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Abstract

In the study of behaviours of concurrent systems, traces are sets of behaviourally

equivalent action sequences. Traces can be represented by causal partial orders.

Step traces, on the other hand, are sets of behaviourally equivalent step se-

quences, each step being a set of simultaneous actions. Step traces can be repre-

sented by relational structures comprising non-simultaneity and weak causality.

In this paper, we propose a classi�cation of step alphabets as well as the

corresponding step traces and relational structures representing them. We also

explain how the original trace model �ts into the overall framework.
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1. Introduction

Mazurkiewicz traces [1, 2] are a well-established, classical, and basic model

for representing and structuring sequential observations of concurrent behaviour;

see, e.g., [3]. The fundamental assumption underlying trace theory is that inde-

pendent events (occurrences of actions) may be observed in any order. Sequences5

that di�er only w.r.t. the ordering of independent events are identi�ed as be-

longing to the same concurrent run of the system under consideration. Thus

a trace is an equivalence class of sequences comprising all (sequential) obser-

vations of a single concurrent run. The dependencies between the events of a

trace are invariant among (common to) all elements of the trace. They de�ne an10

acyclic dependence graph which � through its transitive closure � determines

the underlying causality structure of the trace as a (labelled) partial order [4].

In fact, this partial order can also be obtained as the intersection of the labelled

total orders corresponding to the sequences forming the trace. Moreover, the

sequences belonging to the trace correspond exactly to the linearisations (sat-15

urations) of this partial order. In [5], the necessary connection between causal

structures (partial orders) and observations (total orders) is provided by show-

ing that each partial order is the intersection of all its linearisations (Szpilrajn's

property). Consequently, each trace can also be viewed as a labelled partial or-

der which is unique up to isomorphism, i.e., up to the names of the underlying20

elements; see, e.g., [3, 6]. Thus, to capture the essence of equivalence between

di�erent observations of the same run of a concurrent system, Mazurkiewicz

traces bring together two mathematical ideas, both based on a notion of inde-

pendence between events expressed as a binary independence relation ind over

actions. On the one hand, there are equations ab = ba generating the equivalence25

by expressing the commutativity of occurrences of certain actions as determined

by the independence relation. As a result, sequences wabu and wbau of action

occurrences are considered equivalent whenever 〈a, b〉 ∈ ind, irrespective of what

w and u are. On the other hand, there is a common acyclic dependence relation

that underlies equivalent observations and is de�ned by the ordering of the oc-30
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currences of dependent actions, and its transitive closure interpreted as a causal

partial order representing the trace to which wabu and wbau both belong. In a

nutshell, the main concepts of trace theory are as follows:

• a trace alphabet comprising a �nite set of actions Σ and an

independence relation ind on Σ;35

• a set of equations ab = ba, where 〈a, b〉 ∈ ind, de�ning a re-

lation ≡ of behavioural equivalence on action sequences, each

equivalence class of ≡ being a trace;

• an action-labelled total order representing in a unique way a

�nite action sequence;40

• an action-labelled dependence graph (acyclic relation) derived

from an action sequence which is common and unique to each

trace;

• an action-labelled causal partial order derived from the depen-

dence graph representing in a unique way a trace; and45

• the operation of transitive closure which allows one to derive

causal partial orders from dependence graphs.

Being based on equating independence and lack of ordering as well as as-

suming that no actions can be simultaneous, the model of Mazurkiewicz traces

with the corresponding partial order interpretation of concurrency is not al-50

ways su�cient. In [7], a generalisation of the theory of traces is presented for

the case that actions could occur and may be observed as occurring simulta-

neously (a common assumption made, e.g., by concurrency models inspired by

bio-chemical reactions as in [8, 9]; see also [10] for other examples). Thus obser-

vations consist of sequences of steps, i.e., sets of one or more actions that occur55

simultaneously. To retain the philosophy underlying Mazurkiewicz traces, the

extended set-up is based on a few explicit and simple design choices.

Instead of the independence relation ind, step alphabets use two basic re-

lations between pairs of actions: simultaneity sim indicating actions that may
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occur together in a step, and sequentialisation seq indicating equivalent orders60

of executing two di�erent actions. The two relations are applied to identify step

sequences as observations of the same concurrent run. The equations they de-

termine are of the form AB = BA and AB = A ]B, where A and B are steps,

and the resulting equivalence classes of step sequences are called step traces.

Step sequences have been used to represent operational semantics of con-65

current systems for long time [11, 12] and they are still popular [13]. The

fundamental di�erence between models like [11, 12, 13] and the approach of this

paper is that we group step sequences that are considered equivalent into step

traces. Each step trace uniquely de�nes some relational structure, in the similar

way as each trace uniquely de�nes a causal partial order.70

The main aim of this paper is to investigate di�erent classes of step traces

obtained by restrictions on the simultaneity and sequentialisation relations, and

to identify the corresponding relational structures. The proposed hierarchy

of families of step traces includes new non-trivial classes of traces as well as the

original Mazurkiewicz traces, comtraces [14, 15], and g-comtraces [16].75

Modelling concurrency with relational structures stems from the results

of [10, 17] and [18]. The basic idea is that general concurrent causal behaviour

is represented by a pair of relations, instead of just one, as in the standard

(causal partial order) approach (see, e.g., [4]). Depending on the assumptions

for the chosen model of concurrency details vary, but basically there are two80

versions: one in which the two relations are interpreted as standard causality

(dependence or precedence) and weak causality (not later than), respectively

(see, e.g., [10, 14, 17]) and an extended, general, version (suggested in [10, 19]

but eventually de�ned in [20]) with the two relations:1 mutual exclusion and

weak causality. The �rst version has a relatively well developed theory and sub-85

stantial applications (see, e.g., [10, 14, 17, 21, 22, 23]). The second one, however,

is relatively new and as such the starting point for this paper where we identify

the invariant structures that characterise the subfamilies of step traces.

1Causality being a derived notion.
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The paper is organised as follows. In the next section, we present basic

notions and de�nitions. In Sections 3 and 4, we recall the main de�nitions90

and results concerning step alphabets, step traces, and relational structures.

In Sections 5�9, we present the main results of the paper, providing a charac-

terisation of the relationships between the interesting subclasses of step traces

and the corresponding relational structures. Section 10 concludes the paper.

This paper is an extended and re�ned version of a paper presented at the95

LATA'15 conference [24]. We have also streamlined some notions and notations

used there as well as in previous papers, e.g. [7, 20]. Most of the proofs are

included in the appendix.

2. Preliminaries

Throughout the paper, we assume that:100

• Σ is an alphabet of actions taken to be a �nite nonempty set; an event

is a pair 〈a, i〉 such that a ∈ Σ and i ≥ 1; `(〈a, i〉) = a is the default

labelling of an event 〈a, i〉; and an event domain is any set of events

∆ = {〈a, i〉 | a ∈ Σ ∧ 1 ≤ i ≤ ka}, where, for every a ∈ Σ, ka ≥ 0.

• S is the set of steps over Σ comprising all the nonempty subsets of Σ;105

SSEQ is the set of all �nite sequences of steps (step sequences Σ); and, if

u = A1 . . . Ak is a step sequence, then occ(u) comprises all events 〈a, i〉

such that i does not exceed the number of occurrences of a within u, and

j = posu(〈a, i〉) is such that the i-th occurrence of a is in Aj .

• The symmetric closure of a binary relation R is Rsym = R ∪ R−1; R is110

transitive if R ◦ R ⊆ R; R is a preorder relation if it is irre�exive and

R ∪ idX is transitive, where idX = {〈x, x〉 | x ∈ X}; R is an equivalence

relation if it is symmetric, transitive and re�exive; R is a partial order

relation if it is irre�exive and transitive; and R is a total order relation if

it is a partial order relation such that we have Rsym = (X ×X) \ idX .115
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• Given a binary relation R ⊆ X × X, R+ is the transitive closure of R;

R∗ is the re�exive transitive closure of R; R� = R∗ \ idX is the irre�exive

transitive closure ofR; R~ = R∗∩(R∗)−1 is the largest equivalence relation

contained in R∗; and R is acyclic if R+ is asymmetric.

• A labelled directed graph is triple 〈X,R, `〉 comprising a �nite set of ver-120

tices X, an irre�exive binary relation R on X comprising arcs, and a

labelling X
`−→ Σ. It is a partial order / total order / preorder / acyclic

graph if R is a partial order / total order / preorder / acyclic relation.

The graph is complete if R = (X×X)\ idX , and a clique is any nonempty

subset Y ⊆ X such that R|Y×Y = (Y × Y ) \ idY . We say that x, y ∈ X125

lie on a cycle if 〈x, y〉, 〈y, x〉 ∈ R+.

We often identify a singleton step {a} with its only member, tacitly assuming

that Σ ⊂ S. Moreover, we denote non-singleton steps by listing their elements

within parentheses.

3. Step traces130

We start by recalling the basic de�nitions and results from [7]. A step alpha-

bet is a triple θ = 〈Σ, sim, seq〉, where sim (simultaneity) and seq (sequentialisa-

tion) are irre�exive relations over Σ such that sim and seq \ sim are symmetric.

The family of all step alphabets will be denoted by Θ. Simultaneity de�nes legal

steps over the alphabet θ, Sθ = {A ⊆ Σ | A 6= ∅ ∧ (A × A) \ idΣ ⊆ sim}, and

the strings in SSEQθ = S∗θ are called step sequences over θ. Sequentialisation,

on the other hand, de�nes ways in which steps can be sequentialised and identi-

�es pairs of actions which can be interleaved, leading to the following equations

over θ, where A,B ∈ Sθ:

AB = BA if A×B ⊆ seq ∩ seq−1 (interleaving)

AB = A ∪B if A×B ⊆ sim ∩ seq (serialisability)

The above equations induce a relation ≈ on step sequences such that u ≈ v if

there exist w, t ∈ SSEQ and A,B ∈ S satisfying: (i) u = wABt and u = wBAt

6



and AB = BA; or (ii) u = wABt and u = w(A ∪ B)t and AB = (A ∪ B).

We then de�ne a relation ≡ on step sequences as the re�exive, symmetric, and

transitive closure of ≈. The equivalence classes of ≡ containing step sequences135

in SSEQθ are step traces over θ, and their set is denoted by STRθ. The trace

containing u ∈ SSEQθ will be denoted by JuK. For a step trace τ = JuK ∈ STRθ,

for some step sequence u over θ, we use occ(τ) = occ(u) to denote the set of

action occurrences in τ (note that this is well-de�ned, as all step sequences in

τ have the same set of action occurrences). Step traces involve only legal steps,140

i.e., if τ ∈ STRθ then τ ⊆ SSEQθ . See [7] for more details and for an alternative,

but equivalent, approach for de�ning step traces.

Example 3.1. Consider θ0 = 〈{a, b, c, d, e}, sim, seq〉, a step alphabet with si-

multaneity and sequentialisation relations given below, where each undirected

edge stands for two arrows in opposite directions:145

sim =

a

b c

d e

seq =

a

b c

d e

θ0 generates, e.g., the interleaving equations ae = ea and a(ce) = (ce)a, and

serialisability equations (ac) = ac, (ac) = ca, and (ce) = ec. However, (ce) = ce

is not an equation generated by θ0. We also have:

JaceK = {ace, cae, cea, (ac)e} JabcK = {abc}

JacdK = {acd, cad, cda, (ac)d, c(ad)} JaebK = {aeb, eab}

J(cde)K = {(cde)} Ja(cd)K = {a(cd), (cd)a, (acd)}

JdecK = {dec, (de)c, d(ce)} Ja(cde)K = {a(cde), (cde)a} . �

3.1. Classifying step alphabets

An immediate semantically meaningful classi�cation of step alphabets is

obtained by looking at the consequences of assuming that some of the three150

relations sim \ seq, seq \ sim, and sim∩ seq are empty. This leads to eight classes
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of step alphabets, shown in Figure 1, where sim4seq = (sim \ seq) ∪ (seq \ sim)

denotes the symmetric di�erence of sim and seq, and subscripts indicate the

empty relationships. Thus, for example, Θsim∩seq comprises all step alphabets

with disjoint relations sim and seq. One can observe that:155

• Θ is the family of all step alphabets.

• Θsim\seq comprises step alphabets such that the serialisability equations

are rich enough to split any step in every possible way.

• Θseq\sim comprises step alphabets without true interleaving (the interleav-

ing equations can be realised through serialisation of steps). In the liter-160

ature, alphabets in Θseq\sim are called comtrace alphabets [10].

• Θsim∩seq comprises step alphabets where the only manipulation of steps is

through interleaving equations.

• Θseq comprises step alphabets generating step traces consisting of a single

step sequence.165

• Θsim comprises step alphabets which de�ne only singleton steps. Alpha-

bets in Θsim correspond to trace alphabets after dropping the empty rela-

tion sim and treating seq = seq−1 as the independence relation.

• Θsim4seq comprises step alphabets with serialisability equations that are

rich enough to split and reorder steps in every possible way. Alphabets in170

Θsim4seq can be seen as suitable trace alphabets for step sequence seman-

tics of safe Petri nets (see [25]).

• Θsim∪seq comprises step alphabets generating traces consisting of a single

sequence.

So, the alphabets in Θsim∪seq and Θseq are of little interest. The alphabets175

in Θ have been considered in [7]. Hence, we will focus on a closer investigation

of Θsim, Θsim4seq, Θsim\seq, Θseq\sim, and Θsim∩seq. To the best of our knowledge,

Θsim\seq and Θsim∩seq lead to new subclasses of step traces, whereas the other
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Θ

Θsim\seq Θseq\sim Θsim∩seq

Θseq Θsim Θsim4seq

Θsim∪seq

Figure 1: Inclusion diagram of the eight types of step alphabets.

three have to some extent already been identi�ed in the literature (as recalled

above).180

4. Relational structures for step traces

The order theoretic treatment of step traces is based on relational structures

〈∆,
,@, `〉 comprising a �nite domain ∆, two binary relations
 and @ on ∆,

and a domain labelling ∆
`−→ Σ. Two domain elements, x and y, are equilabelled

if `(x) = `(y).185

To represent observational and causal relationships in the behaviours of con-

current systems we use the order structures OR from [7, 20] which are an ex-

tension of ideas �rst proposed in [10, 17, 18]. Individual observations (step

sequences) are represented by saturated structures SR, and causal relationships

are represented by invariant structures IR.190

4.1. Order structures

Referring to the set-up of Mazurkiewicz traces, order structures correspond

to (labelled) acyclic relations.

An order (relational) structure is a relational structure or = 〈∆,
,@, `〉

that is separable, meaning that the mutex relation 
 is symmetric, the weak

9



causality relation @ is irre�exive2, and 
 ∩ @~= ∅ (which implies that 


is also irre�exive); and that is label-ordered, meaning that any two distinct195

equilabelled events are related by both 
 and @sym .

Intuitively, ∆ is the set of events that have happened during some execution

of a concurrent system with their labels giving the names of the corresponding

actions; x 
 y means that x occurred not simultaneously with y, and x @ y

that x occurred not later than y, i.e., before or simultaneously with y. Hence if200

x @ y and x 
 y, then x must have occurred before y. We will therefore refer

to the intersection @ ∩
 as causality (or precedence), denoting it by ≺. Note

that x @ y @ x intuitively means that x and y were observed as simultaneous.

Separability excludes situations where events forming a weak causality cycle in

@~, are also involved in the mutex relationship.205

To improve clarity of explanations of de�nitions involving order structures, we

will provide some of their properties referring explicitly to the following three

derived labelled directed graphs: 〈∆,
, `〉, 〈∆,@, `〉, and 〈∆,≺, `〉.

In terms of graph representation of an order structure, any two equilabelled

events are connected by an arc in both 〈∆,@, `〉 and 〈∆,≺, `〉 but they do not lie

on a cycle, and in 〈∆,
, `〉 each set of equilabelled events is a clique. Moreover,

no two 
�connected events lay on a @�cycle (see separability).

Label-orderedness in combination with separability implies label-linearity,

i.e., for all actions, ≺ restricted to the elements labelled by this action, is a total210

order relation (see [7]). Label-linearity is the only condition involving event

labels that we need on account of [7]. Although label-linearity is su�cient for the

purposes of this paper, in general one can develop quite involved characterisation

of all `good' labellings for the order structures corresponding to general step

2 One could assume that @ is re�exive obtaining an equivalent model (see [26]). In our

view, assuming re�exivity or irre�exivity has its own advantages and disadvantages in the

technical treatment.

10



traces (see [27]).215

An extension of the order structure or = 〈∆,
,@, `〉 is any order structure

〈∆,
′,@′, `〉 such that 
 ⊆
′ and @ ⊆ @′.

4.2. Saturated structures

Referring to the set-up of Mazurkiewicz traces, saturated structures corre-

spond to total orders, i.e., those acyclic relations which cannot be extended

without violating their acyclicity.

A saturated (relational) structure is a relational structure sr = 〈∆,
,@, `〉

satisfying, for all x, y, z ∈ ∆:

x 6= y ∧ x @ z @ y =⇒ x @ y (S1)

x
 y =⇒ x @sym y (S2)

x 6= y ∧ x 6
 y ⇐⇒ x @ y @ x (S3)

x 6= y ∧ `(x) = `(y) =⇒ x
 y (S4)

It follows that every saturated structure is separable and label-ordered and

hence an order structure. In fact, the saturated structures are the only order220

structures which cannot be extended without violating separability. We denote

by or2SR(or) the set of all saturated extensions of or ∈ OR.

In terms of graph representation, any two events are either simultaneously

connected in 〈∆,≺, `〉 and in one direction in 〈∆,@, `〉, or connected in both

directions in 〈∆,@, `〉.

4.3. Invariant structures

Referring to the set-up of Mazurkiewicz traces, invariant structures corre-

spond to partial orders, i.e., those acyclic relations which cannot be extended

without reducing their set of total order extensions.
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An invariant (relational) structure is a relational structure ir = 〈∆,
,@, `〉

satisfying, for all x, y, z ∈ ∆:

x 6@ x (I1)

x 6= y ∧ x @ z @ y =⇒ x @ y (I2)

x
 y =⇒ y 
 x 6= y (I3)

x ≺ z @ y ∨ x @ z ≺ y =⇒ x
 y (I4)

z 
 y ∧ z @ x @ z =⇒ x
 y (I5)

z 
 z′ ∧ x @ z @ y ∧ x @ z′ @ y =⇒ x
 y (I6)

x 6= y ∧ `(x) = `(y) =⇒ x ≺sym y (I7)

By (I1), (I3), and (I5), every invariant structure is separable. Also, the la-

belling axiom (I7) guarantees that invariant structures are label-ordered. Hence225

invariant structures are order structures. Furthermore, invariant structures are

the only order structures which cannot be extended without reducing their set

of saturated extensions (see [7]).

Proposition 4.1. SR ⊂ IR ⊂ OR.

Proof Follows from the general results proven in [7] together with

or =

〈
{x, y, z}, {〈x, y〉, 〈y, x〉},

{〈x, y〉, 〈y, z〉}, {x 7→ a, y 7→ a, z 7→ b}

〉
∈ OR \ IR

ir =

〈
{x, y, z}, {〈x, y〉, 〈y, x〉, 〈x, z〉, 〈z, x〉},

{〈x, y〉, 〈y, z〉, 〈x, z〉}, {x 7→ a, y 7→ a, z 7→ b}

〉
∈ IR \ SR . �

Invariant structures are exactly those order structures or for which or =230 ⋂
or2SR(or) (since we always have or2SR(or) 6= ∅, the intersection is well-

de�ned), where the intersection of relational structures with the same domain

and labelling is de�ned component-wise. In other words, invariant structures are

exactly those order structures which can be represented by their saturated ex-

tensions. This fundamental property is a counterpart of Szpilrajn's Theorem [5]235

which implies that partial order relations are exactly those acyclic relations

which can be represented by their total order extensions.
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4.4. Order structure closure

Referring to the set-up of Mazurkiewicz traces, order structure closure cor-

responds to transitive closure of an acyclic relation.

The order structure closure OR
or2ir−−→ IR is a mapping, for every structure

or = 〈∆,
,@, `〉 ∈ OR, de�ned by:

or2ir(or) = 〈∆,@~ ◦
 ◦ @~ ∪ crosssym ,@�, `〉

where cross = {〈x, y〉 | ∃z, w : z 
 w ∧ x @∗ z @∗ y ∧ x @∗ w @∗ y}. Order

structure closure involves two components: the closure of mutex relation
 and240

the closure of the weak causality relation @. The latter is simply the irre�exive

transitive closure. The former is more involved and comprises two operations

(see Figure 2). In order to calculate all new mutex pairs, one adds all the

missing arcs between any two mutually exclusive equivalence classes of @~, and

connects any two events which are at the corners of a weak causality diamond245

with a mutex inside.

w

x

z

y

x

z

w

y

Figure 2: Closure rules for new mutex pairs 〈x, y〉 (denoted by light-gray edges) with 〈x, y〉 ∈

cross illustrated on the right. Solid edges denote the 
 relation and dashed arcs the @∗

relation.

Order structure closure is the unique mapping OR
f−→ IR such that f(ir) = ir ,

for every ir ∈ IR, and or2SR(or) = or2SR ◦ f(or), for every or ∈ OR (see [7]).

This corresponds to the fact that transitive closure is the unique mapping from

acyclic relations to partial orders which preserves the total order extensions.250
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In terms of graph representation of an invariant structure, 〈∆,@, `〉 is a

preorder, and 〈∆,≺, `〉 is a partial order. Moreover, there are several mutex arcs

in 〈∆,
, `〉 implied by the de�nition of the order structure closure illustrated

in Figure 2.

4.5. Step sequences and saturated structures

Referring to the set-up of Mazurkiewicz traces, step sequences and saturated

order structures are related in a similar way as action sequences and labelled

total orders.

Let θ = 〈Σ, sim, seq〉 be a step alphabet. The set SRθ of saturated order

structures corresponding to the step sequences over θ comprises all saturated

structures sr = 〈∆,
,@, `〉 such that ∆ is an event domain, ` is the default

labelling of events, and, for all distinct 〈a, i〉, 〈a, j〉, 〈b, k〉 ∈ ∆:

〈a, i〉 ≺ 〈a, j〉 ⇐⇒ i < j and 〈a, i〉 @~ 〈b, k〉 =⇒ 〈a, b〉 ∈ sim . (1)

There are two mappings that allow switching between SRθ and SSEQθ, the

step sequences over θ. The �rst mapping, SRθ
sr2sseq−−−−→ SSEQθ, is de�ned, for ev-

ery sr = 〈∆,
,@, `〉 ∈ SRθ, by sr2sseq(sr) = `(∆1) . . . `(∆k), where ∆1 . . .∆k

is the unique sequence such that ∆ = ∆1 ] · · · ] ∆k, 
=
⋃
i6=j ∆i × ∆j , and

@=
⋃
i≤j ∆i×∆j \ id∆. The second mapping, SSEQθ

sseq2sr−−−−→ SRθ, is de�ned, for

every u ∈ SSEQθ, by sseq2sr(u) = 〈occ(u),
,@, `〉, where, for all α, β ∈ occ(u)

with posu(α) = k and posu(β) = m we have:

k 6= m =⇒ α
 β and k ≤ m ∧ α 6= β =⇒ α @ β .

As demonstrated in [7], SRθ
sr2sseq−−−−→ SSEQθ

sseq2sr−−−−→ SRθ are inverse bijections.

4.6. Dependence structures

14



Referring to the set-up of Mazurkiewicz traces, dependence structures of

step sequences correspond to dependence graphs of action sequences.

Given a step alphabet θ = 〈Σ, sim, seq〉, the dependencies between the events

underlying a step sequence u ∈ SSEQθ are given by the mapping SSEQθ
sseq2orθ−−−−−→

OR de�ned, for every u ∈ SSEQθ, by sseq2orθ(u) = 〈occ(u),
,@, `〉, where for

all α, β ∈ occ(u) with posu(α) = k and posu(β) = m:

α
 β if 〈`(α), `(β)〉 /∈ sim ∩ seq ∧ k < m

or 〈`(α), `(β)〉 /∈ sim ∩ seq−1 ∧ k > m

α @ β if 〈`(α), `(β)〉 /∈ seq ∩ seq−1 ∧ k < m

or 〈`(α), `(β)〉 ∈ sim \ seq−1 ∧ k = m .

(2)

We refer to sseq2orθ(u) as the dependence structure of u (induced by θ). Cru-

cially, if u ≡ w, then sseq2orθ(u) = sseq2orθ(w), and so dependence structures255

can be lifted to the level of step traces through sseq2orθ(JuK) = sseq2orθ(u) (see

[7]). Hence there are two kinds of order structures capturing causal dependen-

cies in the step sequences of SSEQθ and the traces in STRθ, namely dependence

structures and their closures, i.e., ORθ = sseq2orθ(SSEQθ) and IRθ = or2ir(ORθ).

In what follows, for every set Θ′ of step alphabets, ORΘ′ =
⋃
θ∈Θ′ ORθ and260

IRΘ′ =
⋃
θ∈Θ′ IRθ.

4.7. Step traces and invariant structures

Referring to the set-up of Mazurkiewicz traces, step traces and invariant

structures are related in a similar way as traces and causal partial orders.

Given a step alphabet θ, the step traces in STRθ can be identi�ed with the

invariant structures in IRθ, and a suitable correspondence is established by the

pair of inverse bijections STRθ
or2ir ◦ sseq2orθ−−−−−−−−−→ IRθ

sr2sseq ◦ or2SR−−−−−−−−−→ STRθ.265

As shown in [7], one needs relational structures as complicated as the order

structures in OR for the modelling of the dependencies underlying step sequences
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and step traces. More precisely, for any order structure or with an injective

labelling, there is a step alphabet θ and a step sequence u ∈ SSEQθ such that

or is isomorphic to sseq2orθ(u). Thus step traces can generate all the causal270

patterns (i.e., an order structures without labels) of the dependence structures

underpinning invariant structures.3

4.8. About the rest of this paper

Our main aim is to investigate di�erent classes of step alphabets and the

corresponding order structures. In the rest of this paper, we will discuss how275

the restriction to these subclasses of step alphabets leads to simpli�cations in

the descriptions of their corresponding order structures, order structure closure

operation, and invariant structures. Such simpli�cations can, in particular, lead

to a more concise and e�cient treatment of the algorithmic aspects involving

step traces and their order structures.280

For example, sim ⊆ seq implies that each step can be split into sequences

in every possible way, to be able to split a step into at least one sequence it

is enough to require acyclicity of the relation sim \ seq [25], and sim ∩ seq = ∅

means that there are no serialisability equations at all.

In the subsequent sections, we will investigated �ve subclasses of step alpha-285

bets: Θsim, Θsim\seq, Θsim∩seq, Θseq\sim, and Θsim4seq. For each subclass, we �rst

describe the e�ect of the restriction on the equations de�ned and the resulting

equivalence classes, i.e., step traces. Then we identify a distinguishing prop-

erty of the order structures associated as dependence structures with these step

traces and propose an axiomatisation for the corresponding invariant structures.290

We moreover simplify the order structure closure operation for each case. The

main results in each section show that indeed the order structures and invari-

ant structures associated with the subclass of step alphabets are included in

the proposed classes of structures (e.g., Theorem 5.6 in Section 5), and that the

3 Note that, for each order (or invariant) structure 〈∆,
,@, `〉 and each injective labelling

`′ of ∆, it is the case that 〈∆,
,@, `′〉 is also an order (resp. invariant) structure.
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proposed classes of structures cannot be smaller (e.g., Theorem 5.8 in Section 5).295

In order to streamline the presentation, we do not provide all the proofs

in the paper proper. We do this only for two subclasses of step alphabets, viz.

Θsim (as this class corresponds to the case of Mazurkiewicz trace alphabets), and

Θsim\seq (as this class has not yet been investigated in the literature). For the

remaining three classes of step alphabets, the structure of the proofs is similar,300

and so they all have been moved to the appendix.

5. Relational structures for the alphabets in Θsim

A step alphabet µ = 〈Σ, sim, seq〉 ∈ Θsim has sim = ∅ and seq = seq−1,

by the symmetry of sim \ seq. Hence the only legal steps according to µ are

singletons and so the step sequences in SSEQµ correspond one-to-one to the305

sequences in Σ∗, and the saturated structures in SRµ correspond one-to-one to

the sequences in Σ∗. Indeed, since sim = ∅, we have from (1) that for every

sr = 〈∆,
,@, `〉 ∈ SRµ, it is the case that @~= id∆, and so ≺ is a total

order relation. Secondly, there are no serialisability equations. Thus, one may

consider µ as a trace alphabet 〈Σ, seq〉 with seq playing the role of the standard310

independence relation ind.

Example 5.1. Recall the step alphabet θ0 of Example 3.1. We restrict Σ to

{a, b, e}. Then the resulting step alphabet µ0 ∈ Θsim has the following simul-

taneity and sequentialising relations:

sim =

a

b c

d e

seq =

a

b c

d e

315

with

JabeK = {abe} JaebK = {aeb, eab}

JbaeK = {bae, bea} JaeeK = {aee, eae, eea} . �
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Recall that ORΘsim =
⋃
θ∈Θsim

ORθ comprises the order structures that are as

dependence structures associated with the step sequences and step traces over

the alphabets of Θsim and re�ect their causal dependencies. The corresponding

family of invariant structures is IRΘsim =
⋃
θ∈Θsim

IRθ, where IRθ = or2ir(ORθ).320

The de�nition of the dependence structure of a step sequence u ∈ SSEQµ

can be simpli�ed by replacing (2), for all α, β ∈ occ(u) with posu(α) = k and

posu(β) = m, with:

α
 β if k 6= m

α @ β if 〈`(α), `(β)〉 /∈ seq ∧ k < m .
(3)

Hence these order structures have the property that x 6= y ⇐⇒ x 
 y. Let

now ORsim consist of all order structures or = 〈∆,
,@, `〉 ∈ OR that satisfy

this additional property; in other words 
= (∆×∆) \ id∆.

In terms of graph representation for ORsim, 〈∆,@, `〉 = 〈∆,≺, `〉 are acyclic

graphs, and 〈∆,
, `〉 is complete.

Then we propose the following axiomatisation for their corresponding invari-

ant structures.325

A relational structure 〈∆,
,@, `〉 belongs to IRsim if, for all x, y, z ∈ ∆:

x 6@ x (A1)

x @ z @ y =⇒ x @ y (A2)

x 6= y ⇐⇒ x
 y (A3)

x 6= y ∧ `(x) = `(y) =⇒ x @sym y (A4)

In terms of graph representation for IRsim, 〈∆,@, `〉 = 〈∆,≺, `〉 are also

partial orders, and they capture all the relevant causal relationships.

We will now �rst establish that the relational structures de�ned by these

axioms are indeed invariant structures. Moreover, all elements of IRsim are order

structures belonging to ORsim. Next we introduce a simpli�ed order structure
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closure and, using this operation, we prove that IRsim consists exactly of the

closures of the order structures in ORsim.330

Lemma 5.2. IRsim ⊆ IR.

Proof We �rst note that (I1) is simply (A1). To show (I2) we observe that:

x 6= y ∧ x @ z @ y =⇒(A2) x @ y .

To show (I3) we observe that:

x
 y =⇒(A3) x 6= y =⇒ x 6= y ∧ y 6= x =⇒(A3) x 6= y ∧ y 
 x .

To show (I4) we observe that:

x = y ∧ (x ≺ z @ y ∨ x @ z ≺ y) =⇒ x ≺ z @ x ∨ x @ z ≺ x

=⇒(A2) x @ x

=⇒(A1) false

and so we have:

x ≺ z @ y ∨ x @ z ≺ y =⇒ x 6= y =⇒(A3) x
 y .

To show (I5) we observe that:

z 
 y ∧ z @ x @ z =⇒(A2) z @ z =⇒(A1) false .

To show (I6) we observe that:

x = y ∧ x @ z @ y =⇒ x @ z @ x =⇒(A2,A1) false

and so we have:

z 
 z′ ∧ x @ z @ y ∧ x @ z′ @ y =⇒ x 6= y =⇒(A3) x
 y .

We �nally note that (I7) follows from (A3) and (A4). �

Lemma 5.3. IRsim ⊆ ORsim.

Proof Follows from Lemma 5.2, IR ⊆ OR, and (A3). �
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For closure we propose to consider a simpli�ed order closure operation or2irsim335

transforming order structures from ORsim into invariant structures in IRsim and

corresponding to the transitive closure of an acyclic relation. This closure oper-

ation will then be shown to be the restriction of the standard closure operation

for order structures. More precisely, ORsim
or2irsim−−−−→ IRsim is such that, for every

or = 〈∆,
,@, `〉 ∈ ORsim, we have or2irsim(or) = 〈∆,
,@+, `〉.340

Lemma 5.4. or2irsim(ORsim) ⊆ IRsim.

Proof Let or = 〈∆,
,@, `〉 ∈ ORsim and ir = or2irsim(or) = 〈∆, 
̂, @̂, `〉.

To show (A1) suppose that x @̂ x which means x @+ x. Since @ is irre�exive,

there is y 6= x satisfying x @∗ y @∗ x. Hence, by the separability of or , x 6
 y,

contradicting the de�nition of ORsim.

To show (A2) we observe that:

x @̂ z @̂ y =⇒ x @+ z @+ y =⇒ x @+ y =⇒ x @̂ y .

We then observe that (A3) follows from
= (∆×∆)\id∆. Finally, (A4) follows

from the label-linearity of or , as shown below:

x 6= y ∧ `(x) = `(y) =⇒ x ≺sym y =⇒ x @̂
sym

y .

Hence ir ∈ IRsim. �

Proposition 5.5. or2irsim is a surjection with or2irsim = or2ir|ORsim .

Proof We �rst show that or2irsim = or2ir|ORsim . Let or = 〈∆,
,@, `〉 ∈ ORsim

and ir = or2ir(or) = 〈∆, 
̂, @̂, `〉. In this case @~= id∆ which follows directly

from 
= (∆ ×∆) \ id∆ and the separability of or . As a result, we also have

@�=@+. Hence

or2ir(or) = 〈∆,
 ∪ crosssym ,@+, `〉 ,

where cross = {〈x, y〉 | ∃z, w : z 
 w ∧ x @∗ z @∗ y ∧ x @∗ w @∗ y}. Moreover,

cross is irre�exive (as 
̂ is irre�exive) and 
= (∆ × ∆) \ id∆. We therefore345

obtain or2ir(or) = 〈∆,
,@+, `〉.
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We then observe that or2irsim(ORsim) = IRsim follows from Lemmas 5.2, 5.3,

and 5.4, or2irsim = or2ir|ORsim , and the fact that or2ir is the identity on IR, as

then we obtain or2irsim(ORsim) ⊆ IRsim and or2irsim(ORsim) ⊇ or2irsim(IRsim) =

or2ir(IRsim) = IRsim. �350

Based on the above facts we can now present, as a main result, the full

picture.

Theorem 5.6.

ORΘsim ⊂ ORsim ⊂ OR

∪ ∪ ∪

IRΘsim ⊂ IRsim ⊂ IR

Proof Let us consider one by one all the inclusions:

• IR ⊂ OR follows from the general results proven in [7] and

or =

〈
{x, y, z}, {〈x, y〉, 〈y, x〉, 〈y, z〉, 〈z, y〉, 〈x, z〉, 〈z, x〉},

{〈x, y〉, 〈y, z〉}, {x 7→ a, y 7→ b, z 7→ c}

〉
∈ OR \ IR .

• IRsim ⊂ ORsim follows from or ∈ ORsim \ IRsim and Lemma 5.3.

• IRΘsim ⊂ ORΘsim follows from or ∈ ORΘsim \ IRΘsim and the general results355

proven in [7].

• ORsim ⊂ OR follows from the de�nition of ORsim and

or ′ = 〈{x, y},∅, {〈x, y〉}, {x 7→ a, y 7→ b}〉 ∈ OR \ ORsim .

• IRsim ⊂ IR follows from or ′ ∈ IR \ IRsim and Lemma 5.2.

• ORΘsim ⊂ ORsim can be proven by taking µ ∈ Θsim, u ∈ SSEQµ, and

or = sseq2orµ(u). We know that or ∈ OR. Suppose that α, β ∈ occ(u)

and α 6= β. Then, by sim = ∅, posu(α) 6= posu(β). Hence, by (3), we

have α
or β, and so or ∈ ORsim. Moreover, we note that

or ′′ =

〈
{x, y, z}, {〈x, y〉, 〈y, x〉, 〈x, z〉, 〈z, x〉, 〈y, z〉, 〈z, y〉},

{〈x, y〉, 〈x, z〉}, {x 7→ a, y 7→ a, z 7→ b}

〉
∈ ORsim\ORΘsim .
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• IRΘsim ⊂ IRsim follows from or ′′ ∈ IRsim \ IRΘsim , ORΘsim ⊆ ORsim and

Lemma 5.4.

Moreover, note that or ∈ ORsim \ IR and or ′ ∈ IR \ ORsim which justi�es that360

IR and ORsim are not related. Similarly, there is no inclusion between IRsim and

ORΘsim since or ∈ ORΘsim \ IRsim and or ′′ ∈ IRsim \ ORΘsim . �

As a consequence we prove our initial intuition correct by demonstrating

that also the invariant structures in IRsim are characterised by the additional

property that mutex coincides with non-equality.365

Proposition 5.7. For every relational structure ir = 〈∆,
,@, `〉,

ir ∈ IRsim ⇐⇒ (ir ∈ IR ∧ ∀x, y ∈ ∆ : x 6= y ⇐⇒ x
 y) .

Proof (=⇒) Follows from Theorem 5.6 and (A3).

(⇐=) Note that (A3) is the additional property; (I1) and(A1) are the same

axioms; and (A4) follows from (I7). To prove (A2), assume that x @ z @ y.

Then x 6= z by (I1), and so x 
 z. Hence x 
 y, by (I4), and thus x 6= y.

Consequently, x @ y by (I2), and (A2) follows. �370

Altogether we have identi�ed ORsim and IRsim through a structural (not re-

lated to labels) property as the right classes of order structures and invariant

structures for the step traces over step alphabets in Θsim. The next result shows

that we cannot optimise this any further. When the labelling is ignored, for

every relational structure or ∈ ORsim there is a step trace de�ned by a step375

alphabet in Θsim with the order structure underlying or as its causal pattern.

Theorem 5.8. If or ∈ ORsim has an injective labelling, then there are µ ∈ Θsim

and u ∈ SSEQµ such that or is isomorphic to sseq2orµ(u).

Proof Let or = 〈∆,
,@, `〉. Since the labelling ` is injective, we may assume

that ∆ = Σ × {1}. Then, from the general results proved in [7] it follows that

there exists sr ∈ or2SR(os) which, directly by the de�nition of ORsim, satis�es
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sr= (∆ × ∆) \ id∆. Hence u = sr2sseq(sr) is a sequence of singleton steps.

Let µ = 〈Σ,∅, seq〉, where:

seq =

〈a, b〉 ∈ Σ× Σ

∣∣∣∣∣∣ posu(〈a, 1〉) < posu(〈b, 1〉) ∧ 〈a, 1〉 6@ 〈b, 1〉 ∨

posu(〈b, 1〉) < posu(〈a, 1〉) ∧ 〈b, 1〉 6@ 〈a, 1〉

 .

Clearly, µ ∈ Θsim and u ∈ SSEQµ. It is easy to check that or = sseq2orµ(u). �

Corollary 5.9. If ir ∈ IRsim has an injective labelling, then there are µ ∈ Θsim380

and u ∈ SSEQµ such that ir is isomorphic to or2irsim ◦ sseq2orµ(u).

6. Relational structures for the alphabets in Θsim\seq

A step alphabet κ = 〈Σ, sim, seq〉 ∈ Θsim\seq has sim \ seq = ∅ which is

equivalent to sim ⊆ seq ∩ seq−1, by the symmetry of sim. As a consequence, if

(a, b) ∈ seq \ (seq−1 ∩ sim), then (b, a) ∈ (seq \ (seq−1 ∩ sim))−1 ⊆ sim \ seq = ∅.385

Hence seq \ (seq−1 ∩ sim) = ∅ and seq = seq−1 is symmetric. And so, all steps

over κ can be serialised in any order and combination of substeps.

Example 6.1. Recall again the step alphabet θ0 of Example 3.1. We restrict Σ

to {a, b, c}. The resulting step alphabet κ0 ∈ Θsim\seq has the following simul-

taneity and sequentialising relations:390

sim =

a

b c

d e

seq =

a

b c

d e

with JabcK = {abc} and J(ac)bK = {(ac)b, acb, cab}. �

The de�nition of the dependence structure of a step sequence u ∈ SSEQκ

can be simpli�ed by replacing (2), for all α, β ∈ occ(u) with posu(α) = k and

posu(β) = m, with:

α
 β if 〈`(α), `(β)〉 /∈ sim

α @ β if 〈`(α), `(β)〉 /∈ seq ∧ k < m .
(4)
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Hence these order structures have the property that x @sym y =⇒ x 
 y. Let

ORsim\seq consist of all or = 〈∆,
,@, `〉 ∈ OR that have this property.

In terms of graph representation for ORsim\seq, 〈∆,@, `〉 = 〈∆,≺, `〉 are

acyclic graphs, while the relationships captured by 〈∆,
, `〉 are more com-

plicated than in the previous case.

For the corresponding invariant structures we thus propose the following395

axiomatisation.

A relational structure 〈∆,
,@, `〉 belongs to IRsim\seq if, for all x, y, z ∈ ∆:

x @ z @ y =⇒ x @ y (B1)

x @sym y =⇒ x
 y (B2)

x
 y =⇒ y 
 x 6= y (B3)

x 6= y ∧ `(x) = `(y) =⇒ x @sym y (B4)

In terms of graph representation for IRsim\seq, 〈∆,@, `〉 = 〈∆,≺, `〉 are partial

orders, and this time they do not capture all the relevant causal relationships

between events, while the implied mutex relationships captured by 〈∆,
, `〉 are

less involved than in the general case (as the closure operation is much simpler).

In what follows, we �rst establish that these relational structures are invari-

ant structures and moreover order structures belonging to ORsim\seq. Then, we

introduce a simpli�ed closure operation and prove, using this operation, that400

IRsim\seq consists exactly of the closures of the order structures in ORsim\seq.

Lemma 6.2. IRsim\seq ⊆ IR.

Proof To show (I1) we observe that:

x @ x =⇒(B2) x
 x =⇒(B3) x 6= x =⇒ false .
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To show (I2) we observe that:

x 6= y ∧ x @ z @ y =⇒(B1) x @ y .

We then note that (I3) is simply (B3), and to show (I4) we observe that:

x ≺ z @ y ∨ x @ z ≺ y =⇒(B1) x @ y =⇒(B2) x
 y .

To show (I5) we observe that:

z 
 y ∧ z @ x @ z =⇒(B1) z @ z =⇒(B2,B3) false .

To show (I6) we observe that:

z 
 z′ ∧ x @ z @ y ∧ x @ z′ @ y =⇒(B1) x @ y =⇒(B2) x
 y .

We �nally note that (I7) follows from (B2) and (B4). �

Lemma 6.3. IRsim\seq ⊆ ORsim\seq.

Proof Follows from Lemma 6.2, IR ⊆ OR, and (B2). �405

The simpli�ed closure operation ORsim\seq
or2irsim\seq−−−−−−→ IRsim\seq is de�ned, for

every or = 〈∆,
,@, `〉 ∈ ORsim\seq, by:

or2irsim\seq(or) = 〈∆,
 ∪(@+)sym ,@+, `〉 .

Lemma 6.4. or2irsim\seq(ORsim\seq) ⊆ IRsim\seq.

Proof Let or = 〈∆,
,@, `〉 ∈ ORsim\seq and ir = or2irsim\seq(or) = 〈∆, 
̂, @̂, `〉.

ir ∈ IRsim\seq. To show (B1) we observe that:

x @̂ z @̂ y =⇒ x @+ z @+ y =⇒ x @+ y =⇒ x @̂ y .

To show (B2) we observe that:

x @̂ y =⇒ x @+ y =⇒ x 
̂ y .

To show (B3) we observe that:

x 
̂ y =⇒ x
 y ∨ x(@+)symy =⇒ y 
 x ∨ y(@+)symx =⇒ y 
̂ x .
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Moreover, x
̂y =⇒ x 6= y follows from the general results proved in [7].

Finally, (B4) follows from the label-linearity of or , as shown below:

x 6= y ∧ `(x) = `(y) =⇒ x ≺̂sym
y =⇒ x @̂

sym
y .

Hence ir ∈ IRsim\seq. �

Proposition 6.5. or2irsim\seq is a surjection with or2irsim\seq = or2ir|ORsim\seq .

Proof We �rst show that or2irsim\seq = or2ir|ORsim\seq . Let or = 〈∆,
,@, `〉 ∈

ORsim\seq and ir = or2ir(or) = 〈∆, 
̂, @̂, `〉. We �rst observe that in such a case

@~= id∆ which follows from x @sym y =⇒ x 
 y and the separability of or .

As a result, we also have @�=@+. Hence

or2ir(or) = 〈∆,
 ∪ crosssym ,@+, `〉 ,

where cross = {〈x, y〉 | ∃z, w : z 
 w ∧ x @∗ z @∗ y ∧ x @∗ w @∗ y}. We will

now show that (
 ∪ crosssym) = (
 ∪ (@+)sym).410

Suppose �rst that 〈x, y〉 ∈ cross which means that x 6= y (which follows from

the general theory), and there is z such that x @∗ z @∗ y. Hence x @+ y

showing that the (⊆) inclusion holds. To show the reverse inclusion, sup-

pose that x @+ y. If x @ y then, by the de�nition of ORsim\seq, we have

x 
 y. Otherwise, there is z such that x @ z @∗ y. Then, again by the415

de�nition of ORsim\seq, z 
 x. We therefore obtain that 〈x, y〉 ∈ cross, af-

ter taking w = x. Hence or2ir(or) = 〈∆,
 ∪ (@+)sym ,@+, `〉. We then

observe that or2irsim\seq(ORsim\seq) = IRsim\seq follows from Lemmas 6.2, 6.3,

and 6.4, or2irsim\seq = or2ir|ORsim\seq , and the fact that or2ir is the identity on IR,

as then we obtain or2irsim\seq(ORsim\seq) ⊆ IRsim\seq and or2irsim\seq(ORsim\seq) ⊇420

or2irsim\seq(IRsim\seq) = or2ir(IRsim\seq) = IRsim\seq.. �

Now, we can present as a main result the full picture relating ORΘsim\seq =⋃
θ∈Θsim\seq

ORθ, the order structures that are as dependence structures associ-

ated with the step sequences and step traces over the alphabets of Θsim\seq,

and the corresponding family of invariant structures IRΘsim\seq =
⋃
θ∈Θsim\seq

IRθ,425
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where IRθ = or2ir(ORθ), with the newly introduced order structures and invari-

ant structures.

Theorem 6.6.

ORΘsim\seq ⊂ ORsim\seq ⊂ OR

∪ ∪ ∪

IRΘsim\seq ⊂ IRsim\seq ⊂ IR

Proof Let us consider one by one all the inclusions:

• IR ⊂ OR was already justi�ed in the proof of Theorem 5.6. Note, however,

that we also have

or =

〈
{x, y, z}, {〈x, y〉, 〈y, x〉, 〈y, z〉, 〈z, y〉}, {〈x, y〉, 〈y, z〉},

{x 7→ a, y 7→ b, z 7→ c}

〉
∈ OR\ IR .

• IRsim\seq ⊂ ORsim\seq follows from or ∈ ORsim\seq \ IRsim\seq and Lemma 6.3.

• IRΘsim\seq ⊂ ORΘsim\seq follows from os ∈ ORΘsim\seq \ IRΘsim\seq and the general430

results proved in [7].

• ORsim\seq ⊂ OR follows from the de�nition of ORsim\seq and

or ′ = 〈{x, y},∅, {〈x, y〉}, {x 7→ a, y 7→ b}〉 ∈ OR \ ORsim\seq .

• IRsim\seq ⊂ IR follows from or ′ ∈ IR \ IRsim\seq and Lemma 6.2.

• ORΘsim\seq ⊂ ORsim\seq can be shown by taking κ ∈ Θsim\seq, u ∈ SSEQκ,

and or = sseq2orκ(u). Since we know from the general theory that or ∈

OR, we only need to show that @sym
or ⊆
or . This, however, follows from

(4). Hence or ∈ ORsim\seq. Moreover, we note that

or ′′ =

〈
{x, y, z}, {〈x, y〉, 〈y, x〉, 〈x, z〉, 〈z, x〉},

{〈x, y〉, 〈x, z〉}, {x 7→ a, y 7→ a, z 7→ b}

〉
∈ ORsim\seq \ORΘsim\seq .

• IRΘsim\seq ⊆ IRsim\seq follows from Lemma 6.4 or ′′ ∈ IRsim\seq \ IRΘsim\seq and

ORΘsim\seq ⊆ ORsim\seq.
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Moreover, note that or ∈ ORsim\seq \ IR and or ′ ∈ IR \ ORsim\seq which justi�es435

that IR and ORsim\seq are not related. Similarly, or ∈ ORΘsim\seq \ IRsim\seq and

or ′′ ∈ IRsim\seq \ ORΘsim\seq , hence there is no inclusion between IRsim\seq and

ORΘsim\seq . �

As a consequence of the last result, we can now prove our intuition that led

to the de�nition of ORsim\seq correct, by demonstrating that also the invariant440

structures in IRsim\seq are characterised by the additional property that weak

ordering implies mutual exclusion.

Proposition 6.7. For every relational structure ir = 〈∆,
,@, `〉,

ir ∈ IRsim\seq ⇐⇒ (ir ∈ IR ∧ ∀x, y ∈ ∆ : x @sym y =⇒ x
 y) .

Proof (=⇒) Follows from Theorem 6.6 and (B2).

(⇐=) Note that (B2) is the additional property; (I3) and(B3) are the same

axioms; and (B4) follows from (I7). To prove (B1), assume that x @ z @ y.445

Then x 
 z by the additional property. Hence x 
 y by (I4). Thus x 6= y by

(I3), and (B2) follows. �

Summarising, we have identi�ed ORsim\seq and IRsim\seq through a structural

property as suitable subclasses of OR and IR for the relational structures asso-

ciated with the step traces over step alphabets in Θsim\seq. As the next theorem450

shows, this result is optimal in the sense that for every relational structure in

or ∈ ORsim\seq, there is a step trace de�ned by a step alphabet in Θsim\seq with

the unlabelled order structure underlying or as its causal pattern.

Theorem 6.8. If a structure or ∈ ORsim\seq has an injective labelling, then

there are κ ∈ Θsim\seq and u ∈ SSEQκ such that or is isomorphic to sseq2orκ(u).455

Proof Let or = 〈∆,
,@, `〉. Since the labelling ` is injective, we may assume

that ∆ = Σ × {1}. Then, from the general results proved in [7] it follows that
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there exists sr ∈ or2SR(os). Let u = sseq2sr−1(sr), and κ = 〈Σ, sim, seq〉, where:

sim = {〈a, b〉 ∈ Σ× Σ | (posu(〈a, 1〉) = posu(〈b, 1〉) ∧ a 6= b)∨

(posu(〈a, 1〉) 6= posu(〈b, 1〉) ∧ 〈a, 1〉 6
 〈b, 1〉)}

seq = {〈a, b〉 ∈ Σ× Σ | (posu(〈a, 1〉) = posu(〈b, 1〉) ∧ a 6= b)

∨(posu(〈a, 1〉) < posu(〈b, 1〉) ∧ 〈a, 1〉 6@ 〈b, 1〉)

∨(posu(〈b, 1〉) < posu(〈a, 1〉) ∧ 〈b, 1〉 6@ 〈a, 1〉)} .

We then observe that sim is symmetric since 
 is symmetric, and seq \ sim is

symmetric because sim and seq are symmetric. Hence κ is a step alphabet. To

show κ ∈ Θsim\seq we need to show that sim ⊆ seq.

Let 〈a, b〉 ∈ sim. If posu(〈a, 1〉) = posu(〈b, 1〉) and a 6= b then clearly we have

〈a, b〉 ∈ seq. Moreover, if posu(〈a, 1〉) 6= posu(〈b, 1〉) and 〈a, 1〉 6
 〈b, 1〉 then,460

by or ∈ ORsim\seq, posu(〈a, 1〉) 6= posu(〈b, 1〉) and 〈a, 1〉 6@sym 〈b, 1〉. Hence

〈a, b〉 ∈ seq, and so κ ∈ Θsim\seq.

We then observe that u ∈ SSEQκ as posu(〈a, 1〉) = posu(〈b, 1〉) and a 6= b

together imply 〈a, b〉 ∈ sim, and it is easy to check that or = sseq2orκ(u). �

Corollary 6.9. If ir ∈ IRsim\seq has an injective labelling, then there are µ ∈465

Θsim\seq and u ∈ SSEQµ such that ir is isomorphic to or2irsim\seq ◦ sseq2orµ(u).

We conclude this section showing that the step traces de�ned by step alpha-

bets in Θsim\seq are histories satisfying the concurrency paradigm π2 of [10].

Proposition 6.10. Let τ be a step trace over a step alphabet κ ∈ Θsim\seq.

Let α, β ∈ occ(τ) be distinct action occurrences of τ . Then

(∃v ∈ τ : posv(α) = posv(β))

=⇒

(∃u ∈ τ : posu(α) < posu(β)) ∧ (∃w ∈ τ : posw(α) > posw(β)).

Proof Let ir = or2ir ◦ sseq2orκ(v). From posv(α) = posv(β) it follows directly

that 〈`(α), `(β)〉 ∈ sim and there is sr ∈ or2SR(ir) such that α @sr β @sr α.470

Hence, α 6
ir β. Moreover, by the simpli�ed form of the sseq2orκ mapping and

the order structure closure, α 6@ir β and β 6@ir α. This, by the general results
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proved in [7], means that there are sr ′, sr ′′ ∈ or2SR(ir) such that α ≺sr ′ β

and β ≺sr ′′ α. Then the conclusion holds by taking u = sseq2or−1
κ (sr ′) and

w = sseq2or−1
κ (sr ′′). �475

7. Relational structures for the alphabets in Θsim∩seq

A step alphabet ν ∈ Θsim∩seq is the one satisfying sim ∩ seq = ∅, and so we

have seq = seq−1. For the alphabets in Θsim∩seq steps can be only manipulated

through the interleaving equations.

Example 7.1. Let us recall the step alphabet θ0 of Example 3.1 and restrict Σ to480

{b, c, d}. The resulting step alphabet ν0 ∈ Θsim∩seq has the following simultaneity

and sequentialising relations:

sim =

a

b c

d e

seq =

a

b c

d e

with Jb(cd)K = {b(cd)} and JbcdK = {bcd}.

One can also obtain another example of an alphabet from Θsim∩seq by taking485

θ0 and restricting Σ to {a, b, e}. The resulting step alphabet ν1 has the following

simultaneity and sequentialising relations:

sim =

a

b c

d e

seq =

a

b c

d e

with JaebK = {aeb, eab} and JabeK = {abe}. �

The de�nition of the dependence structure of a step sequence u ∈ SSEQν

can be simpli�ed by replacing (2), for all α, β ∈ occ(u) with posu(α) = k and
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posu(β) = m, with:

α
 β if k 6= m

α @ β if 〈`(α), `(β)〉 /∈ seq ∧ k ≤ m ∧ α 6= β .

(5)

The order structures ORsim∩seq are all those or = 〈∆,
,@, `〉 ∈ OR for which490

x 6= y =⇒ x 
 y ∨ x @ y @ x, and the axiomatisation of the corresponding

invariant structures becomes simpler.

In terms of graph representation for ORsim∩seq, any two events are either

connected in 〈∆,
, `〉, or connected in both directions in 〈∆,@, `〉.

A relational structure 〈∆,
,@, `〉 belongs to IRsim∩seq if, for all x, y, z ∈ ∆:

x 6
 x (C1)

x 6= y ∧ x @ z @ y =⇒ x @ y (C2)

x 6
 y ∧ x 6= y ⇐⇒ x @ y @ x (C3)

x 6= y ∧ `(x) = `(y) =⇒ x ≺sym y (C4)

In terms of graph representation for IRsim∩seq, the part of the order structure

closure responsible for mutex relation is trivial.

The de�nitions of ORsim∩seq and IRsim∩seq are sound.

The simpli�ed order structure closure ORsim∩seq
or2irsim∩seq−−−−−−→ IRsim∩seq is such

that or2irsim∩seq(or) = 〈∆,
,@�, `〉, for every or = 〈∆,
,@, `〉 ∈ ORsim∩seq.495

Proposition 7.2. or2irsim∩seq is a surjection with or2irsim∩seq = or2ir|ORsim∩seq .

Theorem 7.3.

ORΘsim∩seq ⊂ ORsim∩seq ⊂ OR

∪ ∪ ∪

IRΘsim∩seq ⊂ IRsim∩seq ⊂ IR
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The next result demonstrates the correctness of the reduction from the ax-

ioms (I1)�(I7) to (C1)�(C4) when an additional, equivalent to sim∩ seq = ∅ in

the case of invariant structures over a given step alphabet, property is assumed.

Proposition 7.4. For every relational structure ir = 〈∆,
,@, `〉,

ir ∈ IRsim∩seq ⇐⇒ (ir ∈ IR ∧ ∀x, y ∈ ∆ : x 6= y =⇒ x
 y ∨ x @ y @ x) .

The step alphabets in Θsim∩seq can generate all the causal patterns involving500

causal relationships captured by the structures in ORsim∩seq.

Theorem 7.5. If a structure or ∈ ORsim∩seq has an injective labelling, then

there are ν ∈ Θsim∩seq and u ∈ SSEQν such that or is isomorphic to sseq2orν(u).

Corollary 7.6. If ir ∈ IRsim∩seq has an injective labelling, then there are µ ∈

Θsim∩seq and u ∈ SSEQµ such that ir is isomorphic to or2irsim∩seq ◦ sseq2orµ(u).505

8. Relational structures for the alphabets in Θseq\sim

A step alphabet σ = 〈Σ, sim, seq〉 ∈ Θseq\sim is the one satisfying seq\sim = ∅

and therefore we have seq ∪ seq−1 ⊆ sim. Alphabets in Θseq\sim do not allow

true interleaving, and swapping of steps can be achieved by splitting and joining

steps. In [10], such alphabets are referred to as comtrace alphabets.510

Example 8.1. Let us recall the step alphabet θ0 of Example 3.1 and restrict

Σ to {b, c, d, e}. The resulting step alphabet σ0 ∈ Θseq\sim has the following

simultaneity and sequentialising relations:

sim =

a

b c

d e

seq =

a

b c

d e

with

J(cde)K = {(cde)} J(ce)K = {(ce), ec}

J(de)K = {(de), de} JdecK = {dec, (de)c, d(ce)} .
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One can also obtain another example of an alphabet from Θseq\sim by taking θ0515

and restricting Σ to {a, b, c, d}. The resulting step alphabet σ1 has the following

simultaneity and sequentialising relations:

sim =

a

b c

d e

seq =

a

b c

d e

with JacdK = {acd, cad, cda, (ac)d, c(ad)}, Ja(cd)K = {a(cd), (cd)a, (acd)}, and

JabcK = {abc}. �520

The de�nition of the dependence structure of a step sequence u ∈ SSEQσ

can be simpli�ed by replacing (2), for all α, β ∈ occ(u) with posu(α) = k and

posu(β) = m, with:

α
 β if 〈`(α), `(β)〉 /∈ seq ∧ k < m

or 〈`(α), `(β)〉 /∈ seq−1 ∧ k > m

α @ β if 〈`(α), `(β)〉 /∈ seq ∩ seq−1 ∧ k < m

or 〈`(α), `(β)〉 ∈ sim \ seq−1 ∧ k = m .]

(6)

The order structures ORseq\sim needed to re�ect causal dependencies in the

step traces over the concurrent alphabets of Θseq\sim are all those order structures

or = 〈∆,
,@, `〉 ∈ OR for which x 
 y =⇒ x @sym y. The corresponding

invariant structures can then be provided with a simpler de�nition.

A relational structure 〈∆,
,@, `〉 belongs to IRseq\sim if

x 6@ x (D1)

x 6= y ∧ x @ z @ y =⇒ x @ y (D2)

x
 y =⇒ x @sym y ∧ y 
 x (D3)

x ≺ z @ y ∨ x @ z ≺ y =⇒ x
 y (D4)

x 6= y ∧ `(x) = `(y) =⇒ x
 y (D5)

33



In terms of graph representation for both ORseq\sim and IRseq\sim, any two

events are connected in 〈∆,
, `〉 i� they are connected in 〈∆,≺, `〉.

The de�nitions of ORseq\sim and IRseq\sim are sound.525

The simpli�ed order structure closure ORseq\sim
or2irseq\sim−−−−−−→ IRseq\sim is such

that, for every or = 〈∆,
,@, `〉 ∈ ORseq\sim:

or2irseq\sim(or) = 〈∆, (@∗ ◦ ≺ ◦ @∗)sym ,@�, `〉 .

Proposition 8.2. or2irseq\sim is a surjection with or2irseq\sim = or2ir|ORseq\sim .

Theorem 8.3.

ORΘseq\sim ⊂ ORseq\sim ⊂ OR

∪ ∪ ∪

IRΘseq\sim ⊂ IRseq\sim ⊂ IR

The next result demonstrates the correctness of the reduction from the

axioms (I1)�(I7) to (D1)�(D5) when an additional property, equivalent to

seq \ sim = ∅ in the case of invariant structures over a given step alphabet,

is assumed.530

Proposition 8.4. For every relational structure ir = 〈∆,
,@, `〉,

ir ∈ IRseq\sim ⇐⇒ (ir ∈ IR ∧ ∀x, y ∈ ∆ : x
 y =⇒ x @sym y) .

Step traces over the step alphabets in Θseq\sim can generate all the causal

patterns involving causal relationships captured by the structures in ORseq\sim.

Theorem 8.5. If a structure or ∈ ORseq\sim has an injective labelling, then

there are σ ∈ Θseq\sim and u ∈ SSEQσ such that or is isomorphic to sseq2orσ(u).

Corollary 8.6. If ir ∈ IRseq\sim has an injective labelling, then there are µ ∈535

Θseq\sim and u ∈ SSEQµ such that ir is isomorphic to or2irseq\sim ◦ sseq2orµ(u).

An example of a system model for which the step alphabets in Θseq\sim and

invariant structures IRseq\sim provide a suitable semantical treatment are the
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elementary net systems with inhibitor arcs [14]. Note that every causal pattern

can be obtained as a closure of dependence structure for a computation in an540

elementary net system with inhibitor arcs.

Finally, as shown below, traces generated by the alphabets in Θseq\sim are

histories satisfying the concurrency paradigm π3 of [10] by which actions that

can be executed in any order can also be executed simultaneously (but not

necessarily vice versa).545

Proposition 8.7. Let α and β be two action occurrences of a step trace τ

generated by σ ∈ Θseq\sim. Then

(∃u ∈ τ : posu(α) < posu(β)) ∧ (∃w ∈ τ : posw(α) > posw(β))

=⇒

(∃v ∈ τ : posv(α) = posv(β))

9. Relational structures for the alphabets in Θsim4seq

A step alphabet ω = 〈Σ, sim, seq〉 ∈ Θsim4seq satis�es sim4seq = ∅, and

therefore we have sim = seq = seq−1. For the alphabets in Θsim4seq the inter-

leaving equations are not really needed, and the serialisability equations are rich

enough to split and reorder steps in every possible way. As a result, all steps550

can be completely sequentialised.

Example 9.1. Let us recall the step alphabet θ0 of Example 3.1 and restrict Σ

to {a, b, d}. The resulting step alphabet ω0 ∈ Θsim4seq has the following simul-

taneity and sequentialising relations:

sim =

a

b c

d e

seq =

a

b c

d e

555

with JabdK = {abd} and JadbK = {adb, dab, (ad)b}. �
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The de�nition of the dependence structure of a step sequence u ∈ SSEQω

can be simpli�ed by replacing (2), for all α, β ∈ occ(u) with posu(α) = k and

posu(β) = m, with:

α
 β if 〈`(α), `(β)〉 /∈ sim

α @ β if 〈`(α), `(β)〉 /∈ sim ∧ k < m .
(7)

The order structures ORsim4seq are all those or = 〈∆,
,@, `〉 ∈ OR for

which x
 y ⇐⇒ x @sym y.

In terms of graph representation for ORsim4seq, any two events are connected

in 〈∆,
, `〉 i� they are connected in the acyclic graphs 〈∆,@, `〉 = 〈∆,≺, `〉.

The corresponding invariant structures can also be provided with a simpler

de�nition. A relational structure 〈∆,
,@, `〉 belongs to IRsim4seq if, for all

x, y, z ∈ ∆:

x 6@ x (E1)

x @ z @ y =⇒ x @ y (E2)

x
 y ⇐⇒ x @sym y (E3)

x 6= y ∧ `(x) = `(y) =⇒ x @sym y (E4)

In terms of graph representation for IRsim4seq, any two events are connected

in 〈∆,
, `〉 i� they are connected in the partial orders 〈∆,@, `〉 = 〈∆,≺, `〉

and, similarly as in IRsim, they fully capture all the relevant causal relationships

between events.

The de�nitions of ORsim4seq and IRsim4seq are sound.

The simpli�ed order structure closure ORsim4seq
or2irsim4seq−−−−−−→ IRsim4seq is such

that, for every or = 〈∆,
,@, `〉 ∈ ORsim4seq:

or2irsim4seq(or) = 〈∆, (@+)sym ,@+, `〉 .

Proposition 9.2. or2irsim4seq is a surjection with or2irsim4seq = or2ir|ORsim4seq
.560
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Theorem 9.3.

ORΘsim4seq
⊂ ORsim4seq ⊂ OR

∪ ∪ ∪

IRΘsim4seq
⊂ IRsim4seq ⊂ IR

The next result demonstrates the correctness of the reduction from the ax-

ioms (I1)�(I7) to (E1)�(E4) when an additional, equivalent to sim4seq = ∅ in

the case of invariant structures over a given step alphabet, property is assumed.

Proposition 9.4. For every relational structure ir = 〈∆,
,@, `〉,

ir ∈ IRsim4seq ⇐⇒ (ir ∈ IR ∧ ∀x, y ∈ ∆ : x
 y ⇐⇒ x @sym y) .

The step alphabets in Θsim4seq can generate all the causal patterns involving

causal relationships captured by the structures in ORsim4seq.565

Theorem 9.5. If a structure or ∈ ORsim4seq has an injective labelling, then

there are ω ∈ Θsim4seq and u ∈ SSEQω such that or is isomorphic to sseq2orω(u).

Corollary 9.6. If ir ∈ IRsim4seq has an injective labelling, then there are µ ∈

Θsim4seq and u ∈ SSEQµ such that ir is isomorphic to or2irsim4seq ◦ sseq2orµ(u).

Finally, as shown below, the step traces generated by the alphabets in570

Θsim4seq are histories satisfying the true concurrency paradigm π8 of [10] and

a system model for which this subclass provides a suitable semantical treatment

are the elementary net systems with step sequence semantics. Note that every

causal pattern (without labels) can be obtained as the closure of a dependence

structure for a computation in an elementary net system with step sequence575

semantics.

Proposition 9.7. Let α and β be distinct action occurrences α and β of a step

trace τ generated by ω ∈ Θsim4seq. Then

(∃v ∈ τ : posv(α) = posv(β))

⇐⇒

(∃u ∈ τ : posu(α) < posu(β)) ∧ (∃w ∈ τ : posw(α) > posw(β))
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10. Concluding remarks

It may come as a surprise that invariant structures IRsim4seq are in a one-

to-one correspondence with partial orders, similarly as for IRsim, even though

the actual de�nition of the two classes of order structures is di�erent. The580

reason why these two structures di�er is that the de�ning subclasses of alpha-

bets, Θsim and Θsim4seq, are based on di�erent models of observations. The

former only admits sequential observations whereas the latter admits true step

sequences. That the underlying causal structures are partial orders comes from

the fact that in the case of Θsim4seq simultaneity always implies the possibility585

of sequentialisation.

In [7] we introduced and investigated how to extend the trace theory to

the case of step sequences, and we established that the general traces de�ned

through step alphabets are indeed the most general in terms of their underlying

order structures. In this paper, we have continued our investigations and identi-590

�ed for the �ve natural subclasses of step traces their corresponding � simpli�ed

� invariant order structures.

As observed in [7], there are invariant structures that cannot be generated

by any step alphabet. One reason is that the latter can only capture static

dependencies between actions, whereas in the former di�erent occurrences of595

the same pair of actions may exhibit di�erent causality dependencies. Another

reason is that the order-theoretic properties of invariant structure are orthogonal

to the properties of their labellings. A characterisation of `good' labellings for

the order structures corresponding to general step traces has been addressed

in [27]. In our ongoing work we aim at similar characterisations for each subclass600

of invariant structures considered in this paper.

We have considered an extension of Mazurkiewicz traces taking steps as the

smallest units of observation, and to represent observational and causal rela-

tionships in the behaviours of concurrent systems we used the order structures

from [28] which are an extension of an idea �rst proposed in [10, 17, 18]. A605

direct predecessor of order structures were the strati�ed order structures (i.e.,
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those generated by Θseq\sim), introduced independently in [17] and [29], and then

applied, e.g., in [30, 31]. The approach presented here allows classi�cations �t-

ting both established (e.g., comtraces [14] and ST-traces [32, 33]), and as yet

uninvestigated trace models.610

There are di�erences with other concurrency models that at �rst sight might

seem related to step traces. First of all, there exist other generalisations of

traces. Semi-traces originally introduced as rewriting systems by [34] and later

investigated in, e.g., [35, 36] are generated by semi-commutations. The rewriting

rules that change the order of two adjacent action occurrences can be one-615

directional, ab → ba, rather than bi-directional. This cannot be done in the

model discussed in this paper. Conversely, there are no partial order models

which can deal with weak causality [10, 14]. Approaches other than steps, either

do not support weak causality [13, 32, 37], or, as [21, 33, 38], can equivalently

be modelled with the comtraces of [14] (i.e., the model of Θseq\sim). We are also620

not aware of a model that can express a mutex situation represented here by the

interleaving equation (AB = BA and A∩B = ∅) other than those following [16].

Other extensions of Mazurkiewicz traces consider in�nite sequences, leading to

complex traces or in�nite traces as in, e.g., [39, 40]. Finally, it should be noted

that the extension of Mazurkiewicz traces discussed in this paper is a static one,625

in contrast to the context or history dependent traces from, e.g., [41, 42, 43].
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Appendix I. Proofs for the alphabets in Θsim∩seq

Lemma Appendix I.1. IRsim∩seq ⊆ IR.

Proof We �rst note that:

x @ y @ x ∧ x
 y =⇒(C3) x 6
 y ∧ x 6= y ∧ x
 y =⇒ false (*)

Hence, by (C1),

x
 y ⇐⇒ x 6= y ∧ ¬(x @ y @ x) (**)

To show (I1) we observe that:

x @ x =⇒ x @ x @ x =⇒(C3) x 6
 x ∧ x 6= x =⇒ false.

43



Then we note that (I2) is simply (C2). To show (I3) we observe that:

x
 y =⇒(**) x 6= y ∧ ¬(x @ y @ x)

=⇒ x 6= y ∧ (y 6= x ∧ ¬(y @ x @ y))

=⇒(**) x 6= y ∧ y 
 x .

To show (I4) we observe that:

x 6
 y ∧ x ≺ z @ y =⇒(**) (x = y ∨ x @ y @ x) ∧ x ≺ z @ x

=⇒(C1) (x = y ∨ x @ y @ x) ∧

x @ z @ y ∧ x
 z ∧ z 6= x

=⇒ x @ z @ x ∧ x
 z ∨

x @ z @ y @ x ∧ x
 z ∧ z 6= x

=⇒(C2) x @ z @ x ∧ x
 z ∨ x @ z @ x ∧ x
 z

=⇒ x @ z @ x ∧ x
 z

=⇒(C3) false .

Similarly, x 6
 y ∧ x @ z ≺ y =⇒ false. Hence we have:

x ≺ z @ y ∨ x @ z ≺ y =⇒ x
 y .

To show (I5) we �rst observe that:

z 
 y ∧ z @ x @ z ∧ x @ y @ x

=⇒(C1) z 
 y ∧ z @ x @ y @ x @ z ∧ z 6= y

=⇒(C2) z 
 y ∧ z @ y @ z

=⇒(*) false ,

z 
 y ∧ z @ x @ z ∧ x = y

=⇒ z 
 y ∧ z @ y @ z

=⇒(*) false .

Hence we have:

z 
 y ∧ z @ x @ z =⇒ ¬(y @ x @ y) ∧ x 6= y =⇒(**) x
 y .
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To show (I6) we observe that:

z 
 z′ ∧ x @ z @ y ∧ x @ z′ @ y ∧ x @ y @ x

=⇒(C1) z 
 z′ ∧ x @ z @ y ∧ x @ z′ @ y ∧ x @ y @ x ∧

z 6= z′ ∧ z 6= x ∧ y 6= z

=⇒ z 
 z′ ∧ z @ y @ x @ z′ @ y @ x @ z ∧

z 6= z′ ∧ z 6= x ∧ y 6= z

=⇒(C2) z 
 z′ ∧ z @ x @ z′ @ y @ z ∧ z 6= z′

=⇒(C2) z 
 z′ ∧ z @ z′ @ z

=⇒(*) false

z 
 z′ ∧ x @ z @ y ∧ x @ z′ @ y ∧ x = y

=⇒(C1) z 
 z′ ∧ z @ x @ z′ @ x @ z ∧ z 6= z′

=⇒(C2) z 
 z′ ∧ z @ z′ @ z

=⇒(*) false .

Hence we have:

z 
 z′ ∧ x @ z @ y ∧ x @ z′ @ y =⇒ ¬(y @ x @ y) ∧ x 6= y =⇒(**) x
 y .

We �nally note that (I7) is simply (C4). �

Lemma Appendix I.2. IRsim∩seq ⊆ ORsim∩seq.

Proof Follows from Lemma Appendix I.1, IR ⊆ OR, and (C3). �730

Lemma Appendix I.3. or2irsim∩seq(ORsim∩seq) ⊆ IRsim∩seq.

Proof

Let or = 〈∆,
,@, `〉 ∈ ORsim∩seq and ir = or2irsim∩seq(or) = 〈∆, 
̂, @̂, `〉.

To show (C1) we observe that 
̂ =
, and to show (C2), we observe that:

x 6= y ∧ x @̂ z @̂ y =⇒ x 6= y ∧ x @� z @� y =⇒ x @� y =⇒ x @̂ y .

To show (C3) we observe that:

@~ = @∗ ∩ (@∗)−1 = (@� ]id∆) ∩ (@� ]id∆)−1 = (@� ∩(@�)−1) ] id∆,
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hence


̂ =
 = (∆×∆)\ @~= (∆×∆) \ (@� ∩ (@�)−1 ] id∆),

and so

x̂6
 y ∧ x 6= y ⇐⇒ x @̂ y @̂ x.

Finally, (C4) follows from the label-linearity of or , as shown below:

x 6= y ∧ `(x) = `(y) =⇒ x ≺sym y =⇒ x ≺̂sym
y .

Hence ir ∈ IRsim∩seq �

Proof of Proposition 7.2

We show that or2irsim∩seq = or2ir|ORsim∩seq . Let or = 〈∆,
,@, `〉 ∈ ORsim∩seq

and ir = or2ir(or) = 〈∆, 
̂, @̂, `〉. We �rst observe that in such a case we have


= (∆ × ∆)\ @~, which follows from x 6= y ⇒ x 
 y ∨ x @ y @ z and the

separability of or . By the general theory we know that

(@~ ◦
 ◦ @~ ∪ @~ ◦crosssym◦ @~)∩ @~ = ∅.

and since 
 ⊆ @~ ◦
 ◦ @~ we obtain or2ir(or) = 〈∆,
,@�, `〉.

We observe that or2irsim∩seq(ORsim∩seq) = IRsim∩seq follows from Lemmas Ap-735

pendix I.1, Appendix I.2, and Appendix I.3, or2irsim∩seq = or2ir|ORsim∩seq , and the

fact that or2ir is the identity on IR, as then we obtain or2irsim∩seq(ORsim∩seq) ⊆

IRsim∩seq and or2irsim∩seq(ORsim∩seq) ⊇ or2irsim∩seq(IRsim∩seq) = or2ir(IRsim∩seq) =

IRsim∩seq. �

Proof of Theorem 7.3740

Let us consider one by one all the inclusions:

• IR ⊂ OR was already justi�ed in the proof of Theorem 5.6. Note, however,

that we also have

or =

〈
{x, y, z}, {〈y, z〉, 〈z, y〉, 〈x, z〉, 〈z, x〉},

{〈x, y〉, 〈y, x〉, 〈y, z〉}, {x 7→ a, y 7→ b, z 7→ c}

〉
∈ OR \ IR .
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• IRsim∩seq ⊂ ORsim∩seq follows from or ∈ ORsim∩seq\IRsim∩seq and Lemma Ap-

pendix I.2.

• IRΘsim∩seq ⊂ ORΘsim∩seq follows from os ∈ ORΘsim∩seq \IRΘsim∩seq and the general

results proven in [7].745

• ORsim∩seq ⊂ OR follows from the de�nition of ORsim∩seq and

or ′ = 〈{x, y},∅, {〈x, y〉}, {x 7→ a, y 7→ b}〉 ∈ OR \ ORsim∩seq .

• IRsim∩seq ⊂ IR follows from or ′ ∈ IR \ IRsim∩seq and Lemma Appendix I.1.

• ORΘsim∩seq ⊂ ORsim∩seq can be shown by taking ν ∈ Θsim∩seq, u ∈ SSEQν ,

and or = sseq2orν(u) = 〈∆,
,@, `〉. Since we know that or ∈ OR, we

only need to demonstrate that:

(∆×∆) \ id∆ ⊆
 ∪ (@ ∩ @−1) .

The above holds since, by (5), posu(α) = posu(β) ∧ α 6= β implies α @

β @ α, and posu(α) 6= posu(β) implies α 
 β. Hence or ∈ ORsim∩seq.

Moreover, we note that

or ′′ =

〈 {x, y, z},

{〈x, y〉, 〈y, x〉, 〈x, z〉, 〈z, x〉, 〈y, z〉, 〈z, y〉},

{〈x, y〉, 〈x, z〉}, {x 7→ a, y 7→ a, z 7→ b}

〉
∈ ORsim∩seq\ORΘsim∩seq .

• IRΘsim∩seq ⊂ IRsim∩seq follows from Lemma Appendix I.3, or ′′ ∈ IRsim∩seq \

IRΘsim∩seq and ORΘsim∩seq ⊆ ORsim∩seq.

Moreover, note that or ∈ ORsim∩seq \ IR and or ′ ∈ IR \ ORsim∩seq which justi�es

that IR and ORsim∩seq are not related. Similarly, or ∈ ORΘsim∩seq \ IRsim∩seq and750

or ′′ ∈ IRsim∩seq \ ORΘsim∩seq , hence there is no inclusion between IRsim∩seq and

ORΘsim∩seq . �

Proof of Proposition 7.4

(=⇒) Follows from Theorem 7.3 and (C3).
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(⇐=) Note that (I2) and (C2) as well as (I7) and (C4) are the same axioms;755

and (C1) follows from (I3). To prove (C3), assume that x @ y @ x. Then x 6= y

by (I1) and x 6
 y by separability (or directly by (I5) and (C1)). Conversely,

assume that x 6
 y and x 6= y. Then by additional property x @ y @ x, which

concludes the proof. �

Proof of Theorem 7.5760

Let or = 〈∆,
,@, `〉. Since the labelling ` is injective, we may assume that

∆ = Σ× {1}. Then, from the general results proved in [7] it follows that there

exists sr ∈ or2SR(os) which, by the de�nition of ORsim∩seq and separability of

OR satis�es (∆×∆) = id∆]
sr ](@sr ∩ @−1
sr ). Let ν = 〈Σ, sim, seq〉, where:

sim = {〈a, b〉 ∈ Σ× Σ | posu(〈a, 1〉) = posu(〈b, 1〉)}

seq = {〈a, b〉 ∈ Σ× Σ | (posu(〈a, 1〉) < posu(〈b, 1〉) ∧ 〈a, 1〉 6@ 〈b, 1〉)

∨(posu(〈b, 1〉) < posu(〈a, 1〉) ∧ 〈b, 1〉 6@ 〈a, 1〉)} .

Clearly, ν ∈ Θsim∩seq and u ∈ SSEQν . It is easy to check that or = sseq2orν(u).

�

Appendix II. Proofs for the alphabets in Θseq\sim

Lemma Appendix II.1. IRseq\sim ⊆ IR.

Proof We �rst note that (I1), (I2) and (I4) are respectively (D1), (D2) and

(D4). To show (I3) we observe that:

x
 y =⇒(D3) x @sym y ∧ y 
 x =⇒(D1) x 6= y ∧ y 
 x .

To show (I5) we observe that:

z 
 y ∧ z @ x @ z =⇒(D3) z 
 y ∧ z @ x @ z ∧ z @sym y ∧ y 
 z

=⇒ x @ z ≺ y ∨ y ≺ z @ x

=⇒(D4) x
 y ∨ y 
 x

=⇒(D3) x
 y .
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To show (I6) we observe that:

z 
 z′ ∧ x @ z @ y ∧ x @ z′ @ y

=⇒(D3) z 
 z′ ∧ x @ z @ y ∧ x @ z′ @ y ∧ z′ @sym z ∧ z′ 
 z

=⇒(D1) (x @ z ≺ z′ @ y ∨ x @ z′ ≺ z @ y) ∧ x 6= z ∧ y 6= z

=⇒(D2,D4) x @ z ≺ y ∨ x ≺ z @ y

=⇒(D4) x
 y .

We �nally note that (I7) follows from (D3) and (D5). �765

Lemma Appendix II.2. IRseq\sim ⊆ ORseq\sim.

Proof Follows from Lemma Appendix II.1, IR ⊆ OR, and (D3). �

Lemma Appendix II.3. or2irseq\sim(ORseq\sim) ⊆ IRseq\sim.

Proof

Let or = 〈∆,
,@, `〉 ∈ ORseq\sim and ir = or2irseq\sim(or) = 〈∆, 
̂, @̂, `〉.

To show (D1), we observe that:

x @̂ x =⇒ x @� x =⇒ false .

To show (D2), we observe that:

x 6= y ∧ x @̂ z @̂ y =⇒ x 6= y ∧ x @� z @� y =⇒ x @� y =⇒ x @̂ y .

To show (D3) we observe that all we need is to prove that x
̂y =⇒ x@̂
sym

y,

in the following way:

x 
̂ y =⇒ x(@∗ ◦ ≺ ◦ @∗)symy =⇒ x 6= y ∧ x(@+)symy

=⇒ x(@�)symy =⇒ x @̂
sym

y ,

where x 
̂ y =⇒ x 6= y follows from Lemma Appendix II.1 and (I3). Finally,

(D5) follows from the label-linearity of or , as shown below:

x 6= y ∧ `(x) = `(y) =⇒ x ≺̂sym
y =⇒ x 
̂y .

Hence ir ∈ IRseq\sim. �
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Proof of Proposition 8.2770

We �rst show that or2irseq\sim = or2ir|ORseq\sim . Let or = 〈∆,
,@, `〉 ∈

ORseq\sim and ir = or2ir(or) = 〈∆, 
̂, @̂, `〉. We �rst observe that

@~ ◦
 ◦ @~ = @~ ◦ ≺sym ◦ @~ and cross = @∗ ◦ ≺ ◦ @∗

which follows from x
 y =⇒ x @sym y. Hence


̂ = @~ ◦(@∗ ◦ ≺ ◦ @∗)sym◦ @~ = (@∗ ◦ ≺ ◦ @∗)sym .

We then observe that or2irseq\sim(ORseq\sim) = IRseq\sim follows directly from

Lemmas Appendix II.1, Appendix II.2, and Appendix II.3, or2irseq\sim = or2ir|ORseq\sim ,

and the fact that or2ir is the identity on IR, as then we obtain or2irseq\sim(ORseq\sim) ⊆

IRseq\sim and or2irseq\sim(ORseq\sim) ⊇ or2irseq\sim(IRseq\sim) = or2ir(IRseq\sim) =

IRseq\sim. �775

Proof of Theorem 8.3

Let us consider one by one all the inclusions:

• IR ⊂ OR was already justi�ed in the proof of Theorem 5.6. Note, however,

that we also have

or =

〈
{x, y, z}, {〈x, y〉, 〈y, x〉}, {〈x, y〉, 〈y, z〉},

{x 7→ a, y 7→ b, z 7→ c}

〉
∈ OR \ IR .

• IRseq\sim ⊂ ORseq\sim follows from or ∈ ORseq\sim\ IRseq\sim and Lemma Ap-

pendix II.2.

• IRΘseq\sim ⊂ ORΘseq\sim follows from os ∈ ORΘseq\sim \ IRΘseq\sim and the general780

results proven in [7].

• ORseq\sim ⊂ OR follows from the de�nition of ORseq\sim and

or ′ = 〈{x, y}, {〈x, y〉},∅, {x 7→ a, y 7→ b}〉 ∈ OR \ ORseq\sim .

• IRseq\sim ⊂ IR follows from or ′ ∈ IR \ IRseq\sim and Lemma Appendix II.1.
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• ORΘseq\sim ⊂ ORseq\sim can be proven by taking σ ∈ Θseq\sim, u ∈ SSEQσ

and or = sseq2orσ(u) = 〈∆,
,@, `〉. Since we know that or ∈ OR, we

only need to show that
 ⊆ @sym . This, however, follows from (6). Hence

or ∈ ORseq\sim. Moreover, we note that

or ′′ =

〈
{x, y, z}, {〈x, y〉, 〈y, x〉, 〈x, z〉, 〈z, x〉},

{〈x, y〉, 〈x, z〉}, {x 7→ a, y 7→ a, z 7→ b}

〉
∈ ORseq\sim \ORΘseq\sim .

• IRΘseq\sim ⊆ IRseq\sim follows from Lemma Appendix II.3, or ′′ ∈ IRseq\sim \

IRΘseq\sim and ORΘseq\sim ⊆ ORseq\sim.

Moreover, note that or ∈ ORseq\sim \ IR and or ′ ∈ IR \ ORseq\sim which justi�es785

that IR and ORseq\sim are not related. Similarly, or ∈ ORΘseq\sim \ IRseq\sim and

or ′′ ∈ IRseq\sim \ ORΘseq\sim , hence there is no inclusion between IRseq\sim and

ORΘseq\sim . �

Proof of Proposition 8.4

(=⇒) Follows from Theorem 8.3 and (D3).790

(⇐=) Note that (I1) and (D1) as well as (I2) and (D2), and (I4) and (D4)

are the same axioms; and (D5) follows from (I7). To prove (D3), assume that

x
 y. Then x @sym y by additional property, while y 
 x by (I3). �

Proof of Theorem 8.5

Let or = 〈∆,
,@, `〉. Since the labelling ` is injective, we may assume that

∆ = Σ× {1}. Then, from the general results proved in [7] it follows that there

exists sr ∈ or2SR(os). Let u = sseq2sr−1(sr), and σ = 〈Σ, sim, seq〉, where:

sim = {〈a, b〉 ∈ Σ× Σ | (posu(〈a, 1〉) = posu(〈b, 1〉) ∧ a 6= b)∨

(posu(〈a, 1〉) 6= posu(〈b, 1〉) ∧ 〈a, 1〉 6
 〈b, 1〉)}

seq = {〈a, b〉 ∈ Σ× Σ | (posu(〈a, 1〉) = posu(〈b, 1〉) ∧ a 6= b ∧ 〈b, 1〉 6@ 〈a, 1〉)

∨(posu(〈a, 1〉) < posu(〈b, 1〉) ∧ 〈a, 1〉 6@ 〈b, 1〉)

∨(posu(〈b, 1〉) < posu(〈a, 1〉) ∧ 〈b, 1〉 6@ 〈a, 1〉)} .
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We then observe that sim is symmetric since 
 is symmetric, and seq \ sim is795

symmetric because it is empty (it follows from seq ⊆ sim, as we show below).

Hence σ is a step alphabet. To show σ ∈ Θseq\sim we need to show that seq ⊆ sim.

Let 〈a, b〉 ∈ seq. If posu(〈a, 1〉) = posu(〈b, 1〉) then, clearly, 〈a, b〉 ∈ sim.

If posu(〈a, 1〉) < posu(〈b, 1〉) and 〈a, 1〉 6@ 〈b, 1〉 then, by or ∈ ORseq\sim, we

obtain 〈a, 1〉 6
 〈b, 1〉 or 〈a, 1〉
 〈b, 1〉 ∧ 〈b, 1〉 @ 〈a, 1〉.800

Moreover, by posu(〈a, 1〉) < posu(〈b, 1〉), we obtain 〈b, 1〉 6@ 〈a, 1〉 and so we

have 〈a, 1〉 6
 〈b, 1〉. Hence 〈a, b〉 ∈ sim, and so σ ∈ Θseq\sim.

We then observe that u ∈ SSEQσ as posu(〈a, 1〉) = posu(〈b, 1〉) and a 6= b

together imply 〈a, b〉 ∈ sim, and it is easy to check that or = sseq2orσ(u). �

Proof of Proposition 8.7805

Let ir = or2ir ◦ sseq2orκ(u) = or2ir ◦ sseq2orκ(w). From posu(α) < posu(β)

it follows that there is sru ∈ or2SR(ir) such that α ≺sru β. Similarly, from

posw(α) > posw(β) it follows that there is srw ∈ or2SR(ir) such that β ≺srw α.

Hence, α 6@ir β 6@ir α. Moreover, by ir ∈ ORseq\sim, α 6
ir β. This, by the

general results proved in [7], there is srv ∈ or2SR(ir) such that α @srv β @srv α.810

Then the conclusion holds by taking v = sseq2or−1
σ (srv). �

Appendix III. Proofs for the alphabets in Θsim4seq

Lemma Appendix III.1. IRsim4seq ⊆ IR.

Proof We �rst note that (I1) is simply (E1). To show (I2) we observe that

x 6= y ∧ x @ z @ y =⇒(E2) x @ y .

To show (I3) we observe that

x
 y =⇒(E3) x @sym y =⇒(E3) y 
 x .

and we observe that if x
 x then we obtain a contradiction as follows:

x
 x =⇒(E3) x @sym x =⇒ x @ x =⇒(E1) x 6= x .
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To show (I4) we observe that:

x ≺ z @ y ∨ x @ z ≺ y =⇒(E2) x @ y =⇒(E3) x
 y .

To show (I5) we observe that:

z 
 y ∧ z @ x @ z =⇒(E2) z @ z =⇒(E1) false .

To show (I6) we observe that:

z 
 z′ ∧ x @ z @ y ∧ x @ z′ @ y =⇒(E2) x @ y =⇒(E3) x
 y .

We �nally note that (I7) follows from (E3) and (E4). �

Lemma Appendix III.2. IRsim4seq ⊆ ORsim4seq.815

Proof Follows from Lemma Appendix III.1, IR ⊆ OR, and (E3). �

Lemma Appendix III.3. or2irsim4seq(ORsim4seq) ⊆ IRsim4seq.

Proof

Let or = 〈∆,
,@, `〉 ∈ ORsim4seq and ir = or2irsim4seq(or) = 〈∆, 
̂, @̂, `〉.

To show (E1) we observe that x @̂ x together with x 6@ x imply that there are

y, z such that x @∗ y @ z @∗ x. Hence, by the de�nition of ORsim4seq, y 
 z,

contradicting the separability of or .

To show (E2) we observe that:

x @̂ z @̂ y =⇒ x @+ z @+ y =⇒ x @+ y =⇒ x @̂ y .

To show (E3) we observe that:

x @̂
sym

y ⇐⇒ x(@+)symy ⇐⇒ x 
̂ y .

Finally, (E4) follows from the label-linearity of or , as shown below:

x 6= y ∧ `(x) = `(y) =⇒ x ≺̂sym
y =⇒ x @̂

sym
y .

Hence ir ∈ IRsim4seq. �
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Proof of Proposition 9.2

We show that or2irsim4seq = or2ir|ORsim4seq
. Let or = 〈∆,
,@, `〉 ∈ ORsim4seq

and ir = or2ir(or) = 〈∆, 
̂, @̂, `〉. We �rst observe that in such a case we have

@~= id∆ which follows from x @sym y ⇐⇒ x 
 y and the separability of or .

As a result, we also have @�=@+. Hence

or2ir(or) = 〈∆,
 ∪ crosssym ,@+, `〉 ,

where cross = {〈x, y〉 | ∃z, w : z 
 w ∧ x @∗ z @∗ y ∧ x @∗ w @∗ y}. We will

now show that (
 ∪ crosssym) = (@+)sym .

Suppose �rst that 〈x, y〉 ∈ cross which means that x 6= y (which follows from

the general theory), and there is z such that x @∗ z @∗ y. Hence x @+ y

showing that the (⊆) inclusion holds. To show the reverse inclusion, suppose

that x @+ y. If x @ y then, by the de�nition of ORsim4seq, we have x 
 y.

Otherwise, there is z such that x @ z @∗ y. Then, again by the de�nition of

ORsim4seq, z 
 x. We therefore obtain that 〈x, y〉 ∈ cross, after taking w = x.

Hence

or2ir(or) = 〈∆, (@+)sym ,@+, `〉 .

We observe that or2irsim4seq(ORsim4seq) = IRsim4seq follows from Lemmas Ap-820

pendix III.1, Appendix III.2, and Appendix III.3, or2irsim4seq = or2ir|ORsim4seq
,

and the fact that or2ir is the identity on IR, as then we obtain or2irsim4seq(ORsim4seq) ⊆

IRsim4seq and or2irsim4seq(ORsim4seq) ⊇ or2irsim4seq(IRsim4seq) = or2ir(IRsim4seq) =

IRsim4seq. �

Proof of Theorem 9.3825

Let us consider one by one all the inclusions:

• IR ⊂ OR was already justi�ed in the proof of Theorem 5.6. Note, however,

that we also have

or =

〈
{x, y, z}, {〈x, y〉, 〈y, x〉, 〈y, z〉, 〈z, y〉},

{〈x, y〉, 〈y, z〉}, {x 7→ a, y 7→ b, z 7→ c}

〉
∈ OR \ IR .
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• IRsim4seq ⊂ ORsim4seq follows from or ∈ ORsim4seq\IRsim4seq and Lemma Ap-

pendix III.2.

• IRΘsim4seq
⊂ ORΘsim4seq

follows from os ∈ ORΘsim4seq
\ IRΘsim4seq

and the

general results proved in [7].830

• ORsim4seq ⊂ OR follows from the de�nition of ORsim4seq and

or ′ = 〈{x, y},∅, {〈x, y〉}, {x 7→ a, y 7→ b}〉 ∈ OR \ ORsim\seq .

• IRsim4seq ⊂ IR follows from or ′ ∈ IR\ IRsim4seq and Lemma Appendix III.1.

• ORΘsim4seq
⊂ ORsim4seq can be proven by taking ω ∈ Θsim4seq, u ∈ SSEQω,

and or = sseq2orω(u). Since or ∈ OR, we only need to show that @sym
or =


or . This, however, follows from (7). Moreover, we note that

or ′′ =

〈
{x, y, z}, {〈x, y〉, 〈y, x〉, 〈x, z〉, 〈z, x〉},

{〈x, y〉, 〈x, z〉}, {x 7→ a, y 7→ a, z 7→ b}

〉
∈ ORsim4seq\ORΘsim4seq

.

• IRΘsim4seq
⊆ IRsim4seq follows from Lemma Appendix III.3, or ′′ ∈ IRsim4seq\

IRΘsim4seq
and ORΘsim4seq

⊆ ORsim4seq.

Moreover, note that or ∈ ORsim4seq \ IR and or ′ ∈ IR \ORsim4seq which justi�es

that IR and ORsim4seq are not related. Similarly, or ∈ ORΘsim4seq
\ IRsim4seq and835

or ′′ ∈ IRsim4seq \ ORΘsim4seq
, hence there is no inclusion between IRsim4seq and

ORΘsim4seq
. �

Proof of Proposition 9.4

(=⇒) Follows from Theorem 9.3 and (E3).

(⇐=) Note that (E3) is the additional property; (I1) and (E1) are the same840

axioms; and (E4) follows from (I7). To prove (E2) assume x @ z @ y. Then,

by additional property x 
 z. Then x 
 y by (I5) and thus, x 6= y by (I3).

Hence x @ y by (I2), and (E2) follows. �

55



Proof of Theorem 9.5

Let or = 〈∆,
,@, `〉. Since the labelling ` is injective, we may assume that

∆ = Σ× {1}. Then, from the general results proved in [7] it follows that there

exists sr ∈ or2SR(os). Let u = sseq2sr−1(sr), and ω = 〈Σ, sim, seq〉, where:

seq = sim = {〈a, b〉 ∈ Σ× Σ | (posu(〈a, 1〉) 6= posu(〈b, 1〉) ∧ 〈a, 1〉 6
 〈b, 1〉)} .

We then observe that sim is symmetric since 
 is symmetric. Hence ω is a845

step alphabet. Clearly, ω ∈ Θsim4seq and u ∈ SSEQω. It is easy to check that

or = sseq2orκ(u). �

Proof of Proposition 9.7

Let ir = or2ir ◦ sseq2orω(v). By posv(α) = posv(β), we obtain 〈`(α), `(β)〉 ∈

sim and there is sr ∈ or2SR(ir) such that α @sr β @sr α. Hence, α 6
ir β.850

Moreover, by the order structure closure, α 6@ir β and β 6@ir α. This, by

the general results proved in [7], means that there are sr ′, sr ′′ ∈ or2SR(ir)

such that α ≺sr ′ β and β ≺sr ′′ α. Then the �rst implication holds by taking

u = sseq2or−1
ω (sr ′) and w = sseq2or−1

ω (sr ′′).

On the other hand, let ir = or2ir ◦ sseq2orω(u) = or2ir ◦ sseq2orω(w). Then855

there exist sru, srw ∈ or2SR(ir) such that α ≺sru β and β ≺srw α, and so, by

the order structure closure, α 6
ir β. This, by the general results proved in [7],

means that there exists sr ∈ or2SR(ir) such that α @sr β @sr α. Hence the

second implication holds by taking v = sseq2or−1
ω (sr), which ends the proof. �
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