistical Fatality (VPF). 

2 For alternative (but basically similar) definitions of the willingness to pay-based VSL, see Johansson (2001) 
and Blomqvist (2002).  
3
 Or as it is sometimes referred to, the VOLY. 

4
 For the sake of analytical simplicity, in the argument that follows it is assumed that if death is to 

occur in any given year then it does so at the end of the year. Based on this assumption, the gain in 
life expectancy resulting from a 1/n reduction in the risk of death during the coming year will, 

strictly speaking, be equal to the product of remaining life expectancy conditional on survival of the 

coming year and 1/n.  
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preceding periods). As argued in Johansson (2001), a priori, it seems somewhat unlikely that the 

typical individual would be indifferent between these various different types of perturbation, given 

the effect of discounting and uncertainty concerning future survival, and empirical evidence appears 

to support this conclusion – see, for example, Cropper et al (1994) or Viscusi and Aldy (2003). As a 

result, the magnitude of the VSLY could in fact be significantly affected by the precise nature of the 

hazard rate perturbation that generates the gain in life expectancy. The intuitive explanation for this 

is actually quite straightforward. For example, consider two safety improvements, both of which 

generate the same gain in undiscounted life expectancy, but with the first involving a reduction in 

the hazard rate for the coming year and the second a reduction in a later year’s hazard rate. Given a 

positive personal rate of time preference, the first hazard rate reduction will then generate a larger 

gain in discounted life expectancy than the second and can therefore naturally be expected to be 

more highly valued than the second by the individual affected.         

 

As far as public sector health and safety decisions are concerned, three types of hazard rate 

perturbation would seem to deserve particular attention, namely: i) a one-off reduction in the risk of 

death during the coming period; ii) a constant ongoing reduction in the hazard rate faced by an 

individual in each future period and iii) a proportional reduction in all of an individual’s future 

hazard rates. Given that the typical individual’s hazard rate can, as a reasonable approximation,  be 

expected to follow a Gompertz Curve and hence grow with age at an effectively exponential rate5, it 

follows that the last of these three types of perturbation would involve a risk reduction that also 

increased exponentially over future periods. In fact the proportional reduction would seem to be of 

particular importance given that, according to current epidemiological evidence, a proportional 

reduction in future hazard rates is one of the main long-term beneficial health effects of a reduction 

in air pollution – see, for example, Pope et al (1995) or Hurley et al (2000). 

 

While some attempts have been made to examine the WTP-based valuation of different types of 

perturbation in an individual’s future hazard rates – see, for example, Rosen (1988), Johansson 

(1996), Johannesson et al (1997) and Johansson (2001) – to the best of our knowledge, none have 

provided a clear indication of how the magnitude of the WTP-based VSLYs in each of the three key 

cases referred to in the preceding paragraph can be expected to relate to each other and how the 

relative magnitudes of these three different VSLYs can be expected to vary with factors such as age 

and personal rates of time preference. 

 

As a first step towards shedding some light on the issue, the authors of this paper conducted  an 

exploratory stated-preference study aimed at establishing the preference ordering of a random 

sample of the UK public over the three different ways of generating a given gain in life expectancy 

                                              
               

5
 See, for example, Wetterstrand (1981) or Jenkins (2005) Ch.3.   
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(i.e. one-off, constant ongoing and proportional reduction in future hazard rates) – see Nielsen et al 

(2010). In the event, the study produced two key results, namely a) that a substantial majority of 

respondents displayed a clear preference ordering over the three options (only 7% were indifferent 

between all three) and b) preferences were more or less evenly split as far as the most-preferred 

option was concerned.  

 

While the study just referred to provides some empirical information concerning people’s attitudes 

towards different possible ways of generating a given gain in life expectancy, it was admittedly only 

an exploratory study based on a relatively small sample of 40-50 year olds and one is still bound to 

wonder how standard theory would rank the three alternatives in terms of the relative magnitudes of 

the implied VSLYs. The present paper aims to provide a brief and simple  analysis of the issue from 

a purely theoretical perspective. In particular, we examine the extent to which the nature of the 

hazard rate perturbation can be expected to affect the magnitude of the VSLY when the latter is 

defined in terms of undiscounted life expectancy. We also explore the implications of defining the 

VSLY in terms of discounted life expectancy and clarify the conditions under which the resultant 

value will be completely independent of the nature of the hazard rate perturbation.  

 

The basic assumptions underpinning the model used in the analysis are set out in Section 1. The 

VSLYs implied by this model for each of the three types of perturbation in an individual’s hazard 

rates, with life expectancy computed on an undiscounted basis, are then derived in Section 2 and the 

relative magnitudes of the three VSLYs are compared for different personal utility discount rates and 

different age groups. On the assumption that individual hazard rates follow an exponential Gompertz 

Curve it transpires that with utility discount rates set at plausible levels the three VSLYs do indeed 

differ to a substantial extent even for older age groups. Section 3 then examines the implications of 

defining life expectancy on a discounted basis. Significantly, and in marked contrast to the results 

that emerge if life expectancy is left undiscounted, it turns out that with discounted life expectancy 

computed using the personal utility discount rate then the VSLY for a given individual will be 

completely independent of the nature of the hazard rate perturbation that generates the gain in life 

expectancy. However, with the VSLY defined on the basis of discounted life expectancy it would be 

essential to ensure that any gain in life expectancy being valued should also be appropriately 

discounted. In particular, it is argued that calculating the discounted present value of n years 

remaining life expectancy as if it were a one-unit, n-year annuity is - strictly speaking - 

inappropriate, though with the discount rate set at a reasonable level it appears that the error in doing 

so is significant only for those beyond middle age. 

 

In Section 4 we then focus on the way in which the VSLY might be expected to vary with age in 

both the undiscounted and discounted life expectancy cases. Again, the magnitude of the VSLY 

defined on the basis of undiscounted life expectancy varies substantially with the age of the affected 
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individual or group. However, if by contrast the VSLY is defined in terms of discounted life 

expectancy computed using the personal utility discount rate then for an individual with given tastes, 

preferences and wealth, the VSLY will be completely independent of age per se.  

 

In light of these findings, Section 5 then examines the alternative possible ways in which one might 

legitimately approach the problem of valuing gains in life expectancy in the cost-benefit analysis of 

health and safety projects and how best to take account of effects on adults and children in the 

current generation, as well as members of future generations.  

 

Finally, Section 6 provides a summary and concluding comments. In particular, it is argued that in 

light of the paper’s main findings the most straightforward and unambiguous way in which to 

proceed is by defining the VSLY on the basis of discounted life expectancy, with discounting carried 

out using the sort of rate at which individuals discount future utility gains (i.e. in the region of 6-

8%), rather than the rate that is typically applied in public sector health and safety decisions (i.e.  in 

the UK and USA, 1.5-3.5%). Under this approach there would appear to be a persuasive case in 

favour of employing a unique VSLY that is completely independent of the nature of the hazard rate 

perturbation that generates the gain in life expectancy and is also independent of the age of those 

affected. This would clearly have significant practical advantages.  

 

1. The basic model  

 

Existing theoretical analyses of the value of changes in life expectancy, such as Rosen (1988),  

Johannesson et al (1997) and more recently, Hammitt (2013), have been based on relatively 

sophisticated models that aim to take careful and comprehensive account of the various issues 

related to personal intertemporal decision-making, such as the planning of lifetime consumption, 

borrowing, lending,  anticipated health-state and other factors. However, the resultant mathematical 

expressions and related arguments in these analyses are somewhat complex and  in some respects, 

not immediately transparent. 

 

In order to keep the argument and underlying algebraic expressions in the present paper as simple 

and comprehensible as possible, the model underpinning the analysis that follows will therefore be 

based on some rather strong simplifying assumptions. Nonetheless, we believe that the model 

constitutes a sufficiently close approximation to reality to capture the most significant effects of the 

principal determinants of the typical individual’s valuation of gains in life expectancy within a 

relatively straightforward mathematical framework. In particular, it will be assumed that: 

 

 The individual is an expected utility maximiser. 
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 If the individual survives, then she anticipates that she will enjoy an effectively constant future 

utility flow of 𝑢 per annum, but future utilities are subject to a personal discount rate of i per 

annum.  

 

 The individual’s holding of life-insurance and annuities are such as to ensure that her current  

marginal utility of wealth is effectively independent of the length of time for which she may 

actually survive6. 

 

With time, t, measured annually from the present7, denoting the individual’s survival function 

(which gives the probability of surviving to the beginning of year t) by S(t) and assuming for the 

sake of simplicity that if death is to occur in year t then it does so at the end of the year, it follows 

that the individual’s remaining life expectancy, El (expressed on a discrete time basis), is given by: 

 

𝐸𝑙 = ∑ 𝑆(𝑡)𝑇
𝑡=1            (1) 

 

where T is the maximum  number of years for which the individual could reasonably be expected to 

continue to survive. 

 

In turn - under the simplifying assumptions set out above - the individual’s remaining lifetime 

expected utility, EU, is given by: 

 

𝐸𝑈 = ∑ 𝑆(𝑡)𝑢𝑒−𝑖𝑡𝑇
𝑡=1  .         (2) 

 

Denoting the individual’s hazard rate for year t by pt (where, in the discrete time case, the hazard rate 

for any year is defined as the probability of death during that year conditional on having survived to 

the beginning of the year), it follows that the survival function, S(t), is given by:   

 

𝑆(𝑡) =  (1 – 𝑝1)(1 – 𝑝2)(1 – 𝑝3) … (1 – 𝑝𝑡−1)      (3) 

 

so that 𝑆(1) = 1, 𝑆(2) = (1 – 𝑝1) , 𝑆(3) = (1 – 𝑝1)(1 – 𝑝2), etc. 

 

It then follows from equations (1) and (3) that the effect of a marginal variation in the hazard rate for 

year τ on life expectancy is given by:  

 

                                              
6
 For a more detailed discussion of life insurance and annuity contracts, see Jones-Lee (1989), Ch.3. 

7
 So that, for example, an individual of age 40 in year 1 (i.e. the current year) will be of age 40 + t in year t +1.      
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𝜕𝐸𝑙

𝜕𝑝𝜏
= − ∑

𝑆 (𝑡)

(1−𝑝𝜏)
𝑇
𝑡=𝜏+1  ,         (4) 

 

while from equations (2) and (3) the effect on lifetime expected utility is given by:   

 

𝜕𝐸𝑈

𝜕𝑝𝜏
= − ∑

𝑆(𝑡)𝑢𝑒−𝑖𝑡

(1−𝑝𝜏)
𝑇
𝑡=𝜏+1  .         (5) 

 

In fact the intuitive explanation for these results is quite straightforward. For example, in equation 

(4), the term ∑
𝑆 (𝑡)

(1−𝑝𝜏)
𝑇
𝑡=𝜏+1   would be the area under the survival curve from year τ +1 to year T if the 

term (1- pτ) were to be set equal to unity in the expression for S(t) for all t ≥ τ +1, which would 

require that pτ be set equal to  zero. This area therefore constitutes the loss of life expectancy that 

would occur if  pτ  were to increase from zero to one, so that survival beyond the end of year τ was 

impossible. Graphically, in the discrete-time case this is  represented by the heavily shaded area in 

Figure 1 inflated by the factor  1/(1-pτ). Given that El is linear in pτ  , this loss of life expectancy 

resulting from a unit increase in pτ   clearly constitutes the rate at which El decreases as pτ  increases. 

Similar comments apply to the effect of an increase in pτ   on lifetime expected utility.  

 

 

 

 

Fig. 1 Survival function 

 

Now consider a vector of marginal hazard rate reductions [δp1, δp2,…,δpT ] . From equation (4) it 

then follows that the resultant gain in undiscounted life expectancy, δEl , is given by: 

 

𝛿𝐸𝑙 = ∑ ∑
𝑆(𝑡)

(1−𝑝𝜏)
𝛿𝑝𝜏

𝑇
𝑡=𝜏+1

𝑇−1
𝜏=1          (6)  

t 

S(t) 

τ 0 

1 
Year 
τ  

T 
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if by contrast, life expectancy is subject to the personal discount rate, i , then the resultant gain in 

discounted life expectancy, δEld , would be: 

 

𝛿𝐸𝑙𝑑 = ∑ ∑ 𝑆(𝑡)𝑒−𝑖𝑡

(1−𝑝𝜏)
𝛿𝑝𝜏

𝑇
𝑡=𝜏+1

𝑇−1
𝜏=1          (7)  

 

In turn, from equation (5), the gain in lifetime expected utility, δEU , is given by: 

 

𝛿𝐸𝑈 = ∑ ∑
𝑆(𝑡)𝑢𝑒−𝑖𝑡

(1−𝑝𝜏)
𝛿𝑝𝜏

𝑇
𝑡=𝜏+1

𝑇−1
𝜏=1         (8)  

 

so that the individual’s current willingness to pay, δw , for the marginal hazard rate reductions is:  

 

𝛿𝑤 =
1

𝑢′
∑ ∑ 𝑆(𝑡)𝑢𝑒−𝑖𝑡

(1−𝑝𝜏)
𝛿𝑝𝜏

𝑇
𝑡=𝜏+1

𝑇−1
𝜏=1        (9) 

 

where 𝑢′denotes the individual’s current marginal utility of wealth.  

 

Now consider a large group of individuals like the one under analysis. From equations (6) and (9) it 

follows that their aggregate current willingness to pay for marginal gains in life expectancy that, 

taken over the group, sum to one undiscounted year – which will be denoted by VSLY - is given by:   

 

𝑉𝑆𝐿𝑌 =

1

𝑢′
∑ ∑ 𝑆(𝑡)𝑢𝑒−𝑖𝑡

(1−𝑝𝜏 )
𝛿𝑝𝜏

𝑇
𝑡=𝜏+1

𝑇−1
𝜏=1

∑ ∑
𝑆(𝑡)

(1−𝑝𝜏)
𝛿𝑝𝜏

𝑇
𝑡=𝜏+1

𝑇−1
𝜏=1

         (10)   

 

If, by contrast, we take aggregate current willingness to pay for one discounted life year – which will 

be denoted by VSLYd  - then from equations (7) and (9) this is given by:  

 

𝑉𝑆𝐿𝑌𝑑 =

1

𝑢′ ∑ ∑ 𝑆(𝑡)𝑢𝑒−𝑖𝑡

(1−𝑝𝜏 )
𝛿𝑝𝜏

𝑇
𝑡=𝜏+ 1

𝑇−1
𝜏=1

∑ ∑ 𝑆(𝑡)𝑒−𝑖𝑡

(1−𝑝𝜏)
𝛿𝑝𝜏

𝑇
𝑡=𝜏+1

𝑇−1
𝜏=1

         (11) 

 

which simplifies to VSLYd  = 𝑢/𝑢′, whatever the nature of the vector of hazard rate reductions. It is 

therefore clear that provided remaining life expectancy is defined on an appropriately discounted 

basis then a common  VSLY will be applicable, whatever the nature of the marginal hazard rate 

reductions that give rise to the gain in life expectancy.    

 

Notice that if the only hazard rate that is actually reduced is that for the coming year then the 

numerator in the expression for VSLYd  given in equation (11) is equal to the individual’s marginal 
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rate of substitution of wealth for risk of death during the coming year (which, for a large group of 

individuals similar to the one under analysis, will constitute the VSL for that group) multiplied by 

δp1,  while the denominator is her discounted remaining life expectancy conditional on surviving the 

coming year multiplied by δp1. This means that  the universally applicable VSLYd  (= 𝑢/𝑢′)  can 

legitimately be computed directly from a pre-determined VSL simply by dividing the latter by 

appropriately discounted remaining life expectancy conditional on surviving the current year.  

 

Clearly, then, the VSLY defined on the basis of appropriately discounted life expectancy has the 

marked advantage of general applicability. It is therefore not surprising that it has become fairly 

common practice to use some form of discounting in the definition and computation of the VSLY – 

see, for example, Moore and Viscusi (1988), Viscusi et al (1997), Gyrd-Hansen and Sogard (1998), 

Hirth et al (2000), Johansson (2001), Hammitt (2007), Aldy and Viscusi (2007) or Hammitt (2013). 

The OECD also recommends that the VSLY should be derived from a pre-determined estimate of 

the VSL on the basis of discounted life expectancy – see OECD (2012) Annex 1.A1.  

 

However, the OECD recommendation does not specify the level at which the discount rate should be 

set and the argument developed above clearly requires that discounting should be based on the 

personal discount rate, i. It should also be emphasized that the definition of discounted life 

expectancy given in equation (7) is, strictly speaking, not equivalent to the discounted present value 

of a one-unit, n-year annuity with n set equal to remaining life expectancy, which is the definition 

that has been fairly widely applied in the literature – see, for example, Hirth et al (2000) or Aldy and 

Viscusi (2007). It is therefore clear that while the VSLY defined on the basis of appropriately 

discounted life expectancy has the advantage of general applicability to all forms of marginal 

perturbation in future hazard rates, it is in principle essential that the discounting should be based on 

the appropriate discount rate and should be carried out using the correct procedure.  

 

This then naturally raises the question of whether it would, in practice, be more straightforward to 

define the VSLY in terms of undiscounted life expectancy – as in, for example Johannessson (1997) 

or Mason et al (2009) - which would avoid the necessity to confront the problems posed by selecting 

an appropriate discount rate and discounting procedure. The answer to this question clearly depends, 

at least in part, on the extent to which the magnitude of the VSLY defined in terms of undiscounted 

life expectancy can be expected to vary with the nature of the perturbation in future hazard rates that 

gives rise to the gain in life expectancy. The next section therefore aims to provide a comparison 

between the magnitude of the VSLY (defined in terms of undiscounted life expectancy) under the 

three key types of hazard rate perturbation identified in the introduction i.e.  a one-off, first year 

hazard rate reduction; a constant ongoing reduction; and a proportional reduction in all future hazard 

rates.  
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2. The VSLY based on undiscounted life expectancy  

 

2.1 The VSLY for a reduction in the first year hazard rate  

 

If the only hazard rate to be reduced is that for the first year and life expectancy is undiscounted, 

then from equation (10) it follows that the VSLY, which will be denoted by VSLYa , is given by8 :   

 

𝑉𝑆𝐿𝑌𝑎 =

1

𝑢′
∑

𝑆(𝑡)𝑢𝑒−𝑖𝑡

(1−𝑝1 )
𝑇
𝑡=2

∑
𝑆 (𝑡)

(1−𝑝1 )
𝑇
𝑡=2

 .        (12)  

 

2.2 The VSLY for a constant reduction in all future hazard rates  

 

If all future hazard rates are reduced by the same amount and life expectancy is undiscounted, then 

from equation (10) it follows that the VSLY, which will be denoted by VSLYb , is given by: 

  

𝑉𝑆𝐿𝑌𝑏 =

1

𝑢′ ∑ ∑
𝑆(𝑡)𝑢𝑒−𝑖𝑡

(1−𝑝𝜏)
𝑇
𝑡=𝜏+1

𝑇−1
𝜏=1

∑ ∑
𝑆(𝑡)

(1−𝑝𝜏)
𝑇
𝑡=𝜏+1

𝑇−1
𝜏=1

 .       (13) 

      

2.3 The VSLY for a proportional reduction in all future hazard rates 

 

It will be assumed that the individual’s hazard rate, pt , for year t (measured from the present) is 

given by a Gompertz Curve - see Wetterstrand (1981) or Jenkins (2005) - so that:  

 

𝑝𝑡 = 𝛼𝑒𝛽(𝛾+𝑡)           (14) 

 

where γ is the individual’s current age and α and β are positive constants. 

 

From equation (14) it follows that if the first year hazard rate reduction is δp, then a proportional 

reduction in all future hazard rates will imply that:   

 

𝛿𝑝𝑡 = 𝛿𝑝𝑒𝛽(𝑡−1)         (15) 

 

                                              
8
 The summation in equation (12) runs from t = 2 since, by definition, S(2) denotes the probability of survival to the 

beginning of period 2 and is hence, from equations (1) and (3), the first term in the expression for El that is affected by 

a variation in p1 .  
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so that  the hazard rate reduction will grow exponentially over time. If life expectancy is 

undiscounted then it follows from equations (10) and (15) that the VSLY, which will be denoted by 

VSLYc , is given by:  

 

 𝑉𝑆𝐿𝑌𝑐 =

1

𝑢′
∑ ∑ 𝑆(𝑡)𝑢𝑒−𝑖𝑡

(1−𝑝𝜏)
𝑇
𝑡=𝜏+1

𝑇−1
𝜏=1 𝑒𝛽 (𝜏−1)

∑ ∑
𝑆(𝑡)

(1−𝑝𝜏)
𝑇
𝑡=𝜏+1

𝑇−1
𝜏=1 𝑒𝛽 (𝜏−1)

 .       (16) 

From a purely intuitive perspective it seems clear that since the gain in life expectancy generated by 

a multiperiod reduction in future hazard rates is, in part, driven by effects that occur in later years of 

life, then the resultant gain in discounted utility – and hence willingness to pay – will inevitably be 

less than that corresponding to the same gain in life expectancy generated by a reduction only in the 

first year hazard rate. This discounting effect will be even more pronounced in the case of a 

proportional reduction in all future hazard rates, given that the latter are themselves typically 

increasing over time. A priori, it therefore seems natural to expect that VSLYa  > VSLYb  > VSLYc .   

 

In fact, the expressions in equations (12), (13) and (16) clearly indicate that the actual extent of the 

difference between VSLYa , VSLYb and VSLYc will be determined by the magnitude of the personal 

discount rate, i , the Gompertz Function parameter, β, the age of the individual under analysis and 

the precise form of the survival function, S(t). In order to obtain a clear indication of the relative 

magnitudes of VSLYa  , VSLYb  and VSLYc  it is therefore necessary to specify the magnitude of β and 

hence the form of S(t). 

 

Since, by definition, the survival function, S(t), gives the probability that an individual of age γ will 

survive for at least a further t years to age γ + t  then (for the sake of analytical convenience, with 

time now expressed as a continuous variable) it will necessarily be the case that the hazard rate, pt , 

will be given by: 

 

 𝑝𝑡 = −
𝑆′(𝑡)

𝑆(𝑡)
          (17) 

 

where S′(t) is the first derivative of S(t). 

 

Hence, with pt  given by a Gompertz Curve, then from equations (14) and (17):    

 

  
𝑆′(𝑡)

𝑆(𝑡)
= − 𝛼𝑒𝛽(𝛾+𝑡).         (18) 

 

From equation (18), given that with time measured as a continuous variable then by definition  

S(0) = 1, it follows that:   
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𝑆(𝑡) =   𝑒
𝛼

𝛽
(𝑒𝛽𝛾−𝑒𝛽 (𝛾+𝑡))

.         (19) 

 

However, given that the analysis in this paper is based on a discrete-time model with S(t) defined as 

the probability of survival to the beginning of year t (so that, for example, S(1) = 1), then it will be 

necessary to modify the expression for  S(t) to take account of this. In the discrete-time analysis that 

follows, S(t) will therefore be defined as:    

 

𝑆(𝑡) =   𝑒
𝛼

𝛽
(𝑒𝛽𝛾−𝑒𝛽 (𝛾+𝑡−1))

.         (20) 

 

Using mortality statistics for 2009 – 2011 reported in Office for National Statistics (2013) and 

averaging over males and females, the Gompertz Function parameters for England have been 

estimated to be α = 0.000052 and β  = 0.084. Taking the maximum possible remaining  survival 

time, T, for an individual of age γ to be such that γ + T =116 years 9,  the ratios VSLYb /VSLYa  and 

VSLYc /VSLYa  have then been computed from equations (12), (13), (16) and (20) for various ages and 

levels of the personal discount rate, i, and are shown in Table 1.  

 

Table 1. Ratio of VSLYb and VSLYc to VSLYa by age at intervention and exponential discount rate 

  VSLYb / VSLYa 
    

VSLYc / VSLYa 

  Personal discount rate, i   
    

Personal discount rate, i 

Age  0.5% 2%  4%  6%  8%  10%   Age  0.5% 2%  4%  6%  8%  10% 

20 0.94 0.77 0.59 0.46 0.37 0.31   20 0.86 0.53 0.59 0.14 0.08 0.05 

30 0.95 0.80 0.63 0.51 0.42 0.35   30 0.88 0.59 0.63 0.21 0.13 0.09 

40 0.95 0.82 0.68 0.56 0.47 0.40   40 0.90 0.66 0.68 0.29 0.20 0.14 

50 0.96 0.85 0.72 0.61 0.53 0.46   50 0.92 0.72 0.72 0.38 0.28 0.22 

60 0.97 0.87 0.76 0.67 0.59 0.53   60 0.94 0.78 0.76 0.49 0.39 0.32 

70 0.97 0.90 0.81 0.73 0.66 0.60   70 0.96 0.84 0.81 0.59 0.51 0.44 

80 0.98 0.92 0.85 0.79 0.73 0.68   80 0.97 0.88 0.85 0.70 0.63 0.57 

90 0.99 0.94 0.89 0.84 0.80 0.76   90 0.98 0.92 0.89 0.79 0.74 0.69 

 

 

                                              
9
 With the parameters of the Gompertz Function set at the estimated levels, then it follows from 

equation (12) that the maximum age at which the hazard rate remains less than unity is 117. In fact, with the 

hazard rate defined as a probability density – as in equation (17) – it is entirely possible for the rate to exceed 

unity. However, given that the main body of the argument developed  in this paper has been based on a 

discrete time model with  hazard rates treated as probabilities (rather than probability densities),  then it is 
necessary to ensure that they do not exceed unity. Given that the oldest recorded age at death in the UK is 

115 years and 228 days, then it seems reasonable to set the maximum possible remaining survival time,T, so 

that an individual cannot survive beyond his/her 116th year.  
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It is clear from Table 1 that the VSLY ratios are, not surprisingly, both strictly decreasing functions 

of the personal discount rate, i, and increasing functions of age (and hence decreasing functions of 

remaining life expectancy). In addition, the results in Table 1 indicate that as the discount rate 

approaches zero, both VSLY ratios approach unity for all age groups. This is again perhaps not 

surprising, given that from equations (12), (13) and (16) it is clear that with i = 0, then for all three 

types of hazard rate perturbation the VSLY simplifies to 𝑢/𝑢′ which, it will be recalled, is equal to 

the VSLY defined in terms of appropriately discounted life expectancy.   

 

What is not so obvious a priori is the extent to which the VSLY ratios are affected by variations in 

the discount rate and age. Thus, for example, for those below the age of 70, even with a personal 

discount rate as low 2% per annum, the VSLYb /VSLYa ratio falls below 0.9 and drops to 0.77 at age 

20, while the VSLYc /VSLYa ratio goes from 0.84 down to 0.53 over the same age range. With the 

personal discount rate set at 6% - which is closer to the sort of rate that appears to underpin private 

health and safety decisions in the UK and USA i.e. about 6-8% (see, for example, Viscusi et al 

(1997), Cairns and van der Pol (2000)  and Mc Donald et al (2016)) – the VSLYb /VSLYa ratio falls 

from 0.73 down to 0.46, while the VSLYc /VSLYa ratio goes from 0.59 down to as low as 0.14 as age 

is reduced from 70 to 20. Clearly, therefore, application of a VSLY computed as the VSL divided by 

undiscounted remaining life expectancy (i.e. VSLYa )  in the valuation of a gain in life expectancy 

generated either by a constant ongoing or proportional reduction in future hazard rates could 

constitute a serious overestimate.  

 

As is clear from equation (2), the results reported in Table 1 are based on the assumption that the 

intertemporal preferences of the individual under analysis are such as to warrant the application of 

exponential discount factors to future expected utilities. However, there is a considerable body of 

evidence suggesting that in the case of individual preferences concerning health and safety, some 

form of hyperbolic discounting may be a more accurate representation of the typical individual’s 

attitudes to future beneficial and harmful effects – see for example, Chapman (1996) or Khwaja et al 

(2007). The VSLY ratios have therefore also been computed with the discount factors e -it  in 

equations (12), (13) and (16) replaced by (1 + it)-1 and the results are shown in Table 2.  

 

Table 2. Ratio of VSLYb and VSLYc to VSLYa by age at intervention and simple hyperbolic 

discount rate 
 

   VSLYb / VSLYa  
  

   VSLYc / VSLYa 

  Personal discount rate, i   
  

  Personal discount rate, i   

Age  0.5% 2%  4%  6%  8%  10%   Age  0.5% 2%  4%  6%  8%  10% 

20 0.95 0.85 0.79 0.74 0.71 0.69   20 0.88 0.71 0.60 0.55 0.51 0.48 

30 0.95 0.87 0.8 0.76 0.73 0.70   30 0.90 0.74 0.64 0.58 0.54 0.51 
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40 0.96 0.88 0.81 0.77 0.74 0.72   40 0.92 0.77 0.67 0.61 0.58 0.55 

50 0.96 0.89 0.83 0.79 0.76 0.74   50 0.93 0.8 0.71 0.66 0.62 0.59 

60 0.97 0.90 0.85 0.81 0.78 0.76   60 0.95 0.84 0.75 0.70 0.66 0.64 

70 0.97 0.92 0.87 0.83 0.8 0.78   70 0.96 0.87 0.80 0.75 0.72 0.69 

80 0.98 0.93 0.89 0.86 0.83 0.81   80 0.97 0.91 0.85 0.80 0.77 0.75 

90 0.99 0.95 0.92 0.89 0.87 0.85   90 0.98 0.93 0.89 0.86 0.83 0.81 

 
 

 

Comparing the results in Table 2 with those reported in Table 1, it is clear that while replacement of 

exponential with hyperbolic discounting leaves the VSLY ratios for the older age groups largely 

unchanged, it does substantially attenuate the impact of delayed risk reductions for those with a 

longer remaining life expectancy. Nonetheless, the fact that even with a relatively modest personal 

discount rate of 6%, under hyperbolic discounting of future expected utilities the VSLYc /VSLYa ratio 

falls to 0.55 for an individual of age 20 indicates that the  nature of the hazard rate perturbation can 

still have a considerable effect on the implied value of an undiscounted statistical life year.  

 

3. The VSLY based on discounted life expectancy  

  

As shown above in Section 1, provided that the discount rate is set at the personal rate, i, and the 

appropriate discounting procedure is applied, then given the assumptions underpinning the analysis 

developed in this paper, it follows from equation (11) that the VSLY simplifies to VSLYd  = 𝑢/𝑢′ 

whatever the nature of the marginal reductions in future hazard rates that give rise to the gain in 

discounted life expectancy. Clearly, this conclusion also applies under hyperbolic discounting. But 

one is then bound to wonder to what extent the general applicability of the VSLY (defined in terms 

of discounted life expectancy) would be compromised if either the discount rate were to be set at a 

level that was not equal to the personal rate, i, or an inappropriate discounting procedure was 

applied.  

 

As far as the discount rate is concerned,  as already noted, the rate that people appear to apply in 

their own private health and safety decisions seems to lie in the region of about 6-8%. This is 

somewhat higher than the discount rate currently applied in public sector health and safety decision-

making in the UK and USA, which typically lies in the region of 1.5-3.5% - see, for example, HM 

Treasury (2003), Annex 6; UK Inter-departmental Group on Valuation of Life and Health (2010); 

NICE (2011) and Gold et al (1996). If anything, therefore, the discount rate that is typically applied 

in the computation of discounted life expectancy appears to lie well below the personal rate. This 

means that if the VSLY is computed as the VSL divided by discounted life expectancy calculated 

using the public sector discount rate then the result could be a serious underestimate of VSLYd  and 

will most certainly not be legitimately applicable to all types of hazard rate perturbation.   
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Turning to the discounting procedure used in the computation of discounted life expectancy, as 

already noted, it is fairly common practice to estimate the VSLY for a given age group by dividing 

the VSL for that age group by the discounted present value of a one-unit, n-year annuity, with n set 

equal to remaining life expectancy for the age group concerned. Clearly, this approach takes no 

account of other properties of the survival function besides remaining life expectancy and is 

therefore, at least in principle – as noted in Hammitt (2007) – only an approximation. 

 

 More specifically, given that the annuity approach involves discounting over a shorter future period, 

it will necessarily yield a higher figure for discounted remaining life expectancy than that produced 

by the “correct” approach. However, as shown below in Table 3, computations using the Gompertz 

Function parameters referred to above indicate that for discount rates set at reasonable levels (i.e. 

less than 8%), discounted life expectancy estimated using the annuity approach – denoted by Elan  - 

exceeds the figure resulting from application of the “correct” approach, Eld , to a significant extent 

(i.e. by more than about 5%) only for those above the age of 50, though the overestimate rises to 

over 10% by the age of 80. Since discounting using the annuity approach  is considerably more 

straightforward than the “correct” approach, it might therefore be argued that for practical purposes 

the annuity approach constitutes an acceptable approximation in most cases.  

       

Table 3. Comparison between results of “correct” and annuity approaches to computing 

discounted life expectancy 

 𝑬𝒍𝒅 𝑬𝒍𝒂𝒏 𝑬𝒍𝒅 𝑬𝒍𝒂𝒏 𝑬𝒍𝒅 𝑬𝒍𝒂𝒏 

 Age i = 2%  i = 6%  i = 10%  

20 34.51 35.18 15.52 15.78 9.41 9.49 

30 31.34 32.01 15.07 15.46 9.31 9.46 

40 27.64 28.55 14.35 14.95 9.11 9.38 

50 23.43 24.42 13.26 14.07 8.74 9.19 

60 18.84 19.48 11.72 12.56 8.11 8.73 

70 14.17 14.97 9.71 10.68 7.13 7.94 

80 9.83 10.56 7.41 8.30 5.81 6.64 

90 6.26 6.47 5.13 5.55 4.30 4.79 

 

Clearly, then, there would appear to be substantial practical  advantages associated with the 

definition of the VSLY in terms of  appropriately discounted life expectancy.   In light of this, it is 

natural to wonder whether there is an intuitively plausible explanation for why it should be so 

important to work with discounted life expectancy rather than life expectancy per se. The simplest 

explanation would appear to be that the ambiguity associated with specification of only the 

magnitude of a gain in undiscounted life expectancy effectively parallels the imprecision involved in 

giving only the magnitude of the gain in an individual’s expected wealth associated with a financial 
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investment, when what is really required in the latter case is information  concerning the effect on all 

parameters of the individual’s probability distribution of wealth in order to allow determination of 

the impact of the investment on his/her expected  utility of wealth . In the context of health and 

safety, specification of the effect of an intervention only on undiscounted life expectancy leaves the 

effect on lifetime expected utility essentially indeterminate, whereas specification of the effect on 

discounted life expectancy is, at least within the type of model underpinning the argument developed 

in this paper, sufficient to allow one to determine the impact on lifetime expected utility.  

 

4. Relationship between the VSLY and age 

 

The expressions for the VSLY given in equations (11), (12), (13) and (16) clearly provide the basis 

for an examination of the way in which the VSLY can be expected to vary with age, given the 

assumptions underpinning the model developed in this paper. Clearly, if the magnitude of the VSLY 

does depend on age then the level at which the VSLY is set in a cost-benefit analysis should be 

chosen so as to reflect the age of those enjoying the gain in life expectancy at the time at which the 

safety improvement generating the gain is implemented. In addition, if it is judged to be appropriate 

to set the value accorded to health and safety improvements for children at a premium, then this 

should clearly be reflected in the level at which the VSLY is set for children, though it can 

reasonably be argued that this should only apply to gains in life expectancy resulting from reductions 

in those hazard rates associated with childhood years. 

  

The first and perhaps most significant point to note is that from equation (11) it is clear that VSLYd  is 

equal to 𝑢/𝑢′ regardless of the magnitude of maximum possible remaining survival time, T, and is 

hence, for given levels of 𝑢 and 𝑢′, completely independent of age. This, of course, does not 

necessarily mean that VSLYd  for a given individual will be independent of his/her age, since the 

individual’s wealth - and hence both 𝑢 and 𝑢′can reasonably be expected to vary over time even if 

his/her tastes and preferences remain unchanged – see, for example, Aldy and Viscusi (2008). 

Nonetheless, it is clear that for given levels of 𝑢 and 𝑢′ the VSLY defined in terms of appropriately 

discounted life expectancy would not only constitute the legitimate basis for valuing all types of 

perturbation in the vector of future hazard rates, but would also be applicable to all age groups.   

 

However, in marked contrast, equations (12), (13) and (16) indicate equally clearly that with gains in 

life expectancy computed on an undiscounted basis, then even with 𝑢 and 𝑢′ held constant the 

magnitude of the VSLY not only varies with the nature of the perturbation in future hazard rates, but 

will also depend on the magnitude of  T and hence on the age of the individual concerned. In order 

to illustrate the effect of age, each of VSLYa, VSLYb and VSLYc have therefore been computed (with 
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expected utility subject to exponential discounting) as multiples of the constant VSLYd (=𝑢/𝑢′) for 

different age groups and are shown in Table 4. 

 

 
Table 4. Ratio of VSLYa and VSLYb to VSLYd by age at intervention and exponential discount rate 

  
VSLYa / VSLYd  

    
 VSLYb / VSLYd  

  Personal discount rate, i   
  

  Personal discount rate, i   

Age  0.5% 2%  4%  6%  8%  10%   Age  0.5% 2%  4%  6%  8%  10% 

20 0.85 0.55 0.34 0.24 0.18 0.14   20 0.80 0.42 0.20 0.11 0.07 0.04 

30 0.87 0.59 0.39 0.28 0.21 0.16   30 0.82 0.47 0.25 0.14 0.09 0.06 

40 0.89 0.64 0.44 0.32 0.25 0.20   40 0.85 0.52 0.30 0.18 0.12 0.08 

50 0.91 0.69 0.5 0.38 0.30 0.24   50 0.87 0.58 0.36 0.23 0.16 0.11 

60 0.92 0.74 0.57 0.45 0.36 0.30   60 0.89 0.64 0.43 0.3 0.21 0.16 

70 0.94 0.79 0.64 0.53 0.44 0.37   70 0.92 0.71 0.52 0.38 0.29 0.22 

80 0.96 0.84 0.71 0.61 0.53 0.47   80 0.94 0.77 0.61 0.48 0.39 0.32 

90 0.97 0.88 0.79 0.70 0.63 0.57   90 0.95 0.83 0.70 0.59 0.50 0.43 

               

               

 

 
 
 

 
 

 
 

Ratio of VSLYc to VSLYd by age at intervention and exponential discount rate 

  VSLYc / VSLYd  

  Personal discount rate, i   

Age  0.5% 2%  4%  6%  8%  10% 

20 0.73 0.29 0.09 0.03 0.01 0.01 

30 0.76 0.35 0.13 0.06 0.03 0.01 

40 0.80 0.42 0.19 0.09 0.05 0.03 

50 0.83 0.5 0.26 0.14 0.08 0.05 

60 0.87 0.58 0.35 0.22 0.14 0.10 

70 0.90 0.66 0.45 0.31 0.22 0.16 

80 0.93 0.74 0.56 0.43 0.34 0.26 

90 0.95 0.82 0.67 0.56 0.47 0.39 

 
 

From Table 4 it is clear that with the VSLY defined in terms of undiscounted life expectancy, the 

age of the individual concerned will have a significant impact. This is particularly pronounced in the 

case of VSLYc , with the value almost trebling  as age increases from 20 to 90, even at a personal 



19 
 

discount rate as low as 2%, and increasing more than ten-fold over the same age span  when the 

discount rate is 6%. 

 

5. Applying the VSLYs in cost-benefit analysis  

 

From the argument developed above it is clear that the answer to the question of which VSLY 

should be applied in the cost-benefit analysis of a health or safety project and how the resultant 

benefit estimate should be weighed in the appraisal process will depend, inter alia, on the way in 

which the gain in life expectancy being valued has itself been estimated. 

 

In particular the following procedures would, in principle, appear to be entirely legitimate in the case 

of adults who are members of the current generation: 

 

5.1 Legitimate procedures for adults in the current generation 

 

 If the gain in life expectancy has been estimated on an undiscounted  basis, then it is essential 

that the appropriate VSLY (i.e. VSLYa , VSLYb  or VSLYc ) should be employed, with the choice 

depending on the nature of the perturbation in future hazard rates that has generated the life 

expectancy gain. In addition, as already noted, the VSLY should be set at a level that reflects the 

age of those who are enjoying the gain in life expectancy at the time at which the safety 

improvement that generates the gain is carried out. The resultant benefit measure should then not 

be subjected to any further discounting, given that the measure itself has already been derived in 

present-value terms. 

 If, by contrast, the gain in life expectancy has been estimated on a discounted basis using the 

personal discount rate, i , and the correct discounting procedure, then it would be appropriate to 

use  VSLYd  (computed as the VSL divided by discounted remaining life expectancy) for the 

typical individual, which as has already been noted, will effectively be equal to 𝑢/𝑢′ in the 

simplified model developed in this paper. This would apply regardless of the nature of the 

perturbation in future hazard rates or the age of the individuals affected. Again, it would be 

inappropriate to apply any further discounting to the resultant benefit measure, given that it has 

itself already been derived in present-value terms. 

 If the gain in life expectancy being valued has been estimated on a discounted basis, but the 

discount rate used is different from the personal rate, i, then strictly speaking, none of the 

VSLYs computed on an undiscounted basis - or those computed using the personal discount rate, 

i - would be applicable. Under such circumstances, it would seem that the most straightforward 

way in which to proceed would be by making the necessary adjustment to the estimated gain in 

discounted life expectancy. 
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By contrast, the following would appear to be essentially inappropriate procedures in the case of 

adults who are members of the current generation: 

 

5.2 Inappropriate procedures for adults in the current generation 

 

 Estimate the gain in life expectancy on an undiscounted basis and then apply VSLYa  regardless 

of the nature of the perturbation in future hazard rates that has generated the gain. For gains in 

life expectancy generated by multiperiod reductions in future hazard rates this could serious ly 

overestimate the resultant benefit. 

 Estimate the gain in life expectancy on an undiscounted basis and then apply VSLYd computed as 

the VSL divided by discounted life expectancy for the typical individual.  

 Apply either of the appropriate procedures to estimate the benefit of a gain in life expectancy 

and then subject the resultant benefit to further discounting. 

 

The “annuity” approach to the calculation of discounted life expectancy (under which the latter is 

treated as the discounted present value of a one-unit, n-year annuity when life expectancy is n years) 

is not included in the list of inappropriate procedures since, as argued earlier, the error involved in 

using this approach seems likely to be limited and the approach has the clear advantage of being 

simple and straightforward to apply.  

 

Up to this point the focus in this section has been on adults who are members of the current 

generation. It therefore remains to address the question of how to deal a) with the case of children in 

the current generation and b) adults and children in future generations. 

 

5.3 Children in the current generation 

 

The most straightforward way in which to deal with the valuation of life expectancy gains for 

children who are currently alive would appear to be by applying VSLYd (which has been shown to be 

independent of both age and the nature of the hazard rate perturbation)  to the appropriately 

discounted gain in life expectancy. If it is then decided that health and safety gains for children 

should stand at a premium - as argued should be the case in, for example, US EPA (2003),  OECD 

(2010) and Hammitt and Haninger (2010) - then this can be applied directly to the resultant figure.  

However, if any upward adjustment is to be made to the VSLY for children then it would seem 

reasonable to argue that this augmented value should, strictly speaking, only be applied to gains in 

life expectancy resulting from reductions in those hazard rates associated with childhood years. 

Thus, if a gain in life expectancy for a child is the result of a one-off reduction in the hazard rate for 
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the coming year then the VSLY for the child should be set equal to the VSL - increased to whatever 

extent  is judged to be appropriate for children - divided by the child’s discounted remaining life 

expectancy. If, by contrast, the child’s gain in life expectancy is the result of hazard rate reductions 

that will occur only in later years when the child has become an adult, then it would seem difficult to 

justify the application of any premium to the VSLY.  

 

5.4 Future generations 

 

Finally, in the case of gains in life expectancy that will be experienced by members of future 

generations, it is important to appreciate the fact that the gain will effectively apply from the date of 

birth of any affected individual. The most straightforward way in which to proceed would then 

appear to be by deriving the value of the gain at the time of the individual’s birth along the lines set 

out above in Section 5.3 and then discount the result to a present value at whatever discount rate is 

judged to be applicable to benefits that will be enjoyed by future generations. 

 

Thus, suppose that it is expected that a gain in life expectancy will be enjoyed by an individual who 

will be born in 20 years’ time. The gain in life expectancy, appropriately discounted to the time of 

the individual’s birth at the personal rate, i, would then be valued using VSLYd  together with 

whatever premium it might be felt should be applied to health and safety gains for children. Given 

that the UK public sector annual discount rate applied to health and safety benefits is currently set at 

1.5%, the resultant benefit accruing in 20 years’ time would then be discounted to a present value by 

applying a discount factor of 𝑒−0.3.   

 

6. Concluding comments 

 

Intuitively, it seems natural to define the Value of a Statistical Life Year (VSLY) for a group of 

individuals as the Value of Statistical Life (VSL) for that group - based on individual marginal rates 

of substitution of wealth for risk of death during the coming year - divided by the average remaining 

life expectancy for individuals within the group. 

 

However, under generally plausible assumptions concerning individual preferences and attitudes to 

risk it appears that this definition of the VSLY is appropriate only if the gain in life expectancy being 

valued is generated solely by a reduction in the probability of death during the coming year and has 

been computed on an undiscounted basis. If, by contrast, the gain in life expectancy is the result of a 

multi-period perturbation in future hazard rates and/or the gain has been computed on a discounted 

basis then the appropriate VSLY will typically differ significantly from the VSL divided by average 

undiscounted remaining life expectancy.  
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In light of this, there would appear to be two possible ways in which to place legitimate willingness 

to pay-based values on anticipated gains in life expectancy in public sector allocative decision 

making in the health and safety context.  

 

In particular, the first possibility would be to tailor the VSLY to suit the manner in which the gain in 

life expectancy would be generated. Thus for example, in the case of a reduction in air pollution, 

according to current epidemiological evidence one of the main benefits to those affected will be a 

gain in life expectancy resulting from a proportionate reduction in future  hazard rates. It then 

transpires that the appropriate VSLY to be applied in the valuation of the resultant undiscounted gain 

in life expectancy will be considerably smaller than the VSL divided by the average remaining life 

expectancy of those affected. It is also important to stress the fact that under this approach the VSLY 

will typically be a strictly increasing function of the age of those affected.  

 

The second possibility - which seems considerably more straightforward from a practical point of 

view - is to compute the VSLY as the VSL divided by average discounted remaining life expectancy 

and then use this to value the gain in life expectancy, with the latter itself calculated on an 

appropriately discounted basis. Under this approach the discount rate would be set at the sort of level 

that people appear to apply in their own  private health and safety decisions.   Amongst the several 

advantages of this second approach is the fact that, computed in this way, the VSLY would be 

applicable to any gain in life expectancy, whatever the nature of the perturbation in hazard rates that 

gives rise to the gain. In addition, for given levels of annual utility and marginal utility of wealth, the 

VSLY would be completely independent of the age of those enjoying the gain in life expectancy.  

 

Overall, therefore, there would appear to be a rather powerful argument in favour of defining and 

computing the VSLY on the basis of discounted life expectancy. However, if this approach is 

adopted  then  it is important to ensure that the appropriate discount rate and discounting procedure 

are applied. In particular, it would be necessary to set the discount rate at the level that individuals 

appear to apply in personal intertemporal decision making and quite inappropriate to employ the 

public-sector discount rate if, as is usually the case, the latter is set well below the personal discount 

rate10. Strictly speaking, it would also be inappropriate to compute the discounted present value of n 

years remaining life expectancy as the present value of a one-unit, n-year annuity, though according 

to the argument developed above it would appear that the error involved in doing so becomes 

significant only for those above the age of about 50.  

 

                                              
10

 In particular, the VSLY computed on the basis of average discounted life expectancy with the discount rate set in the 
region of 6% would be more than double that which results from applying the rate currently used in UK public sector 

health and safety decisions (i.e. 1.5%).  
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It must, of course, be admitted that in order to keep the argument as straightforward and  

comprehensible as possible, the model underpinning the analysis developed in this paper has been 

based on some rather strong simplifying assumptions. Arguably, the most significant of these is that 

the individual’s anticipated future annual utility flow conditional on survival can be treated as 

effectively remaining constant. In fact as suggested in, for example, Pliskin et al (1980), 

Johannesson et al (1997), Aldy and Viscusi (2008) and Hammitt (2013), it seems likely that the 

typical individual’s anticipated health and general quality of life may well be expected to deteriorate 

over later years of life so that, rather than remaining constant, the anticipated annual utility flow can 

be expected to decline, at least beyond some point. This would clearly have the effect of further 

increasing the extent to which the VSLY computed on the basis of undiscounted life expectancy 

could be expected to vary with the nature of the perturbation in future hazard rates that gave rise to 

the gain in life expectancy and would, in particular, increase the extent to which VSLYa exceeded 

VSLYb  and VSLYb  exceeded VSLYc . It would also mean that, strictly speaking, the VSLY defined in 

terms of appropriately discounted life expectancy (i.e. VSLYd ) would not be completely independent 

of the nature of the hazard rate perturbations.  

 

However, given that in the model underpinning our analysis future utilities are already subject to 

discounting at the personal rate, it seems unlikely that any plausible decline in anticipated future 

utility levels would have a very marked effect on the actual magnitude of the VSLY relativities 

reported above in Tables 1, 2 and 4.   It also seems somewhat improbable that it would significantly 

affect our conclusions concerning the  advantages of defining and computing the VSLY on the basis 

of appropriately discounted life expectancy. 

 

The analysis developed in this paper would therefore appear to have produced some very clear 

theoretical predictions which, if they could be supported by empirical evidence, would have 

significant policy relevance. However, as already noted, in an exploratory stated-preference study 

carried out by the authors and reported in Nielsen et al (2010), preferences over the three different 

types of hazard rate reduction (one-off first year, constant ongoing and proportional ongoing) - each 

of which generated the same gain in undiscounted life expectancy - were more or less evenly spread 

and this finding appears to be broadly reinforced by the results of a stated-preference study recently 

carried out by Hammitt and Tunçel and reported in this issue of the JRU - see Hammitt and Tunçel 

(2015). In particular, the Hammitt and Tunçel study also reveals a substantial degree of 

heterogeneity in respondents’ preference orderings over the three types of hazard rate perturbation. 

The results of these two empirical studies would therefore seem to sit somewhat uncomfortably with 

one of the present paper’s main predictions. Specifically, if all three types of hazard rate reduction 

produce the same gain in undiscounted life expectancy then, according to the analysis developed 

above in Section 2, the typical individual should have a clear preference for the one-off first year risk 

reduction over the constant ongoing reduction, and the constant ongoing reduction over the 
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proportional ongoing reduction. It would therefore appear that further empirical work aimed at 

shedding more light on the nature of the psychological process underpinning people’s attitudes to 

gains in life expectancy is urgently called for.  
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