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Many deep-sea fishes have a gelatinous layer, or subdermal
extracellular matrix, below the skin or around the spine.
We document the distribution of gelatinous tissues across
fish families (approx. 200 species in ten orders), then
review and investigate their composition and function.
Gelatinous tissues from nine species were analysed for water
content (96.53 ± 1.78% s.d.), ionic composition, osmolality,
protein (0.39 ± 0.23%), lipid (0.69 ± 0.56%) and carbohydrate
(0.61 ± 0.28%). Results suggest that gelatinous tissues are
mostly extracellular fluid, which may allow animals to grow
inexpensively. Further, almost all gelatinous tissues floated
in cold seawater, thus their lower density than seawater
may contribute to buoyancy in some species. We also
propose a new hypothesis: gelatinous tissues, which are
inexpensive to grow, may sometimes be a method to increase
swimming efficiency by fairing the transition from trunk to
tail. Such a layer is particularly prominent in hadal snailfishes
(Liparidae); therefore, a robotic snailfish model was designed
and constructed to analyse the influence of gelatinous tissues
on locomotory performance. The model swam faster with a
watery layer, representing gelatinous tissue, around the tail
than without. Results suggest that the tissues may, in addition
to providing buoyancy and low-cost growth, aid deep-sea fish
locomotion.

1. Introduction
In some species of ray-finned fishes (Actinopterygii), a distinct
watery tissue layer is present, usually between the skin

2017 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.
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Figure 1. Gelatinous tissues. Arrows point to gelatinous tissue layers. (a) Notoliparis kermadecensis, family Liparidae, hadal snailfish.
Gelatinous tissues prominent directly below skin, concentrated around posterior of cavity and along tail. Photo by J. Reed. Image courtesy
of the HADES Program, NSF, NOAA OER, (©WHOI). (b–d) Cross sections of fishes showing gelatinous tissues bundles. (b) Twoline eelpout,
Bothracara brunneum, family Zoarcidae. (c) Deep-sea sole, E. bathybius, family Pleuronectidae. Photos by J. Friedman. (d) Giant cusk eel,
Spectrunculus grandis, family Ophidiidae. Photo by P. Yancey. (e) Gelatinous tissues between muscle bands in Coryphaenoides yaquinae,
familyMacrouridae. Photo byM. Gerringer. (f ) Embassichthys bathybius gelatinous tissues, withinmusculature and lifted by scalpel. Photo
by P. Yancey.

and muscle or between muscle bundles (figure 1). Fishes in the superorder Elopomorpha
(Anguilliformes, Albuliformes, Elopiformes and Saccopharyngiformes) have larvae called leptocephali
in which most of the body consists of an acellular gelatinous matrix that provides structural support
in the absence of a vertebral column and transparency for camouflage (e.g. [1,2]). The first known
scientific record of these tissues in a fully adult fish comes from the Challenger Report description of
the gelatinous blind cusk eel Aphyonus gelatinosus, in which the ‘anterior half of the skin forms a large
loose bag which, during life, is probably filled and distended with mucus’ [3]. Gelatinous tissue is even
a defining character in the genus Careproctus of the family Liparidae (snailfish), which ‘best illustrates
the production of pseudotissue which envelops the body and fins just beneath the skin’ [4]. The tissues
are sometimes referred to as the subdermal extracellular matrix, or SECM (e.g. [5,6]). More recently, such
tissues have been found in hadal snailfishes in the Kermadec and Mariana trenches. In a freshly collected
fish, the layer of clear gelatinous tissue is prominent (figure 1a), although as the skin is lacerated, this
tissue leaks out and melts away. It is largely concentrated just behind the abdominal cavity, with a thin
layer around the posterior third of the body.

Although these gelatinous tissues have been noted in several deep-living adult species and can
compose up to a third of the mass of a fish [5], they have not been compared across families and
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their functions remain unresolved. In addition to structural support and transparency, one possible role
proposed for gelatinous larval fishes (e.g. [7]) and some deep-sea invertebrates (e.g. [8]) is to allow
growth to large size at low metabolic cost. This hypothesis may apply to adult fishes as well. One
study investigated the potential antifreeze function of the gelatinous tissues in an Antarctic fish, but
found no evidence to suggest a role in cold-tolerance [9]. Eastman et al. [5] found free nerve endings
present within the gelatinous tissues of Paraliparis devriesi. It was hypothesized that these may serve as
mechanoreceptors in three Antarctic liparids, allowing the fish to detect displacement of the gelatinous
layer during movement [10,11]. The potential sensory role of gelatinous tissues, however, is proposed to
be secondary to another function—buoyancy.

Gelatinous layers have been described in a number of mid-water fishes, leading to the hypothesis
that they are an adaptation for buoyancy, first introduced by Denton & Marshall [12] and expanded
by Davenport & Kjorsvik [13] and Yancey et al. [14]. In all but the deepest-living teleost fishes, internal
ion concentrations and osmolalities are lower than seawater. For example, extracellular fluids of typical
shallow teleosts have about 170 mM NaCl and lesser amounts of other ions, yielding an osmolality of
350–400 mOsm kg−1 (e.g. [15]). In comparison, average seawater has roughly 500 mM NaCl plus other
ions yielding about 1000–1100 mOsm kg−1. Thus, extracellular fluid, including that in gelatinous tissues,
with very little non-lipid organic material will be less dense than seawater (unlike many tissues such
as muscle, bone and cartilage). In addition, some gelatinous tissues in mid-water fishes have even
lower ion concentrations than other body fluids, increasing buoyancy even more [14]. The buoyancy
hypothesis was further supported by Eastman et al. [5] in a study of gelatinous tissues in the Antarctic
snailfish, P. devriesi, which are believed to achieve neutral buoyancy through decreased bone ossification
and the presence of this layer. These low-density tissues and fluids would be adaptive under the
high hydrostatic pressures of the deep sea, where the inflation of a swimbladder becomes increasingly
difficult [16].

Gelatinous tissues could also act as fairing along the fish’s tail, creating a better hydrofoil and
improved swimming efficiency, especially in liparids and aphyonids. Davenport & Kjorsvik [13] touched
on this idea briefly, suggesting that there may be an exoskeletal function to gelatinous tissue in
Cyclopterus lumpus. They note that the gelatinous tissue was more prominent in females than males, up to
18% of body mass, and show that the males used more high-amplitude tail beats to swim than females.
Our results suggest that this may be a much more broadly used strategy. Support for this concept is
inferred from studies of tadpole swimming, where a ‘fish-shaped’ body required significantly less power
to swim than a ‘tadpole-shaped’ body [17]. The same authors later found that the tadpole morphology
creates form drag where the tail meets the body, resulting in the decreased swimming efficiency [18].
The tadpole shape is selected against in pond experiments where fish predators are present, further
illustrating the advantage to losing those high drag zones [19]. The location of the gelatinous tissue
within the hadal snailfishes, concentrated around the anterior of the body cavity and under the skin
along the tail, suggests that it could act to counteract this effect. An optimization model of body shape in
fishes showed the wide head and tapered tail to be an efficient shape for undulatory swimming [20].
We propose that the gelatinous tissues could allow the fish to reach this streamlined shape without
producing more muscle, reducing the need for the high-amplitude, energetically expensive tail beats
required of tadpole-shaped forms [18].

References to the presence and function of gelatinous tissues have often been speculative and passing.
Here, we analyse compositions of these tissues in selected species, evaluate the proposed buoyancy
function, synthesize and review references to gelatinous tissues, investigate depth-related trends in
the presence of these tissues and introduce a new hypothesis: gelatinous tissues may be an adaptive
method of changing body shape at low growth cost, acting as a fairing material to increase locomotor
performance.

2. Material and methods
2.1. Proximate chemistry and buoyancy tests
Samples. Fishes were collected by otter trawl from Monterey Bay in April and October 2009 (details
by [21]) and by baited trap in the Kermadec Trench in 2011 and 2014. Collection information for
gelatinous tissues analysed in this study is presented in electronic supplementary material, table S1.
Buoyancy. Fresh pieces of gelatinous and white muscle tissues were placed at mid-depth in a graduated
cylinder or glass jar filled with seawater at 2–5°C shortly after capture, and sink or rise times (to travel
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6 cm) were measured. Water content. Gelatinous tissues were dried at 60°C for 3 days to ensure that
all water evaporated and remaining dry mass was compared to original wet tissues mass. Osmotic
pressure. A vapour pressure osmometer, Wescor 5500, was used in the laboratory for most species, and
at sea for Notoliparis kermadecensis, to determine sample osmolality. Samples were homogenized with a
small pestle in a microfuge tube, then centrifuged at 2000 × g for 30 min at 4°C. Ten microlitres of the
resulting supernatant was measured with an osmometer. The 290 and 1000 mmol kg−1 standards were
checked periodically to confirm accurate calibration. Sample preparation. A section of frozen gelatinous
tissues, clear of white muscle, was cut and weighed to obtain about 0.1 g, with a precision of 0.0001 g.
The section was ground in 7% perchloric acid (PCA) or 70% ethanol, added at nine times the tissues
mass, to precipitate proteins. The sample was refrigerated overnight, then centrifuged for 20 min at
15 500 × g at 4°C. The supernatant, transferred to a new tube, was used for inorganic ion and organic
osmolyte analyses, while the pellet was used for protein analysis. When ethanol was used to homogenize
tissues, the supernatant was evaporated and the remaining powder dissolved in distilled water. The
supernatants in PCA were titrated with 2 M KOH to pH 6.5–7.5. The resulting precipitate was centrifuged
and the supernatant removed to a new tube. The PCA method was not used for ion analysis because of
the required addition of potassium. Protein. Protein content was determined with the bicinchoninic acid
protein assay [22]. Bovine serum albumin was used as a standard. Lipids. Lipid contents were analysed
using the Bligh & Dyer [23] extraction and colorimetric determination of content with the sulfuric acid
charring method of Marsh & Weinstein [24] with triolein as a standard. Carbohydrates. Carbohydrate
analysis was conducted using phenol and sulfuric acid [25], with D-glucose as a standard, measured in
a spectrophotometer (Beckman Coulter DU 730) at 480 nm. Ions. Sodium and potassium contents were
analysed by atomic absorption (PerkinElmer AAnalyst 400) in 10 µl aliquots of the PCA homogenates
dissolved in 10 ml of purified water. All results are presented as average ± standard deviation.

2.2. Taxonomic distribution
Records of gelatinous tissues in fishes were collected in an extensive literature search. Recent findings
from coastal to hadal surveys are also presented. Anecdotally, these tissues were thought to be more
common in deeper-living fishes. To test this, common depth ranges of fishes with gelatinous tissues were
taken from FishBase [26]. Care was taken to avoid records that were obviously spurious or outlying,
for example, several thousand metres out of all other capture and sighting records. The effects of
phylogenetic relationships can confound interpretation of this type of analysis, as closely related species
become a kind of pseudoreplicate [27]. To account for this potential error, and to clarify the distribution
of gelatinous tissues, we compared depth trends within clades. Statistical analyses were conducted in the
programming platform R [28]. Generalized linear models (GLM) using minimum and maximum depths
and the median of each depth range were fitted using a Gaussian error distribution. Models were selected
through optimization of Akaike information criteria.

2.3. Locomotor effects
Few studies have investigated locomotion in deep-sea fishes (e.g. [29–32]), largely due to the difficulty
of direct experimentation. To test the effect of body shape change with gelatinous tissues, a robotic
model was designed after the Kermadec Trench snailfish, N. kermadecensis, a good example of a neutrally
buoyant species with large amounts of gelatinous tissues. This technique has become a valuable tool
used to investigate swimming biomechanics in a number of shallow-living fishes (e.g. [33–35]) and
is well-suited to deep-sea species that cannot easily be brought into a laboratory setting. The plastic
(polylactic acid) body and fins were three-dimensional printed (ORION HB #58744) based on a model
constructed from a photogrammetry recreation of freshly captured specimens collected on the HADES
(HADal Ecosystems Studies) Cruise in April and May of 2014 (Model: MeshMixer, Slicing: Cura, 3D
Printing: Repetier Host). The free-swimming, neutrally buoyant robotic model was larger (40 cm SL)
than the actual hadal snailfish (known maximum 29 cm SL) due to design constraints. The model motion
program was controlled by an on-board Arduino Nano microcontroller. Tail-beat frequency (0.5 Hz) was
chosen to match that found through video analysis of the hadal snailfish, Pseudoliparis belyaevi, filmed in
situ in the Japan Trench (described in [36]). The robot was powered by a 9 V battery with constant cycle-
averaged power and swam using a servomotor connected to two piano wires that oscillated the tail
region back and forth (figure 2). A silicone rubber mould was cast to simulate the posterior skeleton and
musculature of the fish. Water between the silicon tail analogue and outer skin represented the gelatinous
tissues, to isolate the shape effect from changes due to tail stiffness. The model was designed to test the
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Figure 2. (a) Schematic of robotic hadal snailfish model. Microcontroller (Arduino Nano), motor (Tower Pro TM, Micro Servo 9 g, SG90),
battery (Duracell, 9 V). Tail muscle is a cast silicone rubber (Ecoflex R 00-10) with a volume-adjustable skin (latex condom, Trojan
Magnum). Additional materials used include hot glue, a spring, piano wire, a bottle cap, marine epoxy, electrical tape andmiscellaneous
hardware as ballast. Dotted line indicates outer skin, kept empty in trials with no gelatinous tissue analogue. (b) Hadal liparid body
shapewith gelatinous tissues in dark grey. Dorsal and anal fin rays connect to epaxial and hypaxial muscle tissuewhile gelatinous tissues
surround. Drawing by T. Linley. (c) Hadal liparid N. kermadecensis on illuminated platform, highlighting gelatinous tissues. Photo by J.
Reed. Image courtesy of the HADES Program, NSF, NOAA OER, (©WHOI).

locomotor effects of gelatinous tissues that are directly below the skin, outside of the muscle tissue, such
as in the hadal snailfish. As discussed, this positioning is not consistent across taxa and the locomotor
effects may vary accordingly. In some species, such as the cusk eel Spectrunculus grandis, it is unlikely that
the gelatinous tissue flows freely as water in our model would. However, in the liparids, morphological
analyses suggest that gelatinous layers are displaced during movement [10,11]. This is also suggested by
video of hadal snailfishes swimming in situ, which show the gelatinous tissues rippling under the skin,
making water below the skin, rather than gelatine, an appropriate analogue. Two approximately 10 s
swim trials for the submerged, neutrally buoyant robot were conducted with both empty and full tail
‘skin’. Swim trials were filmed from above as the robot swam in a 1 m diameter tank, and body lengths
per second and tail-beat amplitude were compared between trials (with the same tail-beat frequency and
power) using ImageJ [37].
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[12] and some benthopelagic fishes lacking gas bladders also have watery muscle to aid in achieving
neutral buoyancy [77]. In the hadal liparids, near neutral buoyancy seems also maintained by other
means, including a large fatty liver and reduced bone ossification.

4.3. Locomotor effects
Watery gelatinous tissues may be used to increase body size at lower production cost than muscle
tissue, a strategy noted earlier that has been proposed for some deep-sea invertebrates (e.g. [8]) and
some larval fishes (e.g. [7]). Gelatinous tissues may be an example of neoteny, where deep-sea species
may have evolved to retain this low-growth-cost paedomorphic character into adulthood in a food-poor
environment. In the hadal snailfish, N. kermadecensis, there does seem to be more gelatinous tissue in
larger individuals, although the exact amount of tissue could not be quantified due to damage. Some
deep-sea fishes, including two flatfish in this study, also have very watery muscle tissue, which further
reduce growth costs, though, in this case, by sacrificing locomotory capacity [77]. The gelatinous tissues
are the extreme end of this continuum. They serve as low-growth-cost bulk tissues, allowing the animal
to grow large, reducing the likelihood of predation, without alteration to locomotory muscle.

Material properties of the actual gelatinous tissues should also be analysed under deep-sea, especially
hadal, temperatures and pressures, as even small changes in body shape and stiffness can make a large
difference in swimming performance (e.g. [33,78]). Gelatinous tissues (which melt at room temperature)
are probably stiffer at hadal conditions of cold temperatures and high pressures, and could provide an
even better paddle for forward propulsion. There may be an additional cost of transport to the stiffer
tail, though this may improve acceleration [79]. Gelatinous tissues may change stiffness and shape with
movement, as seen in other models of undulatory swimming (e.g. [80]). While further exploration of this
hypothesis is needed, the improved performance of the robotic model with a gelatinous tissue analogue
suggests that the presence of a subdermal gelatinous layer could enhance swimming performance. The
chemical composition of the gelatinous tissues shows that they are inexpensive to form, but the benefit
to structure and locomotory capacity could be significant, accounting for some of its prevalence across
many deep-sea genera. However, this use of gelatinous tissue cannot be universal; when the gelatinous
tissue occurs within the main musculature of a fish (e.g. figure 1b) no locomotory advantage is likely.

5. Conclusion
Our results suggest that gelatinous tissues are widely used by fishes, principally in deep-sea species,
serving multifunctional roles both for individual fish and across families. Gelatinous tissues, which
are primarily extracellular fluid, are present in fishes of very different life histories and behaviours,
from the flatfish, M. pacificus, to the hadal snailfish, N. kermadecensis. The varied location of gelatinous
tissues, which are present in the trunk of some eelpouts (Zoarcidae), the snout of Ateleopus japonicas
(Ateleopodidae) and directly below the skin in many snailfishes (Liparidae), also calls attention to
potential functional complexity. Through chemical analyses and float tests, we found support for the
use of gelatinous tissues in aiding fish buoyancy. Robotic modelling supported the hypothesis that these
tissues may also provide a functional role in reducing drag during swimming. Overall, gelatinous tissues
seem to be a low-density, low-production-cost method to increase body size and alter body shape and
size, with adaptive advantages for both swimming efficiency and buoyancy with varied functions among
species.
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