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Abstract: The dynamic response of a nonlinear system can be characterized by its 

instantaneous amplitude (IA) and instantaneous frequency (IF) features, which 

dependent on the physical properties of the system. Accordingly, the system properties 

can be inferred from the IA and IF features if they can be identified accurately. To fulfil 

such an idea, a nonlinear system parameter identification method is proposed in this 

paper with the aid of Polynomial Chirplet Transform (PCT), which has been proved a 

powerful tool for processing non-stationary signals. The procedure of the proposed 

system identification method is summarized as: firstly, the instantaneous characteristics, 

IA and IF, are extracted by using the PCT from the nonlinear responses of the system; 

secondly, calculate the instantaneous modal parameters and present them to backbone 

and damping curves, which characterize the inherent nonlinearities of the system; and 

finally, estimate the physical property parameters of the system through fitting the 

identified average nonlinear characteristic curves. The proposed nonlinear system 

identification method is experimentally validated in the paper. The experimental results 

have shown that the proposed method is superior to two existing Hilbert transform 

based methods, particularly on the robust performance against noise. In other words, 

the proposed method can work very well in system identification under any noise 

contamination condition, while the HT based methods can work only in the absence of 

noise.  

 

Key words: nonlinear system identification, parameter estimation, parameterized time-

frequency analysis, polynomial chirplet transform 

1. Introduction 

Due to the existence of a variety of nonlinearities in mechanical systems [1-11], 
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nonlinear identification has received considerable attention in recent years. The 

nonlinearities include geometric nonlinearity (e.g. large elastic deformations [2]), 

material nonlinearity (e.g. deformation-dependent elasticity [3,4,6]), structural 

nonlinearity (e.g. gaps or clearances between mounting brackets [7]) properties, and 

defect-caused nonlinearity [9-11]. Two basic goals of nonlinear system identification 

are to enhance the dynamic characteristics of the systems with wanted nonlinearities, 

and detect unwanted nonlinearities for structure monitoring purposes. Nonlinear 

identification involves two tasks, i.e., identification of nonlinear characteristics and 

estimation of system parameters. Although it has been fully studied, nonlinear system 

identification, as a typical reverse problem, is still a challenge due to the large diversity 

of nonlinear systems. Ref. [12] presented a comprehensive summary of popular 

methods that have been applied to nonlinear system identification, which include 

equivalent or statistic linearization methods [13-16], time-domain methods (taking the 

forms of types of time series analyses, e.g., NARMAX model [17,18]), frequency-

domain methods (e.g., higher-order frequency response function [19-21]), and artificial 

neural networks [22,23]. These methods show advantages in some aspects of system 

identification, however none of them is universally effective to all nonlinear systems. 

For example, NARMAX model is limited by large storage requirement and poor 

stability in calculation [24]; Neutral network is difficult to train and moreover often 

suffers convergence and efficiency issues [25], etc. 

With the advance of signal processing theory, a variety of time-frequency analysis 

(TFA) methods have been applied to nonlinear system identification in the past decades. 

Among them, Hilbert-Huang transform (HHT) [26,27], Wigner-Ville distribution 

(WVD) [28], Gabor transform (GT) [29,30] and wavelet transform (WT) [31,32] are 

the most popular ones. In contrast to conventional time- and frequency-domain analyses, 

the TFA methods project the time series into a space, in which signal components are 

separable and signal filtering could be more easily performed [12]. Since 1990s, the 

TFA based methods have been widely used to deal with various structural dynamics 

issues. For example, Franco and Pauletti [29] used Gabor spectrogram to reveal 

nonlinear features of system dynamics. Bellizzi, Guillemain and Kronland-Martinet [30] 

extended GT to identify nonlinear modal parameters of MDOF nonlinear systems with 

light damping. Staszewski [32] proposed a nonlinear identification procedure for SDOF 

and MDOF systems using multi-scale ridges and skeletons of WT. Pai [33] used 

perturbation solutions and time-frequency decomposition in combination to accomplish 

nonlinear system identification. However, the system identification capability of these 

conventional signal-independent TFAs are still limited due to the inexplicit time-

frequency distribution (TFD) resulted by them. 

Recently, the potential of Hilbert transform (HT) in the application to nonlinear 

vibration system identification is attracting increasing interests [34-39]. A number of 

HT-based system identification algorithms, such as FREEVIB [34] and FORCEVIB 

[35], have been successfully developed. However, the FREEVIB and FORCEVIB only 

consider the primary component (i.e., the fundamental quasi-harmonic solution) of 

system response. Such a simplification limits the capability of both algorithms in 

characterizing the nonlinearities in a dynamic system. Given high-order ultra-
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harmonics, Feldman [36] developed a signal decomposition technique for system 

identification, named Hilbert Vibration Decomposition (HVD) [37]. However, HT-

based methods are noise-sensitive and difficult to determine congruent modal 

parameters [36]. 

In this paper, an innovative nonlinearities identification and parameter estimation 

method is proposed, which can be implemented by following 4 steps: (1) transforming 

a nonlinear system into a slow-varying system of primary solution; (2) using 

polynomial chirplet transform (PCT) to extract instantaneous characteristics of primary 

component that is heavily contaminated by noise; (3) reconstructing backbone and 

damping curves using the estimated average modal parameters and instantaneous 

characteristics; and (4) fitting the identified average nonlinear characteristic force to 

estimate coefficients in initial force terms. In the proposed method, the PCT was 

employed to perform parameter estimation as it has been proved effective in enhancing 

TFD [40, 41].   

2. Nonlinear System Model and Identification 

2.1 Model of Nonlinear system 

A nonlinear system can be expressed as 

𝑚𝑥+𝑓(𝑥)+𝑘(𝑥)=𝑧(𝑡) , (1) 

where m denotes the mass of oscillator, 𝑓(𝑥) and 𝑘(𝑥) indicate the general forms of 

velocity-dependent nonlinear damping and displacement-dependent nonlinear elasticity, 

respectively, 𝑧(𝑡) is time-varying excitation applied to the nonlinear oscillator. 

Usually, memoryless anti-symmetric nonlinear damping force and nonlinear restoring 

force can be written as 

𝑓(𝑥)=2∑ 𝛽𝑖|𝑥|
𝑖𝑠𝑖𝑔𝑛(𝑥)𝐼

𝑖=0  , (2) 

𝑘(𝑥)=∑ 𝛼𝑗|𝑥|
𝑗𝑠𝑖𝑔𝑛(𝑥)𝐽

𝑗=0  .   
 

(3) 

   The system given by Eq. (1) can be transformed to be an equivalent fast-varying 

quasi-linear system with unit mass [35], i.e. 

𝑥+2ℎ(𝑡)𝑥+𝜔2(𝑡)𝑥=𝑧(𝑡)/𝑚 ,  (4) 

where ℎ(𝑡) and 𝜔2(𝑡) are fast-varying damping coefficient and fast-varying 

instantaneous natural frequency, respectively. Both of them contain two parts in time 

domain, one is much slower term and another one is much faster term with respect to 

the fundamental frequency component [35], i.e., 

ℎ(𝑡)=ℎ0(𝑡)+ℎ𝑓𝑎𝑠𝑡(𝑡)  ,            

𝜔2(𝑡)=𝜔0
2(𝑡)+𝜔𝑓𝑎𝑠𝑡

2 (𝑡) . 
 

(5) 

   If fundamental frequency component 𝑢(𝑡) dominates the energy of response signal, 

it is called as primary solution. Both of excitation 𝑧(𝑡) and primary solution 𝑢(𝑡) 

show slower time-varying characteristics in contrast to high-order ultra-harmonics of 

system response. Decomposing the terms in Eq. (4) into a fast-varying part and a slow-

varying part, an equation that contains only slow-varying part can be obtained by using 

the methods proposed in [42], i.e. 
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𝑢+2ℎ0(𝑡)𝑢+𝜔0
2(𝑡)𝑢=𝑧(𝑡)/𝑚 . (6) 

It is noted that the dynamic system described by Eq. (6) is a slow time-varying system 

of primary solution. Hereinafter, it acts as substitution for nonlinearity identification 

and parameter estimation. 

2.2 Nonlinear identification and parameter estimation 

Backbone and damping curves of dynamic system are known as two important 

nonlinear characteristics of a nonlinear system. For nonlinear elasticity and nonlinear 

damping considered in this paper, average natural frequency is used to map 

approximate backbone to real backbone. Assume operator "{ }" represents averaging 

procedure that is realized through low-pass filtering. If primary vibration is𝑢(𝑡)=
𝐴𝑝(𝑡)𝑐𝑜𝑠 𝜑𝑝(𝑡), the approximate backbone [42] can be expressed as, 

{𝜔0
2(𝐴𝑝)}=(∫ 𝑘(𝐴𝑝𝑐𝑜𝑠𝜑𝑝)𝑐𝑜𝑠𝜑𝑝𝑑𝜑𝑝

2𝜋

0
)/(𝜋𝑚𝐴𝑝) , 

 

(7) 

Similarly, after mapping average damping coefficient versus IA of primary velocity 

solution 𝑢(𝑡), one can obtain an approximate damping curve [42] as, 

{ℎ0(𝐴𝑢)}=−(∫ 𝑓(−𝐴𝑢𝑠𝑖𝑛𝜑𝑝)𝑠𝑖𝑛𝜑𝑝𝑑𝜑𝑝
2𝜋

0
)/(2𝜋𝑚𝐴𝑢)  ,  

 

(8) 

where 𝐴𝑢 denotes amplitude of primary velocity solution. 

It is worthy to note that backbone cannot be approximated by Eq. (7) for certain 

anti-symmetric elasticity. For example, the exact backbone of backlash [43] is given by 

𝜔0(𝐴)=√𝛼/(1+2/𝜋/(𝐴/𝛿−1)),𝐴>𝛿 ,     (9)  

where α denotes the stiffness of a linear elastic spring outside of dead zone, δ is gap 

width and 𝐴 is vibration amplitude. Another example is piecewise linear spring [43], 

which is given by 

𝜔0(𝐴)=𝜋/(2arcsin (√𝜇/√(𝐴∆⁄ −(1−𝜇))
2
+𝜇−𝜇2)/√𝑘1+

                  2arctan √((𝐴/∆−(1−𝜇))
2
−𝜇2)𝜇⁄/√𝑘2),A>∆  . 

 

(10) 

where 𝑘1 and 𝑘2 indicate stiffness of two linear elasticities inside and outside of zone 

∆, respectively, μ equals to the ratio of 𝑘1/𝑘2, where 𝑘1<𝑘2. 

In terms of parameter estimation, both FREEVIB and FORCEVIB algorithms will 

result in inaccurate nonlinear characteristic forces if all high-order ultra-harmonics are 

ignored [44]. To address this issue, it was proposed to use identified average nonlinear 

characteristic force to re-characterize the original ones. Firstly, by selecting extrema of 

displacement (𝑥𝑚𝑎𝑥) and velocity (𝑥𝑚𝑎𝑥), respectively, one can obtain the exact values 

of both original elastic static force and damping force [43], 

𝑘(𝑥𝑚𝑎𝑥)=𝜔0
2(𝑡𝑥𝑚𝑎𝑥)𝐴(𝑡𝑥𝑚𝑎𝑥) , 

  

(11) 

𝑓(𝑥𝑚𝑎𝑥)=2ℎ0(𝑡𝑥𝑚𝑎𝑥)𝐴𝑥(𝑡𝑥𝑚𝑎𝑥) , 
 

(12) 

where 𝑡𝑥𝑚𝑎𝑥/𝑡𝑥𝑚𝑎𝑥 indicates time when the maximum displacement/velocity is 

reached. 
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Then, integrate both sides of the equations over the full period of primary solution, 

the average elastic static force and the average friction force can be derived as [45], 

{𝑘(𝑥𝑚𝑎𝑥)}={𝜔0
2(𝑡𝑥𝑚𝑎𝑥)}𝐴𝑝(𝑡𝑥𝑚𝑎𝑥) , 

 

(13) 

{𝑓(𝑥𝑚𝑎𝑥)}=2{ℎ0(𝑡𝑥𝑚𝑎𝑥)}𝐴𝑢(𝑡𝑥𝑚𝑎𝑥) , 
 

(14) 

   Finally, identified discrete points are required to fit by the function of average 

characteristic force. The fitting curves can approximate the theoretical average 

characteristic forces respectively, which are defined as, 

𝑘(𝑥)̅̅̅̅̅̅ =(∫ 𝑘(𝐴𝑐𝑜𝑠𝜑)𝑐𝑜𝑠𝜑𝑑𝜑
2𝜋

0
)𝑥/(𝜋𝐴) , 

 

(15) 

𝑓(𝑥)̅̅̅̅̅̅ =2(−∫ 𝑓(−𝐴𝑥𝑠𝑖𝑛𝜑)𝑠𝑖𝑛𝜑𝑑𝜑
2𝜋

0
)𝑥/(2𝜋𝐴𝑥) .  

 

(16) 

   With the identified average characteristic forces, one can estimate the coefficient of 

each term of nonlinear force by referring to the theoretical coefficients in Eqs. (15) and 

(16). 

It is noticed that in the scenario of backlash and bilinear springs, theoretical average 

nonlinear elastic forces cannot be obtained according to Eq. (15), because integration 

parameter 𝜑 is a function of time instead of displacement.  

Firstly, in the case of backlash spring, average elastic force is a continuously 

differentiable function of displacement, whose slope gradually changes from 0 to 𝛼. 

Starting-point of variation in displacement domain is inflection point of piecewise 

elastic force curve in displacement domain. Theoretically, there exists an asymptote line 

of real average nonlinear elastic force curve 𝐹𝑎=𝑘𝑥+𝑏, in which the slope and the 

intercept are given by 

𝑘=𝛼;𝑏=−4𝛿𝛼/𝜋 .  (17) 

   Secondly, in the case of bilinear spring, corresponding asymptote can be obtained 

with the slope and the intercept as 

𝑘=𝑘2;𝑏=−4(𝑘2−𝑘1)∆/𝜋 .  (18) 

   According to Eqs. (17) and (18), one can also carry out parameter estimation for the 

above two nonlinearities. 

3. Extraction of instantaneous characteristics of a nonlinear system 

The instantaneous characteristics can be extracted by using a variety of signal 

processing methods. But TFA methods are more favored since they can facilitate signal 

filtering for multi-component signals. Traditional TFA methods that can be used for IF 

and IA estimation include the short-time Fourier transform (STFT), the continuous 

wavelet transform (CWT), the Wigner-Ville distribution (WVD) and the chirplet 

transform (CT), etc. These methods are inadequate for good analysis and representation 

of multi-component non-stationary responses of nonlinear systems (WHY? It is 

necessary to explain the reason). In this study, the PCT is used to estimate instantaneous 

characteristics, including IA and IF, from system response. In this section, a HT based 

instantaneous characteristics extraction method that is used in FREEVIB and 
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FORCEVIB algorithms [34, 35] will be introduced first. Then, the PCT-based 

estimation method will be developed and demonstrated. 

3.1 Instantaneous characteristics extraction based on the HT 

For a non-stationary signal 𝑥(𝑡)=𝐴1(𝑡)𝑐𝑜𝑠∫𝜔1(𝑡)𝑑𝑡 +𝐴2(𝑡)𝑐𝑜𝑠∫𝜔2(𝑡)𝑑𝑡, its 

two components can be characterized by slow-varying amplitude and IF. Supposing 

that the first component is primary component and at any time 𝑡=𝑡𝑖, the IA (envelope) 

and IF of the two components will satisfy the following conditions 𝐴1(𝑡𝑖)≫

𝐴2(𝑡𝑖) and 𝜔1(𝑡𝑖)<𝜔2(𝑡𝑖). Then, 𝐴(𝑡) and 𝜔(𝑡) of the signal can be expressed as, 

𝐴(𝑡)=√𝐴1
2+𝐴2

2+2𝐴1𝐴2𝑐𝑜𝑠(𝜔2−𝜔1)𝑡 , 
 

(19) 

𝜔(𝑡)=𝜔1+{(𝜔2−𝜔1)[𝐴2
2+𝐴1𝐴2𝑐𝑜𝑠(𝜔2−𝜔1)𝑡]}/𝐴

2(𝑡) . (20) 

where both the envelope and IF also consist of two parts, i.e., a slow-varying part and 

a fast-varying part. In practice, averaging time-varying parameters is achieved by 

filtering out fast-varying part with the aid of a low-pass filter. From Eq. (19) and (20), 

one can obtain the remaining averaged slow-varying part, 𝐴(𝑡)̅̅̅̅̅̅ =√𝐴1
2+𝐴2

2;𝜔(𝑡)̅̅̅̅̅̅ =

𝜔1. Such a procedure is equally effective even when the signal contains more than two 

components. When the primary component dominates a signal, one can obtain the 

averaged slow-varying part, 𝐴(𝑡)̅̅̅̅̅̅ =√∑𝐴𝑖
2≈𝐴1(𝑡),𝜔(𝑡)̅̅̅̅̅̅ =𝜔1(𝑡). 

   It is necessary to note that the HT based instantaneous characteristics extraction 

method is only applicable to mono-component signals. For multicomponent signals, an 

approximation method was developed in relation to FREEVIB and FORCEVIB 

algorithms for primary component. Firstly, process the multicomponent signal by using 

the HT to obtain its instantaneous characteristics; Secondly, averaged instantaneous 

characteristics are obtained though performing low-pass filtering operation to 

approximate instantaneous characteristics of primary component. Within the bandwidth 

of primary solution with time-varying IF features, neither low-pass filter nor narrow-

band filter can cancel noise, thus errors occur in the identified envelope and IF as a 

consequence.  

3.2 Instantaneous characteristics extraction based on PTFA 

Parametric time-frequency analysis (PTFA) of a signal 𝑥(𝑡)∈𝐿2(𝑅) is defined as 

[40] 

 𝑃𝑇𝐹𝐴𝑥(𝑡0,𝜔,Ψ;σ)=𝑀(𝑡0)∫ 𝑧(𝑡)𝑤𝜎(𝑡−𝑡0)𝑒𝑥𝑝 (−𝑗𝜔𝑡)𝑑𝑡
+∞

−∞
 ,  

 

(21) 

where 𝑧(𝑡) denotes the analytic signal of 𝑥(𝑡), 𝑧(𝑡) indicates mathematical 

processing of the analytic signal using particular operators, and 𝑡0 is the center of 

window function. 𝑀(𝑡0) is a complex number whose modulus is equal to 1. 

𝑧(𝑡)=𝑥(𝑡)+𝑗𝑥(𝑡) , (22) 

𝑧(𝑡)=𝑧(𝑡)Φ𝑅(𝑡)Φ𝑀(𝑡,𝑡0) , (23) 

where 𝑥(𝑡) indicates the HT of 𝑥(𝑡). 𝑤𝜎(𝑡) in Eq. (21) refers to symmetric non-

negative real window function. In most cases, 𝑤𝜎(𝑡) employs a Gaussian window, i.e. 
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𝑤𝜎(𝑡)=𝑒𝑥𝑝 (−0.5(𝑡/𝜎)
2)/(√2𝜋𝜎) , 

 

(24) 

The details for choosing an appropriate value of 𝜎 is depicted in [40].  

    In the above equations, 𝛹 refers to a nonlinear kernel function. 𝛷𝑅(𝑡) and 

𝛷𝑀(𝑡,𝑡0) denote two mathematical operators, namely frequency-rotating operator and 

frequency-shifting operator. Considering an operator that is in the form of a complex 

signal, its IF is required to approximate the IF trajectory of the signal of interest. 

   In this paper, the PCT is adopted and the two operators in the PCT are expressed as 

[40], 

Φ𝛼1,⋯,𝛼𝑛
𝑅 (𝑡)=𝑒𝑥𝑝 (−𝑗∑ 𝛼𝑘−1𝑡

𝑘/𝑘𝑛+1
𝑘=2 ) , 

 

(25) 

Φ𝛼1,⋯,𝛼𝑛
𝑀 (𝑡,𝑡0)=𝑒𝑥𝑝 (𝑗∑ 𝛼𝑘−1𝑡0

(𝑘−1)
𝑡)   𝑛+1

𝑘=2 , 
 

(26) 

where (𝛼1,⋯,𝛼𝑛) denotes characteristic parameters of a polynomial kernel function.  

   Assume that the IF of a non-stationary signal with continuous phase can be 

approximated by polynomial of appropriate order on a closed and bounded interval. 

The PCT has been proved effective in achieving explicit TFD of the signals with time-

varying frequencies. According to the Weierstrass approximation theorem, polynomial 

approximation can achieve any degree of accuracy, which largely depends on kernel 

characteristics parameters. 

   In practice, the exact characteristic parameters cannot be determined in one time of 

operation. To address this issue, Peng [40] proposed a ridge-detection based method to 

estimate characteristic parameters for the PCT through an iteration process. 

Characteristic parameters in each iteration are obtained by polynomial fitting the ridge 

extracted from TFD. In the end, these parameters are converged to some values, which 

are taken as the estimated values of the parameters. It has been proved that the PCT-

based IF extraction method can estimate the parameters accurately even under noisy 

conditions [41].  

3.2.1 IF estimation with the aid of the PCT 

   It is necessary to estimate IF before reconstructing IA since the estimation accuracy 

of IF can significantly influence the accuracy of IA estimation. However, the ridge 

detection method proposed in [40] may raise error in IF estimation if the signal being 

inspected has been seriously polluted by noise. In [46], it is assumed that peaks in TFD 

are directly associated with energy distribution of the noisy signal, which, however, is 

probably invalid or biased when the signal-to-noise ratio (SNR) is low. 

   Inevitably, error will be introduced into the estimation of polynomial kernel 

parameters 𝛥𝛢1=𝛥(𝛼1,⋯,𝛼𝑛)
1 during polynomial-fitting. If performing PCT with 

inappropriate kernel parameters, the resultant TFD would be incorrect and thus lead to 

wrong IF estimation. For this reason, [47,48] applied continuous and smooth constraints 

to refine the IF trajectory derived from the PCT under heavy noise conditions. 

   The continuity-smoothness criterion is defined as: for the 𝑖𝑡ℎ sampling point in 

time domain (1≤𝑖≤𝑁, and 𝑁 is signal length), an IF trajectory is assumed to be 

continuous and smooth transition between the  ith point and its neighbors, i.e., the 
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(𝑖−1)𝑡ℎ point and the (𝑖+1)𝑡ℎ point on the trajectory. In other words, the 

continuity-smoothness indicator defined as Eq. (27) is not more than 1 for the 𝑖𝑡ℎ 

point 

𝛾𝑖=𝑚𝑎𝑥(|𝑆𝑖−1−𝑆𝑖|,|𝑆𝑖+1−𝑆𝑖|) . (27) 

in which 𝑆𝑖 indicates the rank of the 𝑖𝑡ℎ time domain sampling point in frequency 

domain sampling. Assum 𝑀 denotes sample length in frequency domain, thus 1≤

𝑆𝑖≤𝑀, and, generally, 𝑀<𝑁. 

   The IF estimation algorithm is developed as follows, 

1) Conduct the PCT (in the first iteration, all the kernel parameters are set to be 

zero), then detect the energy peak in the TFD and find out the point with the 

largest energy density (𝑡𝑝,𝑓𝑝),1≤𝑝≤𝑁; 

2) Compute the continuity-smoothness indicators for all points on the initial peak 

ridge in two directions, respectively, i.e., from 𝑡𝑝−1 to 𝑡1 and from 𝑡𝑝+1 to 

𝑡𝑁 along with time axis; 

3) Skip the point whose continuity-smoothness indicator is less than or equal to 1 , 

then continue the same process for next point. Otherwise, if indicator of a point 

is more than 1, the value of this point will be set to zero. Then, peak is detected 

at this point along frequency axis again; 

4) Repeat Step 3) until all points of the trajectory satisfy the continuity- smoothness 

criterion and eventually obtain the IF estimation in this iteration; 

5) Determine kernel parameters with the estimated IF and repeat Steps 1) ~ 4) until 

preset convergence condition of kernel parameters is met. The estimated IF in 

the last iteration is regarded final estimation of true IF. 

3.2.2 Instantaneous amplitude estimation with the aid of the PCT 

The definition of PTFA given by Eq. (21) can be rewritten as, 

𝑃𝑇𝐹𝐴𝑥(𝑡0,𝜔,𝛼1,⋯,𝛼𝑛;𝜎)=∫ 𝑧(𝑡)Θ(𝑡0,𝛼1,⋯,𝛼𝑛,𝜎)
∗ (𝑡)𝑒𝑥𝑝 (−𝑗𝜔𝑡)𝑑𝑡

+∞

−∞
 , 

 

(28) 

where Θ(𝑡0,𝛼1,⋯,𝛼𝑛,𝜎)
∗ (𝑡) is a complex window given by 

Θ(𝑡0,𝛼1,⋯,𝛼𝑛,𝜎)
∗ (𝑡)=𝑤𝜎(𝑡−𝑡0)𝑒𝑥𝑝 (−𝑗∑ 𝜃𝑘(𝑡−𝑡0)

𝑘+1/(𝑘+1))𝑛
𝑘=1  , 

 

(29) 

in which 𝜃𝑘is function of 𝑡0 and kernel parameters (𝛼1,⋯,𝛼𝑛), 

𝜃𝑘=𝛼𝑘+∑ 𝑖𝛼𝑖𝑡0
𝑖−1𝑛

𝑖=𝑘+1  , (30) 

Thus, PTFA can be interpreted as the product of the STFT of the analytical signal 

and the complex window Θ(𝑡0,𝛼1,⋯,𝛼𝑛,𝜎)
∗ (𝑡). Through comparing (21) and (28), the 

complex window can also be expressed in the terms of the two frequency operators 

depicted by Eqs. (25) and (26), i.e. 

Θ(𝑡0,𝛼1,⋯,𝛼𝑛,𝜎)
∗ (𝑡)=𝑀(𝑡0)𝑤𝜎(𝑡−𝑡0) Φ

𝑅(𝑡)Φ𝑀(𝑡,𝑡0) , 
 

(31) 

where  

𝑀(𝑡0)=𝑒𝑥𝑝 (−𝑗∑ 𝜃𝑘(−𝑡0)
𝑘+1𝑛

𝑘=1 /(𝑘+1)) . (32) 



9 
 

Assume that the signal being analyzed is a mono-component signal, the 

corresponding analytical signal can be expressed as, 

𝑧(𝑡)=𝐴(𝑡)𝑒𝑗𝛺𝑡 . (33) 

The PTFA of this signal is, 

           𝑃𝑇𝐹𝐴𝑥(𝑡0,𝜔)=〈𝑧(𝑡),Θ(𝑡)𝑒𝑥𝑝 (𝑗𝜔𝑡)〉=∫ 𝐴(𝑡)Θ∗(𝑡)𝑒𝑥𝑝 (−𝑗(𝜔−Ω)𝑡)𝑑𝑡
+∞

−∞
 , 

 (34) 

   Amplitude 𝐴(𝑡) can be derived using Taylor’s formula around center point of 

complex window, i.e., at the point 𝑡=𝑡0. Assume envelope 𝐴(𝑡) is slowly varying 

with time. Neglect the high order items in Eq. (34), yields 

𝑃𝑇𝐹𝐴𝑥(𝑡0,𝜔)=∫ (𝐴(𝑡0)+𝑜(𝐴
′(𝑡0)))Θ

∗(𝑡)𝑒𝑥𝑝 (−𝑗(𝜔−Ω)𝑡)𝑑𝑡
+∞

−∞
 , 

 

(35) 

where the prime indicates derivative. 𝑊𝜎(ω) is the Fourier transform of Gaussian 

window 𝑤𝜎(𝑡), and Θ∗(𝜔) is the Fourier transform of the complex window Θ∗(𝑡). 

When the first order item (infinitesimal) is neglected, has 

𝑃𝑇𝐹𝐴𝑥(𝑡0,𝜔)=𝐴(𝑡0)Θ
∗(𝜔−Ω) 

                           =𝑀(𝑡0)𝐴(𝑡0)𝑊𝜎(𝜔−Ω)exp (−𝑗𝜔𝑡) , 

 

(36) 

   Thus 

|𝑃𝑇𝐹𝐴𝑥(𝑡0,𝜔)|=𝐴(𝑡0)|𝑊𝜎(𝜔−Ω)| , (37) 

   On IF trajectory, the IA can be obtained by 

|𝑃𝑇𝐹𝐴𝑥(𝑡0,Ω)|=𝐴(𝑡0)|𝑊𝜎(0)| . (38) 

in which |𝑊𝜎(0)| indicates the modulus of complex value of Gaussian window at zero 

frequency. For a mono-component signal, Eq. (38) means that it is able to estimate the 

IA from the IF trajectory obtained by using the PCT. 

 

3.3 Demonstration of instantaneous characteristics extraction 

   For the sake of simplicity, a mono-component signal with polynomial phase and 

decaying amplitude is designed, i.e. 

𝑥(𝑡)=𝑒𝑥𝑝 (−0.03𝑡2)𝑠𝑖𝑛(2𝜋(10𝑡+2.5𝑡2+0.4𝑡3−0.03𝑡4))/(1+0.1𝑡) . 

 (39) 

where (0≤𝑡≤10). 

The IF is 

𝐼𝐹(𝑡)=10+5𝑡+1.2𝑡2−0.12𝑡3 (𝐻𝑧) , (40) 

and the IA is 

𝐴(𝑡)=𝑒𝑥𝑝 (−0.03𝑡2)/(1+0.1𝑡) .     (41) 

    Three methods, i.e. the PCT, the HT and the CWT were applied to extract the IF 

and IA of the signal. For the PCT, an unnormalized Gaussian function 𝑤(𝑡)=

𝑒𝑥𝑝 (𝑙𝑜𝑔(0.005)𝑡2) was used as window function. For the CWT, Morlet wavelet 

function was employed. The corresponding IA and IF extraction results are shown in 

Fig.1. 
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(a)                               (b) 

Fig. 1 Extracted IF and the IA: (a) extracted IF, (b) extracted IA 

From Fig.1, it can be seen that basically, all three methods achieve accurate 

estimation of IF and IA of the signal, except the HT based method shows errors in IF 

estimation at both boundaries of the signal.  

To test the robustness of the three methods in instantaneous characteristics 

extraction under noise condition, zero-mean Gaussian white noise is added to the signal. 

The SNR of the noise contaminated signal is 2𝑑𝐵. Fig. 2(a) shows the IF extracted by 

the HT with the assistance of a low-pass filtering strategy. Fig. 2(b) shows the fitting IF 

curve of the TFD ridge through the CWT. Fig. 2(c) gives the IF extracted by the PCT 

based method introduced in Section 3. 

  

(a)                                      (b) 
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(c) 

Fig. 2 IF extracted by using HT (a), CWT (b) and PCT (c) under 𝑆𝑁𝑅=2𝑑𝐵 

 

Fig. 3 IA extracted by using HT and PCT under 𝑆𝑁𝑅=2𝑑𝐵 

Since the low-pass filter cannot cancel the noise within the bandwidth 

of 40𝐻𝑧~70𝐻𝑧, significant error appears in high frequency zone (6s~10s) for the 

HT method. In Fig. 2(b), it can be seen that from 5s to 10s, the noise also causes 

significant error to the result of the CWT. On the contrary, the IF extracted by the PCT 

based method matches real IF trajectory very well. The extracted IA is shown in Fig. 3. 

Obviously, in contrast to the HT based method the PCT-based method has significantly 

improved the accuracy of IA extraction results, so that the extracted IA basically 

matches the variation tendency of the real IA curve.  

4. Numerical simulations and verification experiments 

To validate the proposed method, several anti-symmetric nonlinear oscillators in 

both free and forced vibrations are considered in this section. In numerical experiments, 

a low SNR (𝑆𝑁𝑅<10𝑑𝐵) is assumed to mimic heavy noise condition. In practical 

experiment, a SDOF ruler spring-mass system is used to fulfil verification. If without 

specific notation, displacement response signal is acquired and corresponding 
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velocity/acceleration signals are obtained via a differentiator with filtering measure. 

4.1 Numerical experiemnts 

4.1.1 Free vibration  

Case 1. This case considers a nonlinear system with a high-order nonlinear elasticity. 

  𝑥+2ℎ𝑥+𝛼1𝑥+𝛼5𝑥
5=0 , (42) 

where 𝛼1=(15×2𝜋)
2,𝛼5=8×10

9 ,ℎ=2.5. Impulse excitation is imposed to the 

system, and the initial conditions are, 

𝑥(0)=0,𝑥(0)=45 .  

For such a nonlinear system, the theoretical expressions of backbone and damping 

curves derived by Eq. (7) and (8) are 

{𝜔0(A)}=(𝛼1+5𝛼5𝐴
4/8)1/2 , (43) 

{ℎ0(𝐴𝑥)}=ℎ . (44) 

System response is calculated using the 4th order Runge-Kutta method. Zero-mean 

Gaussian white noise is artificially added to the system response with 𝑆𝑁𝑅=2𝑑𝐵. The 

noise-contaminated system response and its FFT spectrum are shown in Fig. 4(a) and 

4(b), respectively.                              

 

(a)                                      (b) 

Fig. 4,  the noise-contaminated response (a) and its FFT spectrum (b) for Case 1 
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(c) 

Fig. 5 The TFD (a), the estimated IF (b) and the IA (c) of the primary component for Case 1 

   In the spectrum, it can be seen that the primary bandwidth range of response is from 

15𝐻𝑧 to 100𝐻𝑧, within which the noise effect is significant and cannot be easily 

cancelled through filtering. The PCT based method is used to estimate the instantaneous 

characteristics of the system response. Fig. 5(a) shows the TFD of the response. The IF 

extracted from the TFD is shown in Fig. 5(b), in which solid line is ridge and dashed 

line is IF curve generated by fitting the ridge using polynomial. Fig. 5(c) shows the IA 

of primary component, in which dashed line is theoretical one and solid line is the 

estimated one generated by Eq. (38). 

With the extracted IF and IA, the procedure given in Section 2 is used to identify 

the backbone and the damping curve. In Fig. 6, the identified backbone is given by 

dotted line and the theoretical one calculated by Eq. (43) is displayed by solid line. 

Accordingly, identified damping curve takes the form of vertical line approximately. 

 
Fig. 6 The identified backbone and the damping curve for Case 1 

   The theoretical average nonlinear elastic force and average nonlinear damping force 
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are obtained by Eq. (11) and (15), Eq. (12) and (16), respectively. Final identified results 

are shown in Fig. 7. Solid lines indicate theoretical solutions. Fitting these discrete dots 

with the form of theoretical solution, one can estimate the nonlinear characteristic 

parameters accurately. 

 

Fig. 7 The identified average nonlinear characteristic forces for Case 1 

   Table 1 shows the errors in percentage of estimated parameters by the proposed 

method and the FREEVIB, with the former on the left side of slash and the latter on the 

right side. Apart from the case of 𝑆𝑁𝑅=2𝑑𝐵, other two noise conditions are 

considered. In the table, symbol “*” indicates invalid estimation.  

Table 1 PCT-based/ FREEVIB-based results under different noise conditions. (Case 1) 

  SNR 

Coefficients 

100dB 20dB 2dB 

h -0.64%/-0.56% 0.72%/* -0.13%/* 

Ŭ1 -1.8%/-1.9% -3.8%/* 0.62%/* 

Ŭ5 4.6%/13.8% 1.5%/* -7.1%/* 

   From Table 1, it is found that the FREEVIB algorithm can only achieve accurate 

parameters estimation when 𝑆𝑁𝑅=100𝑑𝐵 (i.e. noise-free). Once the signal is 

polluted by noise, e.g., 𝑆𝑁𝑅=20𝑑𝐵, significant errors will occur and thus lead to the 

failure of estimation. By contrast, the proposed PCT-based method can achieve accurate 

estimation in all SNR scenarios.  

Case 2. This case considers a nonlinear system that is characterized by turbulent 

damping, viscous damping and a preloaded elasticity spring.   

𝑥+2𝑐1𝑥+2𝑐2𝑥|𝑥|+𝑘𝑥+𝐹0𝑠𝑖𝑔𝑛(𝑥)=0 , (45) 

where𝑐1=1.0,𝑐2=45,𝑘=(2𝜋×20)
2,𝐹0=1.2×10

−5×(2𝜋×20)2, and the 

initial conditions are 𝑥(0)=0.001,𝑥(0)=0. 
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The theoretical backbone and damping are 

{𝜔0(𝐴)}=(𝑘+4𝐹0/(𝜋𝐴))
1/2 ,  (46) 

{ℎ0(𝐴𝑥)}=𝑐1+8𝑐2𝐴𝑥/(3𝜋) . (47) 

 

  Likewise, system responses were obtained under the condition of 𝑆𝑁𝑅=2𝑑𝐵. The 

corresponding instantaneous feature extraction results are shown in Fig.8. Where, Fig. 

8(a) shows the IF estimated from the TFD ridge by the PCT based method. In Fig. 8(b), 

the solid line is the estimated IA of the primary component of the response and the 

dashed line is the theoretical IA. 

  

(a)                                      (b) 

Fig. 8 The estimated IF (a) and the IA (b) of the primary component for Case 2 

    The backbone and the damping curves are shown in Fig. 9. Where, the estimated 

results are indicated by dotted lines and the theoretical results by solid lines. 

  

Fig. 9 The identified backbone and the damping curve for Case 2 
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are indicated by the dots in Fig.10. Where, theoretical solutions for both kinds of forces 

are also illustrated for comparison, which are indicated by solid lines.  

 

Fig. 10 The identified average nonlinear characteristic forces for Case 2 

   Subsequently, system parameters are estimated by using the same fitting procedure 

that has been adopted in Case 1. The parameter estimation results obtained by using the 

PCT based method and the FREEVIB under different noise conditions are listed in 

Table 2. Likewise, the symbol “*” indicates invalid estimation. 

Table 2 PCT-based/ FREEVIB-based results under different noise conditions. (Case 2) 

  SNR 

Coefficients 

100dB 20dB 2dB 

c1 -1.6%/-1.4% -3.2%/* 9.5%/* 

c2 1.5%/0.51% 2.5%/* 2.3%/* 

k -0.76%/-0.087% -0.38%/* 0.44%/* 

F0 5.0%/0.53% 0.11%/* -5.4%/* 

   From Table 2, it is found that FREEVIB fails to work in presence of noise, while the 

proposed PCT-based method can work very well and accomplish an accurate estimation 

of the parameters regardless of the noise. Even in the worst case when 𝑆𝑁𝑅=2𝑑𝐵, its 

maximum estimation error is still below10%.  

4.1.2 Forced vibration  

Case 3. A nonlinear system that contains Van-der-Pol and Duffing nonlinearities is 

considered in this case, i.e. 

𝑥+ℎ𝑥+𝜇𝑥(𝑥2−1)+𝑘𝑥+𝛼𝑥3=𝑧 ,  (48) 

with ℎ=0.02,𝜇=0.1,𝑘=1,𝛼=0.4. 

The excitation z is a harmonic excitation, i.e. 
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𝑧(𝑡)=0.005𝑐𝑜𝑠 (2𝜋×0.16𝑡) . 

    Theoretical backbone and damping are  

{𝜔0(𝐴)}=(𝑘+
3

4
𝛼𝐴2)1/2 , 

 

(49) 

{ℎ0(𝐴𝑥)}=0.5((h−μ)+
3

4
𝜇𝐴𝑥
2) ,  

 

(50) 

The forced response was calculated by using the 4th order Runge-Kutta method 

under the same noise condition 𝑆𝑁𝑅=2𝑑𝐵. The results are shown in Fig.11. Where, 

Fig. 11(a) and (b) show the TFD and the IF estimation of response during the period of 

50s~250s, Fig. 11(c) shows the estimated IA of primary component. 

 
(a)                                   (b) 

 

(c) 

Fig. 11 The TFD (a), the estimated IF (b) and the IA (c) of the primary component for Case 3 

From the extracted IF and IA, the backbone and the damping curves are identified. 

The corresponding identification results are shown in Fig. 12.  
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Fig. 12 The identified backbone and the damping curve for Case 3 

   Then, both average elastic static force and average friction force are estimated. The estimation 

results are shown in Fig. 13.  

 

Fig. 13 The identified average nonlinear characteristic forces for Case 3 

   To investigate the robust performance of the proposed method against noise, the 

parameter estimation errors resulted under different noise conditions are listed in Table 

3. In which, the estimation errors arisen by the FORCEVIB algorithm are also listed for 

facilitating comparison. Likewise, “*” indicates invalid estimation. 
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Table 3 PCT-based/ FORCEVIB -based results under different noise conditions. (Case 3) 

  SNR 

Coefficients 

100dB 20dB 2dB 

(hīɛ) 1.4%/-0.65% 2.8%/* 0.73%/* 

ɛ -0.48%/2.4% -6.3%/* -4.1%/* 

k 1.3%/-0.080% 0.7%/* 5.2%/* 

Ŭ 7.4%/1.3% 10%/* 10%/* 

   From the results listed in Table 3, it can be clearly seen that same as FREEVIB does, 

the FORCEVIB algorithm can work very well only in the absence of noise. Once noise 

is present, the FORCEVIB algorithm will give invalid estimation to the parameters. By 

contrast, the proposed PCT-based method can implement accurate estimation regardless 

of noise. Thus, it can be concluded that the PCT-based method possesses strong robust 

performance against noise and thus is more suitable to be used to deal with those 

engineering issues involving heavy noise pollution. 

Case 4. A nonlinear vibration system contains combined backlash and dry friction 

nonlinearities is considered in this case. It is expressed as 

𝑥+2ℎ𝑠𝑖𝑔𝑛(𝑥)+𝑘(𝑥)=𝑧 , (51) 

where  

𝑘(𝑥)={
0,                                      𝑖𝑓 |𝑥|≤𝛿

𝛼(|𝑥|−𝛿)𝑠𝑖𝑔𝑛(𝑥),     𝑖𝑓 |𝑥|>𝛿
 , 

and  ℎ=650,𝛼=(2𝜋×30)2,𝛿=1.5,𝑧(𝑡)=13000𝑠𝑖𝑛 (2𝜋(10+7𝑡)𝑡). 

   The theoretical backbone is Eq. (9) and the theoretical damping is  

{ℎ0(𝐴𝑥)}=4ℎ/(𝜋𝐴𝑥) .  (52) 

   Apply the same procedure adopted in Case 3 to the system, the IF and IA of the 

system response extracted by using the PCT-based method are shown in Fig. 14. 

 

(a)                                       (b) 

Fig. 14 The estimated IF (a) and the IA (b) of the primary component for Case 4 

The corresponding backbone and damping are shown in Fig. 15, and the 

corresponding average elastic force and average friction force are shown in Fig.16. On 

the left side of Fig. 16 the dashed line indicates the original elastic force, while the 

discrete dots are the identification results calculated by Eq. (13). According to the 

parameter estimation algorithm for backlash nonlinearity in Section 2.3, the asymptote 
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line of the average elasticity curve is parallel to that of the original one, but these two 

paralleled lines exhibit different intercepts on the abscissa axis. By fitting the discrete 

dots with the form of the asymptote line, the system parameters can be approximately 

calculated by using Eq. (28). 

 

Fig. 15 The identified backbone and the damping curve for Case 4 

 

Fig. 16 The identified average nonlinear characteristic forces for Case 4 

The errors arisen in the estimations respectively by the proposed PCT based method 

and the FORCEVIB algorithm under various noise conditions are listed in Table 4 for 

comparison. Symbol “*” indicates invalid estimation. 
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Table 4 PCT-based/Feldman’s method-based results under different noise conditions. (Case 4) 

  SNR 

Coefficients 

100dB 20dB 2dB 

h 6.6%/-6.9% 6.9%/* 7.5%/* 

Ŭ 3.3%/-0.34% 1.2%/* 1.78%/* 

ŭ -2%/-2.5% -3.3%/* 0.27%/* 

  Apparently, the strong noise robust performance of the proposed PCT based method 

in estimating nonlinear system parameters is proved once again by the results listed in 

Table 4.    

4.2 Practical experiment  

To further verify the effectiveness of the proposed method in real life, a test rig 

consisting of rigid foundation, tension mechanism with an adjustable tightening slider, 

ruler springs and aluminum mass is developed as shown in Fig.17. Since the deflection 

of the thin steel rulers is nonlinear, the test rig is intrinsically an SDOF nonlinear 

vibration system. 

For a structure made of metal material, its deformation will change nonlinearly 

against applied force after the deformation reaches a critical value. In the meantime, 

phase lag will occur between structure deformation and the applied force due to inner 

friction and energy dissipation of the material. This hysteretic nonlinearity in stiffness 

of steel ruler is characterized by the elastic restoring force, which contains nonlinear 

orders of displacement and nonlinear orders of velocity [49,50]. 

 

Fig. 17 The test rig: mass (1), tension mechanism (2), rigid foundation (3), and ruler springs (4) 

The setting up of the experiments are shown in Fig. 18. Where, a laser displacement 

sensor was used to measure free response of the system in hammer striking tests and an 

LMS system was used to collect impact force and displacement response. An example 

of the impact force and displacement response that are measured in the experiment is 

shown in Fig.19. Where, the measured impact force is plotted in Fig.19a, and dynamic 

response in Fig.19b.  

app:ds:aluminum
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                (a)                                   (b) 

Fig. 18 Setting up of the experiment: (a) test rig and hammer; (b) data acquisition device 

 
 (a)                                   (b) 

Fig. 19 Time-domain impulse force (a) and response signal (b) 

 

From Fig.19, it is found that the noise contained in the measured signals is small 

and ignorable. To fulfil system parameter estimation, the first 16s of dynamic response 

signal shown in Fig.19b was analyzed by using both conventional spectral analysis and 

the PCT. The results are shown in Figs.20a and b. The corresponding IF and the IA 

curves extracted from primary solution are shown in Figs. 20c and d. 
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                 (c)                                      (d) 

Fig. 20 The analysis of response signal: the spectrum (a), the time-frequency distribution (b), the 

instantaneous frequency (c), and the instantaneous amplitude (d) 

Based on extracted IF and IA, one can estimate the instantaneous modal parameters 

and identify backbone and damping curves, which are shown in Figs. 21a and b, 

respectively. The results shown in Fig.21a suggests that polynomial dominates almost 

all system response except the preloaded nonlinearity dominates the response only 

when the response is small. The identified damping curve shown in Fig.21b indicates 

that damping could be expanded into polynomial. Considering the aforementioned 

hysteretic nonlinearity in stiffness and referring to the popular hysteretic nonlinear 

models in Ref. [51], a tractable model with hysteresis loop, 𝐹=𝑘1𝑥+𝑘2𝑥
3+𝑐1𝑥+

𝑐2𝑥
3, is selected to describe the nonlinear stiffness. It is shown in Fig. 21c. 
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x
O

F

 

(c) 

Fig. 21 Identified backbone (a), the damping curve (b), and the hysteresis loop of cubic 

nonlinearity model (c) 

Subsequently, equivalent average nonlinear elastic restoring force {𝑘(𝑥)}=𝑘1𝑥+

3

4
𝑘2𝑥

3+
4

𝜋
𝐹0𝑠𝑖𝑔𝑛(𝑥) with 𝐹0=𝛼𝑘1 and equivalent average nonlinear damping 

force {𝑓(𝑥)}=𝑐1𝑥+
3

4
𝑐2𝑥

3  are assumed. Their identification result and 

corresponding fitted lines are shown in Fig. 22. Where, discrete points indicate the 

identification results and dotted lines are the fitted results. Then, the specific parameters 

in each term can be estimated and following which, the estimated parameters are 

substituted into the identified model to obtain the dynamic equation of the system. 

 

Fig. 22 Identified equivalent nonlinear characteristic forces 

Finally, the mass-normalized motion differential equation can be represented as  

𝑥+𝑐1𝑥+𝑐2𝑥
3+𝑘1𝑥+𝑘2𝑥

3+𝛼𝑘1𝑠𝑖𝑔𝑛(𝑥)=0 .               (53) 

where 𝑐1=0.2167,𝑐2=6.1213,𝑘1=(2𝜋×37.8539)
2,𝑘2=6.9330×10

9,𝛼=

8.8707×10−8. 
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    In order to confirm that the equation above can correctly describes the dynamic 

characteristics and responses of the nonlinear vibration system, the system response 

calculated by using the estimated system parameters and the actual system response 

measured from the test rig are compared, as shown in Fig.23a. To facilitate analysis, 

the estimation errors are also calculated. The results are shown Fig.23b.  
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Fig. 23 Comparison between the artificial response and the real response: the time-domain signal 

(a), the absolute error (b) 

  From Fig.23c, it is seen that the estimation errors are very small and ignorable. Thus, 

it can be concluded that the proposed method is indeed an effective method for system 

identification. 

5. Concluding remarks 

In view of the limitations of existing nonlinear system identification techniques, a 

new system identification method is studied in this paper based on the PCT, which has 

been proved a powerful tool in achieving explicit TFD of non-stationary signals. The 

proposed PCT based system identification method is implemented by 4 steps, i.e. 1) 

nonlinear system is transformed into a slow-varying system of primary solution; 2) 

instantaneous modal parameters are estimated with IF and IA of response; 3) mapping 

average instantaneous modal parameters versus instantaneous characteristics to obtain 

backbone and damping curve; 4) parameter estimation is achieved by fitting curves of 

the identified average nonlinear force.(This should not be part of research conclusion !!) 

Both numerical and experimental verifications have proved that the proposed PCT 

based method is superior to the standard FREEVIB and FORCEVIB algorithms and 

show strong robust performance against noise. The experiments has shown that the PCT 

based method is still able to perform accurate nonlinear system identification even 

under serious noise contamination condition (e.g. SNR=20 dB), while the FREEVIB 

and FORCEVIB algorithms can work only in the absence of noise or when the noise is 

very small and ignorable (e.g. SNR=100 dB).  

In the future, the work will be extended to deal with MDOF systems and the further 

verification of the capability of proposed PCT based method in processing 

multicomponent signals. 
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Appendix A 

Glossary & Abbreviation 

Abbr. Expansion Abbr. Expansion 

CT Chirplet transform PTFA   Parametric time-frequency analysis 

CWT Continuous wavelet transform PCT Polynomial chirplet transform 

FREEVIB Free vibration identification method SDOF Single-degree-of-freedom 

FORCEVIB Forced vibration identification method SNR Signal noise ratio 

GT Gabor transform STFT Short time Fourier transform 

HT Hilbert transform TFA Time-frequency analysis 

HHT Hilbert-Huang transform TFD Time-frequency distribution 

HVD Hilbert Vibration Decomposition TFPCT            time-frequency fusion technique 

based on PCT IA Instantaneous amplitude 

IF Instantaneous frequency WVD Wigner-Ville distribution 

MDOF Multi-degrees-of-freedom WT Wavelet transform 

Appendix B 

There are two approaches, one is FREEVIB based on free vibration and another is 

FORCEVIB based on forced vibration, can be used to identify the modal parameters of 

nonlinear systems, of which either or both stiffness and damping can be nonlinear. 

However, they only take into account the primary solution of the system. While, all the 

other high-order frequency components are ignored by both algorithms. The 

FORCEVIB can identify the inertia modal parameter, while FREEVIB only allows the 

identification of the elastic and damping modal parameters. The procedure of 

implementing FREEVIB and FORCEVIB can be briefly described as follows: 

 ̧ Perform the HT of the measured excitation and response signals and extract their 

envelopes and IFs; 

 ̧ Calculate the instantaneous modal parameters, e.g. frequency, damping, and mass 

value; 

 ̧ Filter the obtained modal parameters with the aid of an appropriate low-pass filter, 

calculate the scale factor functions around the selected extrema points of 

displacement and velocity, and scale the smooth modal parameters (Not sure what 

does this mean). 
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 ̧ Present the results to backbones and damping curves, FRF, and static 

characteristics of excitation force. 

Then, the initial nonlinear vibration model can be identified based on the static 

characteristics of excitation force. (Already mentioned earlier before procedure 

description, so delected) 

 


