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Abstract This paper is about behaviour under ambiguity—that is, a situation in which
probabilities either do not exist or are not known. Our objective is to find the most
empirically valid of the increasingly large number of theories attempting to explain
such behaviour. We use experimentally-generated data to compare and contrast the
theories. The incentivised experimental task we employed was that of allocation: in a
series of problems we gave the subjects an amount of money and asked them to allocate
the money over three accounts, the payoffs to them being contingent on a ‘state of the
world’ with the occurrence of the states being ambiguous. We reproduced ambiguity in
the laboratory using a Bingo Blower. We fitted the most popular and apparently
empirically valid preference functionals [Subjective Expected Utility (SEU), MaxMin
Expected Utility (MEU) and α-MEU], as well as Mean-Variance (MV) and a heuristic
rule, Safety First (SF). We found that SEU fits better than MVand SF and only slightly
worse than MEU and α-MEU.
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1 Introduction

The context of this paper is that of decision-making under ambiguity. Ambiguity is
normally considered by decision theorists to be a situation in which probabilities either
do not exist or are not known. There are now an increasingly large number of theories
of behaviour in such situations, and our objective is to look at a subset of these and
determine which appears to be most empirically valid. To test between the theories in
this subset we use experimentally generated data, asking subjects to allocate money
between several accounts, the payoffs to which are ambiguous. This data allows us to
fit the various theories and determine which appears to be the ‘best.’

The paper is organised as follows. In Section 2 we summarise the main theories of
decision-making under ambiguity, concentrating on those that we think most empiri-
cally valid and on which we shall focus. As this paper is about the elicitation of
preferences, and because we use a particular elicitation method, we discuss the various
alternative elicitation methods in Section 3, and compare their possible properties. In
Section 4 we state the problem presented to our subjects and possible solutions to it. In
Section 5 we describe our experimental implementation. We feel that this implemen-
tation is a complement to, and an extension and a refinement of, two apparently
closely-related experiments; these we discuss in Section 6, looking at the differences
between the various designs. Our results are reported in Section 7 and Section 8
concludes.

2 Theories of behaviour under ambiguity

There are many theories of behaviour under ambiguity. A useful survey is that of Etner
et al. (2012). We shall omit a discussion of dynamic models (such as that of Siniscalchi
2009) and hence updating models. We shall also forgo the Incomplete Preferences story
of Bewley (1986), the Contractionmodel of Gajdos et al. (2008), the Variationalmodel
of Maccheroni et al. (2005), and the Confidence Function of Chateauneuf and Faro
(2009), partly because of the lack of empirical support and partly because of the
difficulty of parameterising these models (these two reasons may well be related).

Historically modelling started simple. If probabilities are not known with certainty,
the obvious thing to assume is that there is a range of possible probabilities, with a
lower and an upper bound. A pessimist would assume that the worst could happen, and
would therefore rank decisions on the basis of their worst-case outcomes—the optimal
decision being the one with the least-worst outcome. This is the basis of Wald Maxmin
(Bewley 1986). Later it was considered an excessively pessimistic rule and generalised
by Gilboa and Schmeidler (1989) to α-Maxmin, in which decisions are based on a
weighted average of the worst and best outcomes. These models worked with raw
monetary payoffs.

Then came the revolution of Expected Utility theory in which outcomes are not
evaluated on the basis of their monetary value, but on the utility of their monetary
value. Two models which made the obvious generalisation of Maxmin and α-Maxmin
are Maxmin Expected Utility (Gilboa and Schmeidler 1989) and α-MEU (Ghirardato
et al. 2004). In both these theories the decision-maker—the DM—uses the utility of the
outcomes.
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In all the above models ‘worst’ and ‘best’ relate to possible outcomes, and cover a
world in which the possible outcomes do not have probabilities attached to them, but
can be ranked. But taking away probabilities is too much for most theorists. Indeed,
economists who ‘believe’ in Subjective Expected Utility (SEU) can of course continue
to assume that it holds.

At the same time, assuming that the DM believes that additive probabilities exist
(and uses them) is a strong assumption, particularly in an ambiguous world. A partial
softening of that strong assumption (but not interpretable as a total abandon-
ment) is that used in Choquet Expected Utility theory (Schmeidler 1989). In
this the DM is thought of as attaching capacities to the various outcomes,
where crucially these capacities are non-additive—so that the capacity attached
to the union of two disjoint events, C(S1∪S2), is not necessarily equal to
C(S1) + C(S2). To avoid violations of dominance these capacities are associated
with ranked payoffs. This is very similar to the procedure used in Rank
Dependent Expected Utility theory (Kahneman and Tversky 1992) though here,
weighted probabilities rather than capacities are used.

Some theorists do not like the idea of encoding the ambiguity of an event
with a single number (probability or capacity or weighted probability). One
route is to say that the probability of some event is not a single number but
may be one number from a set of possible probabilities. Clearly this is what the
α-model (and its various antecedents) is assuming, but these just work with the
worst and the best from this set. A model which goes further is the Smooth
Model of Klibanoff et al. (2005), which says that, if the DM cannot attach a
single number to a probability, at least he or she can state the set of possible
probabilities, and moreover attach probabilities to each member of the set. This
is a sort of two-level probability structure, and, if the DM’s preference function
is linear in the probabilities, it reduces to (subjective) Expected Utility theory. For
this reason Klibanoff et al. do not assume that the preference function is linear in the
probabilities. We note that while this may be theoretically interesting, it is almost
impossible to fit empirically—as one needs to estimate all the possible probabilities
and the probabilities attached to them.

The Mean-Variance model (MV), beloved by finance theorists, does not fit
neatly into the above categorisation. However, if SEU is used, for example
combined with a CARA (Constant Absolute Risk Aversion) utility function, and
with normally distributed outcomes, we get a decision rule consistent with MV.
Unfortunately, in general, MV violates first-order stochastic dominance
(Blavatskyy 2010), and as a consequence is not often used by decision theo-
rists. Nevertheless it is a widely used decision rule in finance, and is essentially
simple—relying only on a calculation of a mean and a variance of some
prospect. Of course to calculate these, the DM needs to know the probabilities,
or at least act as if he or she knows the probabilities.

For the various reasons discussed above, we decided to estimate SEU because of its
simplicity, elegance and popularity, MaxMin Expected Utility (MEU) and its general-
isation α-MEU because of their relative simplicity, and Mean-Variance (MV) because
of its popularity in finance. In addition, believing that many of these theories compli-
cate an already complex decision problem, we estimated a simple heuristic rule, Safety
First (SF); we describe this later.
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3 Elicitation methods

There are several methods used by economists to elicit the preference functionals of subjects
in situations of uncertainty. These include Holt-Laury Price Lists (Holt and Laury 2002),
Pairwise Choice questions (Hey and Orme 1994), the Becker-DeGroot-Marschak (BDM)
Mechanism (Becker et al. 1964), the Bomb Risk Elicitation Task (Crosetto and Filippin
2013), and the Allocation Method, pioneered originally by Loomes (1991), revived by
Andreoni and Miller (2002) in a social choice context, and later by Choi et al. (2007) in a
risky choice context. Some of these are contrasted and compared in Loomes and Pogrebna
(2014) and in Zhou and Hey (unpublished). We describe them briefly here.

In the Holt-Laury Price List method, while the detail may vary from application to
application, the basic idea is simple: subjects are presented with an ordered list of
pairwise choices and have to choose one of each pair. The list is ordered in that one of
the two choices is steadily getting better or steadily getting worse as one goes through
the list. Because of the ordered nature of the list, subjects should choose the option on
one side up to a certain point, thereafter choosing the option on the other side. Some
experimenters force subjects to have a unique switch point; others leave it up to
subjects. The point at which the subject switches reveals their attitude to risk. Some
commentators suggest that the switch point is dependent on the construction of the list.

A second method is to give a set of Pairwise Choices, but separately (not in a list)
and not ordered. Indeed, typically the pairwise choices are presented in a random order.
Some argue that this method, whilst being similar to that of Price Lists, avoids some
potential biases associated with ordered lists.

A method which is elegant from a theoretical point of view is the Becker-DeGroot-
Marschak Mechanism. The method centres on eliciting the value to a subject of a
lottery—if we know the value that a subject places on a lottery with monetary
outcomes, we can deduce the individual’s attitude to risk over money. Let us discuss
one of the two variants of this mechanism that are used in the literature—where the
subject is told that they do not own the lottery, but have the right to buy it. The subject’s
valuation of the lottery as a potential buyer is the maximum price for which they would
be willing to buy it. The method works as follows: the subject is asked to state a
number; then a random device is activated, which produces a random number between
the lowest amount in the lottery and the highest amount. If the random number is less
than the stated number, then the subject buys the lottery at a price equal to the random
number (and then plays out the lottery); if the random number is greater, then nothing
happens and the subject stays as he or she was. If the subject’s preference functional is
the expected utility functional, then it can be shown that this mechanism is incentive
compatible and reveals the subject’s true evaluation of the lottery. The problem is that
subjects do seem to have difficulty in understanding this mechanism, and a frequent
criticism is that subjects understate their evaluation when acting as potential buyers and
overstate it when acting as potential sellers.

In the Bomb Risk Elicitation Task (BRET) subjects decide how many boxes to
collect out of 100, one of which contains a bomb. Earnings increase linearly with the
number of boxes accumulated but are zero if the bomb is also collected. The authors
claim that BThe BRET requires minimal numeracy skills, avoids truncation of the data,
allows the precise estimation of both risk aversion and risk seeking, and is not affected
by the degree of loss aversion or by violations of the Reduction Axiom.^
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The Allocation method involves giving the subject some experimental money to
allocate between various states of the world, with specified probabilities for the various
states and, in some implementations, with given exchange rates between experimental
money and real money for each of the states.

As we have noted above, the different methods have their advantages and disad-
vantages. In evaluating and comparing them there is a fundamental problem: the
experimenter does not know the ‘true’ attitude to risk of the subjects, nor their ‘true’
preference functional. All we can conclude from Loomes and Pogrebna (2014) and
Zhou and Hey (unpublished) is that context matters. Further work needs to be done to
discover how and why. In the meantime, this paper will use the Allocation method,
which is relatively under-used, and, in our opinion, relatively easy for subjects to
understand. We describe below the particular allocation problem presented to our
subjects.

4 The allocation problem and possible solutions

The problems presented to our subjects took the following form: the subject is given an
endowment (which we normalise here to 100, as was the case in our experiment) in
cash to allocate to three accounts: one with a certain return (which we normalise to 1);
and the other two with uncertain returns, which depend upon which state of nature
occurs. The number of such states is set at 3, which makes the problem a meaningful1

one while reducing its complexity. Denote by c1 and c2 the allocations to the two
uncertain accounts 1 and 2 respectively. This implies that the allocation to the certain
account c0 is given by c0 = 100 – c1 – c2. Crucial to the allocation problem are the
returns in the uncertain states. Denoting by rij the absolute return on account i if state j
occurs, we have the following returns table:

State 1 State 2 State 3

Account 1 r11 r12 r13
Account 2 r21 r22 r23

It follows that the payoff to the subject in state j, denoted by dj, is given by dj = c0 +
r1jc1 + r2jc2 (j = 1,2,3).

The DM’s optimal allocations depend upon his or her preferences. If we start with
Expected Utility (EU) theory under risk, or Subjective Expected Utility (SEU) under
ambiguity, where pj (j = 1,2,3) is the (subjective) probability of state j occurring, then
the DM’s objective function is the maximisation of p1u(d1) + p2u(d2) + p3u(d3) where
u(.) is the individual’s utility function. If instead the DM follows Mean-Variance
(MV) theory using probabilities pj (j = 1,2,3), then the objective is the
maximisation of μ – rσ2, where r indicates the attitude to risk and the mean,
μ, and variance, σ2, of the portfolio are given by μ = p1d1 + p2d2 + p3d3 and
σ2 = p1(d1-μ)

2 + p2(d2-μ)
2 + p3(d3-μ)

2 .

1 If there were just 2 states there would not be enough information in the data to allow us to infer preferences.
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The above assumes that the subject works with either objective or subjective
probabilities. If, however, the DM feels they are in a situation of ambiguity and hence
unable to attach unique probabilities to the various states of the world, then to model his
or her behaviour we need to turn to one of the new theories of behaviour under
ambiguity. In this paper we work with the simplest—MaxMin Expected Utility
(MEU) and the α-MEU model. Both of these theories start by assuming that, while
the DM cannot attach unique probabilities to the various states, he or she works with a
set of possible probabilities. The theories do not say how this set is specified. We
assume what appears to be the simplest: this set is all possible probabilities defined by
(non-negative) lower bounds p1, p2 and p3 (where p1 + p2 + p3 ≤ 1) on the probabilities.
If you like, it is a little triangle properly within the Marschak-Machina triangle.

MEU postulates that the objective function of the DM is to choose the allocation
which maximises the minimum expected utility over this set of possible probabilities.
The α-MEU model generalises this to maximising the weighted average of the
minimum and maximum expected utility over this set. More precisely, the α-MEU

model’s objective function is the maximisation of αmin p1 ≤p1; p2 ≤ p2; p3≤ p3
� �

p1u d1ð Þþp2u d2ð Þþp3u d3ð Þ½ � þ 1‐αð Þ max p
1
≤p1; p2≤p2; p3≤p3

� �
½p1u d1ð Þþp2u d2ð Þþp3u d3ð Þ�-

MEU is the special case when α = 1.
Finally, we investigate a simple rule motivated in part by informally enquiring of the

subjects how they had reached their decisions and in part by the data. We call this the
Safety First (SF) rule: allocations were made first such that their payoff in all states
would be above some threshold w and then maximising the payoff in the most likely
state.2 When fitting this model, we estimate the parameter w.

5 Our experimental implementation

Subjects were presented with a total of 653 allocation problems, in each of which they
were asked to allocate 100 in experimental cash to two accounts or to keep some of the
100 as cash. In each of these they were shown a returns table. An example is the
following:

Pink Green Blue

Account 1 1.7 0.9 0.6

Account 2 0 0.1 3.1

The colours represent the possible states of the world and relate to the way that
ambiguity was implemented in the experiment. In the laboratory there was a Bingo
Blower with pink, green and blue balls blowing around in continuous motion. Subjects
could see the balls, and get a rough idea of the numbers and relative proportions of each
colour, but when at the end of the experiment they were asked to eject one ball, they

2 It was clear from the Bingo Blower that there were more balls of one colour than either of the other two,
though the precise numbers could not be known.
3 These problems (and the number of them) were chosen after intensive pre-experimental simulations based on
results from a pilot experiment, and were chosen to maximise the power of our estimates.
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could not be sure of the probability of getting a ball of a particular colour. (There were
actually 10 pink, 20 green and 10 blue balls in the Blower, so the objective probabilities
were 0.25, 0.5 and 0.25.) Subjects were paid on a randomly chosen problem, with their
payment being determined by the payoff (given their chosen allocations) for the state
implied by the colour of a ball randomly ejected from the Blower.

A screen shot from the experiment can be seen in Fig. 14; the ‘returns table’ was
called the ‘Payoff Table.’ The triangle shows the set of all allowable allocations; as the
subject moved his or her cursor around the triangle the ‘Portfolio’ entries on the screen
dynamically changed, and the implied payoffs for each colour were shown in the
entries under ‘Portfolio Payoff.’ Subjects were forced to spend a minimum time of
30 seconds before registering their choice on any problem; there was a maximum time
of 180 seconds per problem, and if they had not registered their choice by that time, it was
taken to be an allocation of zero to the two uncertain accounts. The instructions given to
the subjects, and other material related to this experiment, can be found at https://www.
york.ac.uk/economics/research/centres/experimental-economics/research/unpublished/.

In the experiment we did not allow the subjects to make negative allocations (which
they might have wanted to do to maximise their objective function). We enforced this
rule to avoid the possibility of subjects incurring losses in the experiment. This meant
that what we observe in the data are not optimal allocations, but optimal constrained
allocations. In order to fit the various models to the data we need to compute (for any
given set of parameters) the optimal constrained allocations. While explicit analytical
solutions are obtainable for the optimal unconstrained allocations for some of the
preference functionals, they are not easily obtained for the optimal constrained ones.
As a consequence we calculate them numerically.

There was also an additional ‘constraint’ on the allocations that subjects could make.
In the experiment, the endowment in each problem was 100, and subjects were forced
to implement allocations to the nearest integer. Given the non-negativity constraint this
implied a set of 5151 possible allocations. Searching over these 5151 possible alloca-
tions proved to be a more efficient method of finding the optimal constrained alloca-
tions than using some built-in function, because of the complexity of the problem.

6 Similar experiments

Before we proceed to our data analysis, we must comment on the similarities and
differences between this paper and two other closely related papers, Ahn et al. (2014)
and Hey and Pace (2014). Table 3 summarises the main differences and we amplify
here.

We first address the comparison of our work with Ahn et al.’s. The nature of the
accounts is different. Their accounts are Arrow Securities—each security only pays off
in one particular state while the other two do not. That is to say for each state, there is
only one security payoff. Our accounts are general, each paying off in each state of the
world. Besides, one of their states of world is risky; all three of our states are

4 We should note that we worded the instructions so that the decision problem represented an investment
problem rather than an allocation problem, as we thought that our subjects would be more familiar with the
former. This is also reflected in Figure 1.
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ambiguous. We think our setup is closer to reality. The econometric techniques differ:
Ahn et al. use non-linear least squares (with an implicit normality assumption); we use
maximum likelihood with what appears to be an appropriate stochastic specification.
Allocation problems are the outcomes of optimisation, which is subject to high
cognitive capacity and could potentially be highly noisy. We think our error specifica-
tion eliminates this possible drawback associated with the allocation method; moreover
we are able to estimate and interpret the magnitude of the noise. Ahn et al. implement
ambiguity in the laboratory using traditional Ellsberg urns, whereas we use a Bingo
Blower. The experimental interface differs: they use a three dimensional representation;
we use a simpler two dimensional representation. They investigate different model
specifications (kinked and smooth); we estimate particular preference functionals. The
preference functionals also include a specific utility function: Ahn et al. use CARA
only—we fit both CARA and Constant Relative Risk Aversion (CRRA).

As a consequence of these differences, what we can conclude naturally differs—
though there is one important point of intersection. Ahn et al. write Bwe cannot reject
SEU preferences for over 60% of subjects.^ As we will see, our Tables 1 and 2 point to
a similar conclusion: the more general models are significantly better than SEU for a
rather small proportion of subjects.

Fig. 1 A screen shot from the experiment

Table 1 Percentage of subjects
significant using the likelihood
ratio test

Significant at 5% Significant at 1%

(A) CARA-better group

MEU v SEU 18% 14%

α-MEU v MEU 13% 9%

α-MEU v SEU 25% 13%

(B) CRRA-better group

MEU v SEU 11% 11%

α-MEU v MEU 21% 11%

α-MEU v SEU 27% 11%
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We now proceed to a discussion with respect to Hey and Pace (2014). First of all, the
subjects are facing different decisions in the experiments. In Hey and Pace’s experiment,
subjects have two types of problems. In type 1 problems, subjects can only invest in two
of the three accounts. In type 2 problems subjects could invest between one account and
the other two accounts. In our experiment, subjects are free to invest in all three
accounts. Hey and Pace chose to implement their experiment in that particular way
because it makes the analytic solution for the optima much easier. The optimisation for
us is more demanding and there is no analytic solution. That is why we solve our optima
numerically by grid search over the whole integer space. The experimental interface
differs: their subjects use one sidebar to indicate one particular allocation while our
subjects move mouse cursors—the locations of which indicate the allocations for all
three accounts. The preference functionals that have been estimated are also different;
besides the common ones, we particularly estimated Mean Variance preference and the
Safety First heuristic rule. The preference functionals also include a specific utility
function: Hey and Pace only use CRRA—we fit both CARA and CRRA.

We feel that this paper represents a complement to, and an extension and a
refinement of, these closely-related papers: we focus in on the apparently
empirically-relevant preference functionals, and broaden the set of utility functionals
used in them; we use a potentially informatively-richer experiment, and we use
appropriate econometric techniques. It can be seen as a fusion of the best parts of
these two papers with significant added elements. Table 3 should make this clear.

7 Stochastic specification

(This section can be safely skipped by those mainly interested in the results.)
The object of the paper is to fit preference functionals to the experimental data and

see which best explains the behaviour of the subjects. We do this subject by subject, as
we believe that subjects are different. Our data are the actual allocations in each
problem, denoted by x1, x2 and x3 (where x1 + x2 + x3 = 100). Each preference
functional specifies, given the underlying behavioural parameters, an optimal
constrained allocation on any problem. Let us denote these by x1*, x2* and x3*; again
these add to 100. These depend upon the underlying behavioural parameters. It would
be pleasing if xi = xi* for all i, for a particular preference functional and particular
parameters, as this would enable us to identify the best preference functional. But this is
unlikely to happen—the reason being, as is well-known, that subjects make errors when
implementing their decisions. (An alternative explanation is that none of the preference
functionals explain behaviour.)

So we need to admit the possibility of errors. We need also to model how these are
generated. As both x and x* are bounded (between 0 and 100) we proceed as follows.
First we introduce new variables y and y* which are the corresponding x’s divided by
100. So yi = xi/100 and yi* = xi*/100 for i = 1,2,3. These are bounded between 0 and 1.
The obvious candidate distribution is the beta distribution which takes values over 0
and 1. Furthermore, it seems natural to first assume that the actual allocations, whilst
noisy, are not biased, so that each yi has a mean of yi* (and hence that each xi has mean
xi*). Now a variable with a beta distribution has two parameters α and β, and the mean
and variance of the variable are respectively α/(α + β) and αβ/[(α + β)2(α + β + 1)].
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Taking y1 first, if we assume that its distribution is beta with parameters α1 = y1*(s-1)
and β = (1-y1*)(s-1), this guarantees that the mean of y1 is y1* and that its variance is
y1*(1-y1*)/s. The parameter s here is an indicator of the precision of the distribution: the
higher is s the more precise is the DM and the less noisy are the allocations.

Table 3 Differences between this paper and those of Ahn et al. (2014) and Hey and Pace (2014)

Topic This paper Ahn et al. (2014) Hey and Pace (2014)

Econometrics Maximum Likelihood
assuming Beta with
bias for two random
variables

Non-linear least squares
(NLLS) – normality
implicit

Maximum Likelihood
assuming Beta with bias
for one random variable

Models SEU, Mean-variance,
MaxMin, α-MEU,
Safety First

Kinked and Smooth – others
mentioned in an
Appendix

SEU, CEU, AEU*, VEU,
COM**

(* same as α-MEU
**Contraction Model)

Utility functions CARA and CRRA CARA CRRA

Setting 3 states of the world
(colours) – all 3
ambiguous

3 states of the world – 1
risky, 2 ambiguous

3 states of the world (colours)
– all 3 ambiguous

Subjects’
decisions

Allocate between three
accounts

Allocate between three
accounts

Allocate either (1) between
one account
and another account or (2)
between one
account and the other two
accounts

Accounts and
returns

1 certain account – with a
return of 1.00 in all
3 states of the world, and
2 ambiguous
accounts – both pay off
something in each
state of the world. Asset
prices are 1

The accounts are 3 Arrow
securities – each
pays 1.00 in just 1 state of
the world. Asset
prices are not 1.

1 certain account – with a
return of 1.00 in all 3
states of the world, and 2
ambiguous accounts
– both pay off something in
each state of the
world. Asset prices are 1

Ambiguity
implementa-
tion

Bingo Blower Subjects told that the
ambiguous states ‘were
selected with unknown
probabilities that
sum to 2

�
3’

Bingo Blower

Finding optimal
allocations

Numerical search over
(integer) grid.

Calculated analytically
(possible because of the
assumptions)

Calculated analytically
(possible because of the
assumptions)

Experimental
interface

Visual Studio program in
which allocations for
given cursor position in a
triangle are shown
and the implications
shown alongside

3-dimensional representation
with planes
inserted for prices

Visual Studio program in
which subjects indicate
preferred allocations with a
slider

Number of
problems

65 50 76

Italics indicate where our paper differs from one of the other two.

Bold italics indicate where our paper differs from both of them.
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Notice, however, that the variance of the distribution depends upon y1*—the closer
it is to the bounds, the smaller it is, and at the bounds it becomes zero. This implies that
this distribution cannot rationalise any non-zero allocation if the optimal is zero, nor
can it rationalise any observation not equal to 1 if the optimal is 1. To get round
this problem, we modify our definitions of the parameters α1 and β1. Instead of
α1 = y1*(s-1) and β = (1-y1*)(s-1) we postulate thatα1 = y1′(s-1) and β= (1-y1′)(s-1)
where y1′ = b/2 + (1-b)y1*. There is a new parameter, b, which indicates the bias of the
actual allocation, so that now the mean of y1 is not y1* but instead b/2 + (1-b)y1*. If b is
zero then it is not biased, and as b increases the bias increases.

Now we turn to y2. We must take into account that this must be between 0 and
1-y1. Hence y2/(1-y1) is between 0 and 1. Here again a beta distribution is the
natural candidate and we assume that the distribution of y2/(1-y1) is beta with
parameters α2 and β2 given by α2 = y2′(s-1)/(1-y1) and β2 = (1-y2′)(s-1)/(1-y1)
where y2′ = b/2 + (1-b)y2*. Clearly if y1 = 1, this method is not applicable,
and so in this case we assume that the error is made solely on y1. In all cases
the third allocation, y3, is the residual.

Finally, in order to proceed to the likelihood function we should remember that
allocations could only be made in integers. We assume that subjects rounded their
intended allocations. So, for example, the likelihood of an observation of x1 is equal to
the cumulative probability from x1–0.5 to x1 + 0.5. The general form of the sum of log-
likelihood function for all 65 problems can therefore be written as

ℒ ¼ ∑
65

j
log L1L2ð Þ

Here

L1 ¼ F
x1 þ 0:5

100
;α1;β1

� �
−F

x1−0:5
100

;α1;β1

� �

L2 ¼ F
x2 þ 0:5

100−x1
;α2;β2

� �
−F

x2−0:5
100−x1

;α2;β2

� �
when x1≠100

1 when x1 ¼ 100:

8>>>>>><
>>>>>>:

where F(x,α,β) is the cdf of a beta distribution with parameters α and β. These
parameters are specified above.

We use Matlab to find the estimates of our parameters (which are r, s, b the
underlying probabilities or the lower bounds on them), and the goodness-of-fit of the
various preference functionals.

8 Results

We have explored a number of different specifications and we report here just the best.
Our primary concern is about the best fitting preference functional; we start with that.
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We measure the goodness-of-fit by the Maximised Log-Likelihood (MLL), but we
need to correct for the number of parameters in the preference functional—the number
of degrees of freedom in the estimation.

We have already mentioned the preference functionals we have fitted. Each of these
involves a utility function; we have taken two utility functionals. The first is the Constant
Absolute Risk Aversion (CARA) form so that utility u(x) is proportional to -e-rx. The
second is the Constant Relative Risk Aversion (CRRA) form so that utility u(x) is
proportional to x1-r. In order to compare the goodness-of-fit of the different specifica-
tions, we need to distinguish between pairs of preference functionals one of which is
nested within the other, and pairs of preference functionals where neither is nested
within the other. We use the Likelihood Ratio Test for the former and the Clarke test for
the latter. We note that SEU is nested within both MEU and α-MEU and that MEU is
nested within α-MEU, but that none of the other functionals are nested within any other.

We had a total of 77 subjects. We omit 2 from the analysis that follows as they were
extremely risk-averse, investing nothing in either risky account.5 We then divide the
remaining 75 subjects into two groups, which we call the CARA-better group and the
CRRA-better group, membership of which was determined by the value of the
maximised log-likelihood. For 71 of these 75 subjects, one of CARA or CRRA had
a higher log-likelihood.6 There are 56 in the CARA-better group and 19 in the CRRA-
better. We then report the results of the Likelihood Ratio and the Clarke tests for each of
these groups separately.

When one model is nested within another, the test statistic is

T ¼ 2 ℒ 1−ℒ 0ð Þ

where ℒ0 is the maximised log-likelihood of the nested model and ℒ1 is the
maximised log-likelihood of the nesting model. The test statistic has a Chi-square
distribution with degrees of freedom equal to the difference in the number of param-
eters in the two competing models. As α-MEU has one more parameter than MEU and
as MEU has one more parameter than SEU, the corresponding degrees of freedom for
SEU v MEU, SEU v α-MEU and MEU v α-MEU are 1, 2 and 1 respectively. The
results are summarised in Table 1, which reports the percentage of the subjects for
which the test was significant. Table 1 Panel A gives the results for the CARA-better
group and Table 1 Panel B gives the results for the CRRA-better group.

As the results are similar for the two groups, we put them together and note that both
MEU and α-MEU do moderately better than SEU for a small number of subjects,
which may not be surprising as the decision problem was one under ambiguity rather
than under risk. Nevertheless SEU performs well.

When models are not nested one within the other we use the Clarke Test
(Clarke 2007). The null hypothesis is that the models are equally good, and
hence on a particular problem the probability of the log-likelihood for one
model being larger than the probability of the other model is ½. That is:

H0 : P L1−L2 > 0ð Þ ¼ 0:5

5 All the models, with appropriate parameters, can equally well describe the behaviour of these 2 subjects.
6 The allocation of the final 4 was done on the basis of a majority rule.
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Here L1 and L2 are the individual log-likelihoods of the 65 problems, which are
calculated using the estimated parameters of the two competing models. The test statistic is

T ¼ ∑
65

i
I i L1−L2ð Þ

where

I i
�
L1−L2

�
¼ 1; L1−L2 > 0

0; L1−L2≤0:

�

Under the null hypothesis T has a binomial distribution with parameters n = 65 and
p = 0.5. Thus an observation greater than 40 or less than 25 rejects the null hypothesis
at the 5% significance level. The results are summarised in Table 2. These are the
percentages for which the test was significant. Table 2 Panel A gives the results for the
CARA-better group and Table 2 Panel B gives the results for the CRRA better-group.

Here there are more noticeable differences between the two groups. In a comparison
between SF, SEU, MEU and α-MEU, SF does not perform too well in the CARA-
better group, though it does marginally better in the CRRA-better group. In compar-
isons between MV, SEU, between MEU and MVand between α-MEU and MV, in the
CARA-better group SEU is often significantly better than MEU and α-MEU, and very
rarely is one of the more general functionals significantly better than SEU. In the
CRRA-better group, SEU does even better.

As a side issue, it may be interesting to report on the estimated probabilities for SEU
and the estimated lower bounds on the probabilities for MEU and α-MEU; recall that
the true probabilities were 0.25 (pink), 0.5 (green) and 0.25 (blue). When the CARA
utility functional is the one estimated, the averages (over all subjects) of the estimated
probabilities for SEU were 0.262, 0.530 and 0.208, which are very close to the true
probabilities (though there was considerable dispersion across subjects). For MEU the
average lower bounds were 0.228, 0.507 and 0.190, while for α-MEU they were 0.212,

Fig. 2 The distribution of the estimated threshold w for SF
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0.490 and 0.171. These are (necessarily) lower than the corresponding SEU probabil-
ities, but only marginally so. These figures suggest that while, for some subjects, MEU
or α-MEU are statistically superior to SEU, the economic importance is marginal.
When the CARA utility functional is the one estimated, these numbers are 0.257, 0.514
and 0.229 for SEU; 0.233, 0.503 and 0.233 for MEU; 0.224, 0.462 and 0.198 for α-
MEU. These are very similar to those when the CARA functional was that estimated.

While SF does not perform particularly well, it may be of interest to report the
estimated values of the threshold w—the distribution is in Fig. 2. It will be seen from
this that many subjects had a very high threshold—some approaching 100%. This
alternatively could be interpreted as the result of very high risk-aversion, but this will of
course by picked up by SEU (or MEU or α-MEU) with a high estimated level of risk-
aversion.

9 Conclusions

The main conclusion from the experiment is that MV did rather badly as an explanation
of behaviour, possibly as a consequence of it being a special case of SEU. In contrast
SEU does rather well, not only compared to MV, but also compared with the gener-
alisations MEU and α-MEU: for relatively few subjects do these latter preference
functionals perform better. This indicates that subjects do not use a more complicated
preference functional when choosing their allocations in a complicated setting. At the
same time our simple rule, SF, does worse than SEU, suggesting some sophistication in
subjects’ decisions. Finally, it is reassuring for experimentalists that the results of Ahn
et al. (2014) and Hey and Pace (2014) are confirmed by our findings, insofar as the
experiments are comparable.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
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