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Investigating the limits of rely/guarantee conditions
based on a concurrent garbage collector example?

Cliff B. Jones1 and Nisansala Yatapanage2,1

1 School of Computing Science, Newcastle University, United Kingdom
2 School of Computer Science and Informatics, De Montfort University, United Kingdom

Abstract. Decomposing the design (or documentation) of large systems is a
practical necessity; finding compositional development methods for concur-
rent software is technically challenging. This paper includes the development
of a difficult example in order to draw out lessons about such methods. The
concurrent garbage collector development is interesting in several ways; in
particular, the final step of its development appears to be just beyond what
can be expressed by rely/guarantee conditions. This facilitates an exploration
of the limitations of this well-known method. Although the rely/guarantee
approach is used, the lessons are more general.

1 Introduction

The aim of this paper is to contribute to discussion about compositional development
for concurrent programs. Much of the paper is taken up with the development, from
its specification, of a concurrent garbage collector but the important messages are
by no means confined to the example and are identified as lessons.

The rely/guarantee approach (see Section 1.2 below) provides a compositional
development method for many applications. The specific garbage collector algorithm
is intricate in the sense that the Collector and Mutator routines were clearly thought
out together. The final step of the development of the algorithm challenges the ex-
pressiveness of rely/guarantee conditions. Viewed positively, this makes it possible
to explore the limits of the method and compare various possible extensions. Fur-
thermore, the example points to a precise test for when auxiliary (or ghost) variables
are needed and offers another application of the possible values notation (see Sec-
tion 2.1).

Apart from the general lessons, the exploration of what is meant by “composi-
tional” development should interest the reader.

1.1 Compositional methods

To clarify the notion of “compositional” development of concurrent programs, it is
worth beginning with some observations about the specification and design of se-
quential programs. A developer faced with a specification for S might make the de-
sign decision to decompose the task using two components that are to be executed

? This technical report is a preliminary version of a journal submission



sequentially (S1; S2); that top-level step can be justified by discharging a proof obli-
gation involving only the specifications of S, S1 and S2. Moreover, the developer of
either of the sub-components need only be concerned with its specification — not
that of its sibling nor that of its parent S. This not only facilitates separate devel-
opment, it also increases the chance that any subsequent modifications are isolated
within the boundary of one specified component.

As far as is possible, the advantages of compositional development should be
retained for concurrent programs.

Lesson I The notion of “compositionality” is best understood by thinking about a de-
velopment process in which, faced with a specified task (module), the developer proposes
a decomposition (combinator), specifies sub-tasks and then proves the decomposition
correct with respect to (only) the specifications. (The same process is then repeated
on the sub-tasks.) Such specifications should genuinely insulate components from one
another (and from their context).

Because of the interference inherent in concurrency, compositionality is not easy
to achieve and, clearly, (pre/)post conditions will not suffice. However, numerous
examples exist to indicate that rely/guarantee conditions (see Section 1.2) facilitate
the required separation where a designer chooses a decomposition of S into shared-
variable sub-components that are to be executed in parallel (S1 || S2).

1.2 Rely/Guarantee thinking

The origin of the rely/guarantee (R/G) work goes back to [Jon81]. Some 20 theses
have developed the original idea including [Stø90,Xu92] that look at progress ar-
guments, [Din00] that moves in the direction of a refinement calculus form of R/G,
[Pre01] that provides an Isabelle-checked soundness proof of a slightly restricted
form of R/G rules, [Col08] that revisits soundness of general R/G rules, [Pie09]
that addresses usability and [Vaf07,FFS07] explore ways to combine R/G thinking
with Separation Logic. Furthermore, a number of Separation Logic (see below) pa-
pers also employ R/G reasoning (e.g. [BA10,BA13]) and [DFPV09,DYDG+10] from
separation logic researchers build on R/G. Any reader who is unfamiliar with the
R/G approach can find a brief introduction in [Jon96].1

The original way of writing R/G specifications displayed the predicates of a spec-
ification delimited by keywords; some subsequent papers (notably those concerned
with showing the soundness of the Proof Obligations (POs)) present specifications as
five-tuples. The reformulation in [HJC14,JHC15,HJ18] employs a refinement calcu-
lus format [Mor90,BvW98] in which it is much more natural to investigate algebraic
properties of specifications. Since some of the predicates for the garbage collection
example are rather long, the keyword style is adopted in this paper but algebraic
properties such as distribution are used as required.

The literature contains many diverse examples of R/G developments including:

1 Fuller sets of references are contained in [HJC14,JHC15].



– Susan Owicki’s [Owi75] verifies a program that finds the minimum index i to
an array A such that A(i) satisfies a given predicate p; a development of such a
program is tackled using R/G thinking in [HJC14]

– a staple of R/G presentations is a concurrent version of the Sieve of Eratosthenes
introduced in [Hoa72]— see for example [JHC15]

– parallel “cleanup” operations for the Fisher/Galler Algorithm for the union/find
problem are developed in [CJ00]

– a development of Simpson’s 4-slot algorithm is given in [JP11]— an even nicer
specification using “possible values” (see Section 1.3) is contained in [JH16]

The first two contain examples in which the R/G conditions are symmetric in the
sense that the concurrent sub-processes have the same specifications; the last two
items and the concurrent garbage collector presented below are more interesting
because the concurrent processes need different specifications.

Lesson II While acknowledging Lesson I, there does have to be some description of
acceptable interference. By using relations to express interference, R/G conditions offer
a plausible compositional approach to concurrency with a balance of expressiveness
versus tractability — see Sections 4 and 5.

1.3 Challenges

The extent to which compositionality depends on the expressivity of the specifica-
tion notation is an issue and the “possible values” notation used below provides an
interesting discussion point. Much more telling is the contrast with methods which
need the code of sibling processes to reason about interference. For example, the
Owicki-Gries approach [Owi75,OG76] not only postpones a final (Einmischungsfrie)
check until the code of all concurrent processes is to hand but it also follows that this
expensive test has to be repeated when changes are made to any sub-component.

It is useful to distinguish progressively more challenging cases of interference
and the impact that the difficulty has on reasoning about correctness:

1. The term “parallel” is often used for threads that share no variables: threads are
in a sense entirely independent and only interact in the sense that they overlap
in time. Hoare [Hoa72] observes that, in this simple case, the conjunction of the
post conditions of the individual threads provides an acceptable post condition
for their combination.

2. Over-simplifying, Hoare’s insight is a basis for concurrent separation logic (CSL).
CSL [O’H07] and the many related logics are, however, aimed at –and capable
of– reasoning about intricate heap-based programs. See also [Par10].

3. It is argued in [JY15] that careful use of abstraction can serve the purpose of
reasoning about some forms of separation.

4. The interference the Owicki example referred to in the preceding section is non-
trivial because one thread affects a variable used to control repetition in the
other thread. It would be possible to reason about the development of this ex-
ample using “auxiliary” (aka “ghost”) variables. The approach in [Owi75] ac-
tually goes further in that the code of the combined system is employed in the



final Einmischungsfrei check. Using the compositional R/G approach in [HJC14],
however, the interference is adequately characterised by relations.

5. There are other examples in which relations alone do not appear to be enough.
This is true of even the early stages of development of the concurrent garbage
collector below. A notation for “possible values” [JP11,HBDJ13,JH16] obviates
the need for auxiliary variables in some cases, see Section 2.1

6. The question of whether some examples require ghost variables is open and the
discussion is resumed in Section 5. That their use is tempting in order to simplify
reasoning about concurrent processes is attested to by the number of proofs that
employ them.

2 Preliminary development

This section builds up to a specification of concurrent garbage collection that is then
used as the basis for development in Sections 3–6. The main focus is on the Collector
but, since this runs concurrently with some form of Mutator, some assumptions have
to be recorded about the latter.

2.1 Abstract specification

It is useful to pin down the basic idea of inaccessible addresses (aka “garbage”)
before worrying about details of heap storage (see Section 2.2) and marking (Sec-
tion 3).

Lesson III The use of abstract datatypes can clarify key concepts prior to discussion of
implementation details. Implementations are then viewed as “reifications” that achieve
the same effect as the abstraction. Formal proof obligations are given, for example,
in [Jon90].

Lesson III is commonplace for sequential programs but it actually has yet greater
force for concurrent program development (where it is perhaps underemployed by
many researchers). For example, it is argued in [JY15] that careful use of abstraction
can serve the purpose of reasoning about separation. Furthermore, in R/G examples
such as [JP11], such abstractions also make it possible to address interference and
separation at early stages of design.

The set of addresses (Addr) is assumed to be some arbitrary but finite set; it is not
to be equated with natural numbers since that would suggest that addresses could
have arithmetic operators applied to them.

Abstract states contain two sets of addresses: those that are in use (busy) and
those that have been collected into a free set.2

Σ0 :: busy : Addr-set
free : Addr-set

2 The use of VDM notation should present the reader with no difficulty: it has been widely
used for decades and is the subject of an ISO standard; one useful reference is [Jon90].



where

inv-Σ0(mk-Σ0(busy, free)) 4 busy∩ free= { }

It is, of course, an essential property that the sets busy/free are always disjoint. (VDM
types are restricted by datatype invariants and the set Σ0 only contains values that
satisfy the invariant.) There can however be elements of Addr that are in neither
set — such addresses are to be considered as “garbage” and the task of a garbage
collector is to add such addresses to free.

Effectively, the GC process is an infinite loop repeatedly executing the Collector
operation whose specification is:

Collector
ext wr free

rd busy
pre true
rely (busy′ − busy) ⊆ free∧ free′ ⊆ free
guar free ⊆ free′

post (Addr− busy) ⊆
⋃

÷free

The predicate guar-Collector reassures the designer of Mutator that a chosen free
cell will not disappear. The read/write “frames” in a VDM specification provide a
shorthand for access and interference: thus Collector actually has an implied guar-
antee condition that it cannot change the value of busy.

The rely condition warns the developer of Collector that the Mutator can consume
free addresses. Given this fact, recording a post condition for Collector is not quite
trivial. In a sequential setting, it would be correct to write:

free′ = (Addr− busy)

but the concurrent Mutator might be removing addresses from the free set so the
best that the collector can promise is to place all addresses that are originally garbage
into the free set at some point in time. Here is the first use of the “possible values”
notation in this paper. In a sequential formulation, post-Collector would set the lower
bound for garbage collection by requiring that any addresses not reachable (in the
initial heap) from roots would be in the final free set. To cope with the fact that a
concurrent Mutator can acquire addresses from free, the correct statement is that all
unreachable addresses should appear in some value of free. The notation discussed
in [JP11,HBDJ13,JH16] for the set of possible values that can be observed by a
component is ÷free.

Lesson IV The “possible values” notation is a useful addition to –at least– the R/G
style of specification.

Theorem 1. The POs requiring that the guarantee conditions of each process imply
the rely condition of the other process are, at this stage, finessed by making:

guar-Collector ⇔ rely-Mutator
guar-Mutator ⇔ rely-Collector



2.2 The heap

This section introduces a model of the heap. The set of addresses that are busy is
defined to be those that are reachable from a set of roots by tracing all of the pointers
in a heap. Because neither Collector nor Mutator has write access to roots, it remains
constant (which is not recorded in the rely conditions).

Σ1 :: roots : Addr-set
hp : Heap
free : Addr-set

where

inv-Σ1(mk-Σ1(roots, hp, free)) 4
dom hp= Addr∧
free∩ reach(roots, hp) = { } ∧ upper bound for GC
∀a ∈ free · hp(a) = {[ ]}

Heap= Addr
m
−→ Node

Node=
�

Addr
�∗

When addresses are deleted from nodes, their position is set to the nil value.
To smooth the use of this model of Heap, hp(a, i) is written for hp(a)(i) and (a, i) ∈
dom hp has the obvious meaning.3

The second conjunct of the invariant defines the upper bound of garbage collec-
tion (i.e. no addresses reachable from roots should appear in free); the final conjunct
requires that free addresses map to empty nodes.

The reach function computes the relational image (with respect to its first argu-
ment) of the transitive closure of the heap:

reach : Addr-set×Heap→ Addr-set

reach(s, hp) 4 rel-image(child-rel(hp)?, s)

The following is a definition of the relational image operator (which is not part of
standard VDM).

rel-image : (A× B)-set× A-set→ B-set

rel-image(r, s) 4 {b | (a, b) ∈ r∧ a ∈ s}

3 Several alternative modelling decisions were considered. For example, it is tempting to
make the free pointer one of the roots because it merges the operations — this was not
done because it is useful to distinguish the Malloc and Redirect operations (see Section 4.3
below). Also viewing the Heap as a relation would simplify notation but it was felt that the
notions of one node pointing more than once to the same Addr and the need to destroy
links should be represented explicitly.



The child-rel function extracts the relation over addresses from the heap (i.e. ignor-
ing pointer positions); it drops any nil values.

child-rel : Heap→ (Addr× Addr)-set

child-rel(hp) 4 {(a, b) | a ∈ dom hp∧ b ∈ (Addr∩ elems hp(a))}

A useful lemma states that, starting from some set s, if there is an element a
reachable from s that is not in s, then there must exist a Node which contains an
address not in s (but notice that hp(b, j) might not be a).

Lemma 1. A useful lemma is:

∃a · a ∈ reach(s, hp)∧ a /∈ s ⇒ ∃(b, j) ∈ dom hp · b ∈ s∧ hp(b, j) /∈ s

Proof. This can be proved by induction on the number of steps (over hp) from the
set s to the Addr a.

The argument that this reification gives the same behaviour is based on:

retr0 :Σ1→ Σ0

retr0(mk-Σ1(roots, hp, free)) 4 mk-Σ0(reach(roots, hp), free)

VDM’s data reification POs require that the representation is adequate in the
sense that there exists an element of the more concrete type that corresponds (un-
der the retrieve function) to any element of the abstract type. This is technically
important because it makes it possible to argue that the concrete and abstract oper-
ations commute by quantifying over the concrete type.

Theorem 2. Adequacy

∀σ0 ∈ Σ0 · ∃σ1 ∈ Σ1 · retr0(σ1) = σ0

Proof. It is straightforward to find a representative element

Collector

ext wr free
rd roots, hp

pre true

rely free′ ⊆ free
guar free ⊆ free′

post (Addr− reach(roots, hp)) ⊆
⋃

÷free lower bound for GC



Strictly, the fact that the Collector (in particular, its Sweep component) does not
have write access to hp means that it cannot clean up the pointers in free as required
by the final conjunct of inv-Σ1. Changing the guarantee conditions is uninformative
but rely-Mutator below does show the more precise predicate.

Mutator
ext wr hp, free

rd roots
pre true
rely free′ −C hp′ = free′ −C hp∧

free ⊆ free′

guar free′ ⊆ free
post true

The VDM POs for data reification require that each concrete operation commutes
(under the retrieve function) with its abstract counterpart.

Theorem 3. The commutativity proofs are trivial.4

3 Marking

The intuition behind the garbage collection (GC) algorithm in [BA84] is to mark all
addresses reachable over the relation defined by the Heap from roots (and maintain
the invariant that addresses in (roots ∪ free) are always marked) then sweep any
unmarked addresses into free.

Σ2 :: roots : Addr-set
hp : Heap
free : Addr-set
marked : Addr-set

where

inv-Σ2(mk-Σ2(roots, hp, free, marked)) 4
dom hp= Addr∧
free∩ reach(roots, hp) = { } ∧ upper bound for GC
(roots∪ free) ⊆marked∧
∀a ∈ free · hp(a) = {[ ]}

The real issue is where the garbage collection runs concurrently with a Mutator
which can acquire free addresses and give rise to garbage that is no longer accessible
from roots. A fully concurrent garbage collector is covered below (see Sections 4
and 5).

This section introduces code that can be viewed as sequential in the sense that
the Mutator would have to pause; interestingly this same code satisfies specifications
for two more challenging concurrent situations.

4 The advantage of a careful layering of abstractions is that most POs turns out to be relatively
trivial to discharge — see Section 7 for plans to check the proofs with Isabelle [NPW09].



3.1 Sequential algorithm

In order to clarify issues about POs in general and loop (proofs) in particular, veri-
fication of the non-interference case is considered first; i.e. rely conditions for the
Collector saying the heap is unchanged. This helps sort out some issues in a simple
setting (and the code carries over to the concurrent algorithm with, however, more
complicated specifications and justifications). It also clarifies terminology (viz. the
upper bound for garbage requires a lower bound for marking). Effectively, the spec-
ification of Collector is a simplification of that in Section 4 with all rely conditions
saying no change to any variable; in particular, marked is effectively a local variable.

The Collector can be split into three phases. Providing the invariant is respected,
the initial marking is unimportant but, thinking of the Collector being run intermit-
tently, it is reasonable to start by removing any surplus marks.

Collector4 (Unmark; Mark; Sweep)

(These operation names are decorated with subscripts below to distinguish the se-
quential, atomic and truly concurrent versions.)

The main interest is in the marking phase. As shown in Fig. 1, the outer loop prop-
agates a wave of marking over the hp relation;5 it iterates until no new addresses
are marked. The inner Propagate iterates over all addresses: for each address that is
itself marked, all of its children are marked.

Mark4
repeat

mc← card marked;
Propagate

until card marked=mc

Propagate4
consid← {};
do while consid 6= Addr

let x ∈ (Addr− consid) in
if x ∈marked then Mark-kids(x) else skip;
consid← consid∪ {x}

od

Fig. 1. Code for Mark

In the case when the code runs without interference, R/G reasoning is not re-
quired: the specification of Marks and proof that the code in Fig. 1 satisfies that
specification are straightforward. (In fact, they are simplified cases of what follows
in Section 4.) When the same code is placed in environments that admit interfer-
ence, R/Gs and different POs are needed (see Sections 4 and 5). The evolution of
the R/G conditions is particularly interesting.

5 It would be more elegant to write:

Propagate: for all x ∈ Addr if x ∈marked then Mark-kids(x) else skip

but the set consid is useful to express some assertions below.



Lesson V Considering the sequential case is useful because the simpler case makes it
possible to note how the rely condition (nothing changes) and the guarantee condition
(true) need to be changed to handle concurrency.

Here, the operation names are subscripted with s to mark them as the sequential
versions.

Unmarks

ext wr marked
rd roots, free

pre true

rely marked=marked′ ∧ free′ = free∧ hp′ = hp
guar true
post marked′ = (roots∪ free)

Marks

ext wr marked
rd hp, roots, free

pre true

rely marked′ =marked∧ free′ = free∧ hp′ = hp
guar true
post marked′ = free∪ reach(roots, hp)

Sweeps

ext wr hp, free, marked
pre true

rely marked′ =marked∧ free′ = free∧ hp′ = hp
guar true
post free′ = free∪ (Addr−marked)∧ hp′ = hp † {a 7→ [ ] | a ∈marked}

Theorem 4. The sequential composition PO is (all pre conditions are true):

; -I

post-Unmarks(σ,σ′)
post-Marks(σ′,σ′′)
post-Sweeps(σ′′,σ′′′)
post-Collector(σ,σ′′′)

Proof. Without interference, the proof is straightforward (÷free in post-Collector being
the special case of free′′′). But the main result (upper bound of what is collected) is
expressed in inv-Σ2 and follows from the lower bound of marking.

The outer loop (cf. Figure 1) propagates a wave of marking over the hp relation.



Propagates

ext wr marked
rd hp

pre true
rely marked′ =marked∧ free′ = free∧ hp′ = hp
guar true
post marked′ =marked∪

⋃

{Addr∩ elems hp(a) | a ∈marked}

To prove the lower marking bound (i.e. must mark everything that is reachable
from roots), a to-end induction is employed;6 essentially the to-ends relation says
that the remaining iterations of the loop will mark everything reachable from what
is already marked:

to-ends(σ,σ′) 4 marked′ =marked∪ reach(marked, hp)

Theorem 5. Thus:

loop-right-compose

post-Propagates(σ,σ′)
card marked< card marked′

to-ends(σ′,σ′′)
to-ends(σ,σ′′)

Proof. The proof is straightforward.

Theorem 6. And finally:

; -I

post-Unmarks(σ,σ′)
to-ends(σ′,σ′′)
post-Marks(σ,σ′′)

Proof. The proof is trivial.

The body of the inner loop (cf. Figure 1) has to satisfy:

Mark-kidss (x: Addr)
ext wr marked

rd hp
pre true
post marked′ =marked∪ (Addr∩ elems hp(x))

6 There is an interesting point here. In the standard presentations of Floyd-Hoare axioms,
post conditions are predicates of a single state; as soon as they are viewed (as in VDM) as re-
lations, it becomes clear that the invariant relation can be composed on the left or the right
of the post condition of the body of the loop. Left composition (as in so-far) corresponds
most closely to standard loop invariants; right composition (as in to-end) is convenient
where reasoning reflects the remaining computation. This is illustrated in [Jon90] with
two versions of computing factorial where the to-end version overwrites the initial value.



Lemma 2. With:

so-fars(σ,σ′) 4
marked′ =marked∪

⋃

{Addr∩ elems hp(a) | a ∈ (marked∩ consid′)}

loop-left-compose

so-fars(σ,σ′)
consid′ 6= Addr
post-Mark-kidss(σ′, x,σ′′)
so-fars(σ,σ′′)

Proof. The proof is straightforward.

As becomes clear in the following sub-sections, the interesting facet of the devel-
opment is that the code for the Collector matches different sets of R/G conditions.

Theorem 7. Finally:

Propagates

so-fars(σ,σ′)
consid′ = Addr
post-Propagates(σ,σ′)

Proof. The proof is immediate.

4 Concurrent GC with atomic interference

The complication in the concurrent case is that the Mutator can interfere with the
marking strategy of the Collector by redirecting pointers. This can be accommodated
providing the Mutator marks appropriately whenever it makes a change.

The development is tackled in two stages: firstly, this section assumes a Mutator
that atomically both redirects a pointer in a Node and marks the new address; Sec-
tion 5 shows that even separating the two steps still allows the Collector code of
Fig. 1 to achieve the lower bound of marking but the argument is more delicate
and indicates an expressive limitation of R/G relations. The argument to establish
the upper bound for marking (and thus the lower bound of garbage collection) is
separate and is given in Section 6.

If the Mutator were able to update and mark atomically, specifications and proofs
would be relatively straightforward; although this atomicity assumption is unrealis-
tic, it is informative to compare this section with Section 5. As proposed in Section 1,
the argument is split into a justification of the parallel decomposition (Section 4.1)
and the decompositions of the Collector/Mutator sub-components, addressed in Sec-
tions 4.2 and 4.3 respectively.



4.1 Parallel decomposition

In this section, the operation names have the subscript a to record the atomicity
assumption.

Given the atomicity assumption, an R/G specification of the collector is:

Collectora

ext wr free, marked
rd hp, roots

pre true
rely free′ ⊆ free∧marked ⊆marked′ ∧

∀(a, i) ∈ dom hp ·
hp′(a, i) 6= hp(a, i)∧ hp′(a, i) ∈ Addr ⇒ hp′(a, i) ∈marked′

guar free ⊆ free′

post (Addr− reach(roots, hp)) ⊆
⋃

÷free lower bound for GC

Here again, the notation for possible values is used to cope with interference. In a
sequential formulation, post-Collectora would set the lower bound for garbage col-
lection by requiring that any addresses not reachable (in the initial hp) from roots
would be in the final free set. To cope with the fact that a concurrent Mutator can
acquire addresses from free, the correct statement is that all unreachable addresses
should appear in some value of free.

It should be noted that an implied guarantee comes from the component having
only read access — e.g. the Collectora cannot change the hp component.7 The final
conjunct of the rely condition is the key property that (for now) assumes that the
environment (i.e. the Mutator) simultaneously marks any change it makes to the
heap.

The lower bound of addresses to be collected is one part of the requirement; the
upper bound is constrained by the second conjunct of inv-Σ2.

Lesson VI A useful R/G development tactic is to split what is an equality in the spec-
ification of a sequential component into lower and upper bounds; one of these is often
presented as a guarantee condition.

The lower bound for garbage collection requires setting an upper bound for
marking addresses; this topic is postponed to Section 6.

The corresponding specification of the Mutatora is:

Mutatora

ext wr hp, free, marked
rd roots

pre true

7 Strictly, the fact that the Collectora (in particular, its Sweepa component) does not have
write access to hp means that it cannot clean up the nodes in free as required by the final
conjunct of inv-Σ2. Changing the guarantee conditions is uninformative. An alternative
would be to perform the cleanup in Malloc.



rely free ⊆ free′

guar rely-Collectora
post true

Theorem 8. The R/G PO for concurrent processes requires that each one’s guarantee
condition implies the rely condition of the other(s); in this case they are identical so the
result is immediate.

4.2 Developing the Collectora code

As outlined in Section 1, what remains to be done for the Collectora is to show that
its development satisfies its specification (in isolation from that of the Mutatora) —
i.e. the decomposition of the Collectora into three phases (Unmarka; Marka; Sweepa)
given in Section 3.1 satisfies the Collectora specification in Section 4.1.

The post condition for the sequential version of Unmarks constrains marked′ to
be exactly equal to roots ∪ free (cf. the third conjunct of inv-Σ2) but, again, inter-
ference must be considered. The rely condition indicates that the environment can
mark addresses so whatever Unmarka removes from marked could be replaced. The
possible values notation is again deployed so that post-Unmarka requires that, for
every address which should not be marked, a possible value of marked exists which
does not contain the address. However, this post condition alone would permit an
implementation of Unmarka to first mark an address and then remove the marking;
this erroneous behaviour is ruled out by guar-Unmarka. The rely condition indicates
that the free set can also change but, since it can only reduce, this poses no problem.
Relaxing the post condition again uses the idea in Lesson VI.

Unmarka

ext wr marked
rd roots, free

pre true

rely free′ ⊆ free
guar marked′ ⊆marked

post ∀a ∈ (Addr− (roots∪ free)) · ∃m ∈þmarked · a /∈m

The post condition for Marka also has to cope with the interference absent from
a sequential specification and this requires more thought. In the sequential case,
post-Marks can use a strict equality to require that all reachable nodes are added to
marked but here the equality is split into a lower and upper bound. The lower bound
for marking is crucial to preserve the upper bound of garbage collection (see the
second conjunct of inv-Σ2). This lower bound is recorded in the post condition. (The
use of hp′ is, of course, challenging but the post condition is stable [CJ07,WDP10]
under the rely condition.) The “loss” (from the equality in the sequential case) of
the other containment is compensated for by setting an upper bound for marking
(see no-mog in Section 6).



Marka

ext wr marked
rd hp, roots, free

pre true
rely rely-Collectora
guar marked ⊆marked′

post reach(marked, hp′) ⊆marked′

Similar observations to those for Unmarka relate to the specification of Sweepa
which, for the concurrent case, becomes:

Sweepa

ext wr free
rd hp, marked

pre true
rely free′ ⊆ free∧marked ⊆marked′

guar free ⊆ free′

post (free′ − free)∩marked= { } ∧
∀a ∈ (Addr−marked) · ∃f ∈÷free · a ∈ f

The rely and guarantee conditions of Collectora are distributed (with appropriate
weakening/strengthening) over the three sub-components;

Theorem 9. Since all of the pre conditions are true; so the remaining PO for the com-
position is:

post-Unmarka(σ,σ′)∧ post-Marka(σ′,σ′′)∧ post-Sweepa(σ′′,σ′′′)
⇒ post-Collectora(σ,σ′′′)

Proof. The proof is straightforward.

It is useful to define a predicate for “completely marked” nodes:

cm-n : Node× Addr-set→ B

cm-n(n, s) 4 (Addr∩ elems n) ⊆ s

Turning to the decomposition of Marka to an iteration (see Fig. 1), in order to
prove post-Marka, a specification is needed for Propagatea that copes with interfer-
ence:

Propagatea

ext wr marked
rd hp

pre true
rely rely-Collectora
guar marked ⊆marked′

post ∀a ∈marked · cn-n(hp(a), marked′)∧
(marked=marked′ ⇒ reach(marked, hp′) ⊆marked′)



The first conjunct of the post condition indicates the progress required of the wave of
marking. The second conjunct records the fact that, if no marks are added in a pass,
all required marking has been done. This ensures that the outer loop terminates.

To prove the lower marking bound (i.e. must mark everything that is reachable
from roots), an argument is again used that composes on the right a relation that
expresses the rest of the computation as in [Jon90]: essentially the to-end relation
states that the remaining iterations of the loop will mark everything reachable from
what is already marked:

to-enda(σ,σ′) 4 reach(marked, hp′) ⊆marked′

Theorem 10. The PO is:

post-Propagatea(σ,σ′)∧σ.marked 6= σ′.marked∧ to-enda(σ′,σ′′)
⇒ to-enda(σ,σ′′)

Proof. whose proof is straightforward.

The termination argument follows from there being a limit to the markable ele-
ments: a simple upper bound is dom hp but there is a tighter limit (cf. Section 6).

Theorem 11. Then:

σ.marked= σ.roots∧ to-end(σ,σ′) ⇒ post-Marka(σ,σ′)

Proof. This follows trivially.

Pursuing the decomposition of Propagatea to a nested iteration (again, see Fig. 1)
needs a specification of the inner operation:

Mark-kidsa (x: Addr)
ext wr marked

rd hp

pre true

rely rely-Collectora
guar marked ⊆marked′

post cm-n(hp′(x), marked′)

In this case, the proof is more conventional and a relation that expresses how
far the marking has progressed is composed on the left:

so-fara(σ,σ′) 4
∀a ∈ (marked∩ consid′) · cm-n(hp(a), marked′)



Theorem 12. The relevant PO is:

so-fara(σ,σ′)∧consid′ 6= Addr∧post-Mark-kidsa(σ′, x,σ′′)∧consid′′ = consid′∪{x}
⇒ so-fara(σ,σ′′)

whose discharge is obvious.

Theorem 13. The final obligation is to show:

so-fara(σ,σ′)∧ consid′ = Addr ⇒ post-Propagatea(σ,σ′)

Proof. The first conjunct of post-Propagatea is straightforward; the fact that (un-
less the marking process is complete) some marking must occur in this iteration of
Propagatea follows from Lemma 1.

4.3 Checking the interference from Mutatora

The mutator is viewed as an infinite loop non-deterministically selecting one of
Redirect, Malloc and Zap as specified below. At this stage, these are viewed as atomic
operations so no R/Gs are supplied here: their respective post conditions must be
shown to imply rely-Marka:

Redirect (a: Addr, i:N1, b: Addr)
ext wr hp, marked
pre {a, b} ⊆ reach(roots, hp)∧ i ∈ inds hp(a)
post hp′ = hp † {(a, i) 7→ b} ∧marked′ =marked∪ {b}

Lemma 3. It follows trivially that:

post-Redirect(σ,σ′) ⇒ guar-Mutatora(σ,σ′)

For this atomic case, the code (using multiple assignment) would be:

< hp(a), marked := hp(a) † {i 7→ b}, marked∪ {b}>

Malloc (a: Addr, i:N1, b: Addr)
ext wr hp, free
pre a ∈ reach(roots, hp)∧ i ∈ inds hp(a)∧ b ∈ free
post hp′ = hp † {(a, i) 7→ b} ∧ free′ = free− {b}

Malloc preserves the invariant because inv-Σ2 insists that free addresses are always
marked.

Lemma 4. It follows trivially that:

post-Malloc(σ,σ′) ⇒ guar-Mutatora(σ,σ′)

Zap (a: Addr, i:N1)
ext wr hp
pre a ∈ reach(roots, hp)∧ i ∈ inds hp(a)
post hp′ = hp † {(a, i) 7→ nil}



Lemma 5. It again follows trivially that:

post-Zap(σ,σ′) ⇒ guar-Mutatora(σ,σ′)

5 Relaxing atomicity

The remaining challenge is to consider the impact of removing the unrealistic atom-
icity assumption about Mutatora in Section 4. Splitting the atomic assignment (on
the two shared variables hp, marked) in

< hp(a), marked := hp(a) † {i 7→ b}, marked∪ {b}>

turns out to be delicate. The difficulty derives from the fact that the marking pro-
cess is clearly designed so that the collector and mutator collaborate. This makes
meaningful separation for compositionality (see Lesson I) extremely challenging;
some form of global argument is difficult to avoid. However, facing that challenge
and looking at alternative extensions of R/G thinking is informative and minimising
that global argument is interesting.

It is worth first disposing of a non-solution. The reader would be excused for
thinking that performing the marking first would be safe but Scenario A provides a
counter-example that shows that this would not work.

Scenario A Suppose Collectorc executes Unmarkc immediately after Mutatorc marks
hp(a, i) (but before it changes hp(a, i) to point to, say, b). If the Collectorc moves on
to its Markc phase and gets as far as a before the mutator resumes, a can be added
to consid before the pending update hp(a, i) ← b potentially introduces a link that
fails to get the b-rooted structure marked. This could result in active heap data being
collected as garbage.

Having dismissed that ordering, the task is to show that the ordering:

< hp(a)← hp(a) † {i 7→ b};
<marked←marked∪ {b}>

is in fact safe. The difficulty with justifying the split of the larger atomic statement
can be understood by considering the following scenario.

Scenario B Redirect can, at the point that it changes hp(a, i) to point to some address
b, go to sleep before performing the marking on which the Collectora of Section 4.2
relies. There is in fact no danger because, even if b was not marked, there must be
another path to b (see pre-Redirect in Section 4.3) and the Collectora should perform
the marking when that path (say hp(c, j)) is encountered. Were it the case, however,
that hp(c, j) could be destroyed before Collectora gets to c, an incomplete marking
would result that could cause live addresses to be collected as garbage. What saves
the day is that the Mutator cannot make another change without waking up and
marking b.

The case considered in Scenario B rules out multiple Mutator threads.



For the general lessons that this example illustrates, the interesting conclusion
is that there appears to be no way to maintain full compositionality (i.e. expressing
everything that needs to be known about the mutator) with standard rely relations.
The three step argument in Scenario B pinpoints the limitation of using two state
relations in R/G reasoning.

This section explores three alternative approaches for enhancing standard R/G
thinking so as to be able to cope with the example in hand:

– Section 5.1 shows how an auxiliary variable can be used to overcome the lim-
itation of R/G expressiveness — this serves as a reference point for the other
approaches;

– Section 5.2 discusses an alternative that suggests an extension to R/G;
– Section 5.3 outlines a way of avoiding a shared ghost variable but still, in some

sense, uses a non-compositional argument.

5.1 Abstracting details with auxiliary variables

It might surprise readers who have heard the current authors inveigh against ghost
variables that the development in Section 5.1 does in fact use such a variable (see
Lesson VII). The state Σ2 is extended with a variable tbm:

�

Addr
�

that can be used
to record an address as “to be marked”.

(In this section, the subscript c on operations and their predicates marks the fact
that they cover true concurrency.)

The rely condition used in Section 4.1 is replaced for the truly concurrent (non-
atomic interference from the Mutator) case by:

rely-Collectorc :Σ2 ×Σ2→ B

rely-Collectorc(σ,σ′) 4
free′ ⊆ free∧marked ⊆marked′ ∧
(∀(a, i) ∈ hp ·

hp′(a, i) 6= hp(a, i)∧ hp′(a, i) ∈ Addr
⇒ hp′(a, i) ∈marked′ ∨ tbm′ = hp′(a, i))∧

(tbm 6= nil∧ tbm′ 6= tbm ⇒ tbm ∈marked′ ∧ tbm′ = nil)

The third conjunct of rely-Collectorc records that, if the Mutator has paused before
marking hp′(a, i), then tbm′ has a note of the address to be marked; the final conjunct
ensures that tbm transitions back to nil at exactly the point in time when the delayed
marking occurs.

Parallel decomposition

Theorem 14. Here again, the parallel introduction PO is trivial to discharge because
the guarantee condition of the Mutatorc is identical to the rely condition of the Collectorc.



Developing Mutator code As indicated in Section 1, it still remains to be estab-
lished that the design of each component satisfies its specification.

Redirect will include the steps:

< hp(a), tbm := hp(a) † {i 7→ b}, b>;
<marked, tbm := marked∪ {b},nil>

Essentially tbm records the delayed marking that is considered in Scenario B. Notice
that the atomic brackets now only surround one shared variable in each case.

This not only guarantees rely-Collector, but also preserves the following invari-
ant:

Lemma 6.
tbm 6= nil ⇒
∃{(a, i), (b, j)} ⊆ dom hp · (a, i) 6= (b, j)∧ hp(a, i) = hp(b, j) = tbm

Looking first at the non-atomic Mutator argument, the only real challenge is:8

Redirect (a: Addr, i:N1, b: Addr)
ext wr hp, marked

pre {a, b} ⊆ reach(roots, hp)∧ i ∈ inds hp(a)
rely hp′ = hp
guar rely-Collectorc
post hp′ = hp † {(a, i) 7→ b} ∧ b ∈marked′

Developing Collector code Turning to the development of Collector, code must be
developed relying only on the revised rely-Collector. The only challenge is the mark
phase whose specification is:

Markc

ext wr marked
rd hp, roots, free

pre true

rely rely-Collectorc
guar marked ⊆marked′

post reach(marked, hp′) ⊆marked′

The code for Marka is still that in Fig. 1 — under interference, the post condition
of Propagate has to be further weakened (from Section 4.2) to reflect that, if there is
an address in tbm, its reach might not yet be marked. Importantly, if the marking is
not yet complete, there must have been some node marked in the current iteration:

8 When removing a pointer, no tbm is set — see Zap(a, i) in Section 4.3; also no tbm is needed
in the Malloc case because inv-Σ2 ensures that any free address is marked.



Propagatec

ext wr marked
rd hp

pre true

rely rely-Collectorc
guar marked ⊆marked′

post ∀a ∈marked · cm-n(hp′(a), (marked′ ∪ ({tbm′} ∩ Addr)))∧
(marked=marked′ ⇒ reach(marked, hp′) ⊆marked′)

Notice that post-Propagate implies there can be at most one address whose marking
is problematic; this fact must be established using the final conjunct of the new
rely-Collector.

The correctness of this loop is interesting — it follows the structure of that in
Section 4.2 using a to-end relation and, in fact, the relation is still:

to-endc(σ,σ′) 4 reach(marked, hp′) ⊆marked′

Theorem 15. The PO is now:

post-Propagatec(σ,σ′)∧σ.marked ⊂ σ′.marked∧ to-endc(σ′,σ′′)
⇒ to-endc(σ,σ′′)

Proof. In comparison with the PO in Section 4.2, the difficult case is where tbm′ 6= nil
(in the converse case the earlier proof would suffice). What needs to be shown is
that the stray address in tbm′ will be marked. Lemma 6 ensures there is another path
to the address in tbm′; this will be marked if there are further iterations of Propagate
and these are ensured by Lemma 1 which, combined with the second conjunct of
post-Propagate, avoids premature termination.

The code in Fig. 1 shows how Propagate uses Mark-kidsc in the inner loop.

Mark-kidsc (x: Addr)
ext wr marked

rd hp

pre true

rely rely-Collectorc
guar marked ⊆marked′

post cm-n(hp′(x), (marked′ ∪ ({tbm′} ∩ Addr)))

Again, the POs are as for the atomic case, but with:

so-farc(σ,σ′) 4
∀a ∈ (marked∩ consid′) · cm-n(hp′(a), (marked′ ∪ ({tbm′} ∩ Addr))



Lesson VII The use of “ghost” (aka “auxiliary”) variables presents a danger to com-
positional development (cf. Lesson I). The case against is clear: in the extreme, ghost
variables can be used to record complete detail about the environment of a process. Few
researchers would go to this extreme but minimising the use of ghost variables ought
be an objective in compositional development.

Lesson VIII Auxiliary variables can undermine compositionality (cf. Lesson VII) be-
cause they eliminate the desired separation between sibling processes. Where they are
claimed to be essential, it would be useful to have a test for this fact. The need for a
“three-state” argument is such a test.

5.2 Exposing the order of steps of a process

This section shows that the auxiliary variable (tbm) of Section 5.1 can be avoided at
the expense of saying more explicit things about the order of the steps in the mutator.
As conceded below, this still limits the separation between the specifications of the
collector and the mutator.

Scenario B makes clear that it is necessary to rule out there being another change
to the heap between mr-1/mr-2

mr-1:< hp(a)← hp(a) † {i 7→ b}>;
mr-2:<marked←marked∪ {b}>

There are actually two roles for tbm in the definition of rely-Collectorc (Sec-
tion 5.1): on the one hand, tbm provides a way to refer to the value of an unmarked
hp′(a, i); perhaps less obviously, the transitions between nil and non-nil values of
tbm pinpoint the crucial point in the execution between mr-1 and mr-2.

Lemma 6 uses tbm to identify the gap and the fact that there exists another path
to an hp′(a, i) in such a gap. This fact can be captured using the change in the value
of hp(a, i) as follows:

∀(a, i) ∈ hp ·
hp′(a, i) 6= hp(a, i)∧ hp′(a, i) ∈ Addr ⇒

hp′(a, i) ∈marked′ ∨
∃(b, j) ∈ dom hp′ · (b, j) 6= (a, i)∧ hp′(b, j) = hp′(a, i)

One difficulty with using this relation as a rely condition is that it is local in
the sense that it would not hold if Unmark runs. Fortunately it does hold over one
incarnation of Markc and such local rely conditions have been studied in [JH16].

A second issue is the need to pinpoint that no changes to hp can be made be-
tween mr-1/mr-2. The ability to locate assertions of this sort should be possible with
RGITL [STER11].

Lesson IX Recording information about the order of steps in the environment is clearly
non-compositional.



5.3 Abstracting interference with a predicate

The approaches in Sections 5.1 and 5.2 rely on information from the mutator to help
the designer of the collector to complete proofs.

The idea outlined in this section9 is that the developer of the mutator takes on
an extra reasoning task. The crucial observation (cf. Scenario B) is that the ability
to complete the marking always holds under interference from the mutator even if
Mutatorc stalls at the critical point. The clue as to why this is the case is the two-path
property in Section 5.2.

A predicate can be defined that expresses the property that marking can be com-
pleted (i.e. it expresses that Collectorc will always be able to mark all active Addrs).
In essence, the to-endc relation of Section 5.1 is converted into an invariant.

Thus, in the approach here, the designer of the mutator has to reason explicitly
about the preservation of this property. In a sense, the designer of the mutator has
to reason about the algorithm used in the collector. In contrast to the approach in
Section 5.1, this avoids sharing tbm although a similar but local variable is used in
Mutatorc.

Lesson X There are several approaches to reasoning about closely intertwined algo-
rithms. Avoiding shared ghost variables is certainly desirable from a compositional
point of view but creating a proof task for one process that relies on the design of its
environment is also a reduction of separation.

6 Lower limit of GC

Sections 4 and 5 address (under different assumptions) the lower bound for mark-
ing and thus ensure that no active addresses are treated as garbage. Unless an upper
bound for marking is established however, Mark could mark every address and no
garbage would be collected. The R/G technique of splitting, for example, a set equal-
ity into two containments often results in such a residual PO.

Addresses that were garbage in the initial state (Addr− (reach(roots, hp)∪ free))
should not be marked (thus any garbage will be collected at the latest after two
passes of Collect). A predicate “no marked old garbage” can be used for the upper
bound of marking:

no-mog : Addr-set× Addr-set×Heap× Addr-set→ B

no-mog(r, f , h, m) 4 (Addr− (reach(r, h)∪ f))∩m= { }

9 The full details of this approach are to be published in a separate paper by Yatapanage.
There are several interesting technical points: the idea of localising rely conditions is again
used together with a universally quantified set that can be instantiated to the consid set of
the collector.



The intuitive argument is simple: the Collector and Mutator only mark things reach-
able from roots and the Mutator can change the reachable graph but only links to
addresses (from free or previously reachable from roots) that were never “garbage”.

7 Related work and conclusions

There exist many papers on garbage collection algorithms, where the verification
is usually performed at the code level, e.g. [GGH07] and [HL10], which both use
the PVS theorem prover. In [TSBR08], a copying collector with no concurrency is
verified using separation logic. An Owicki-Gries proof of Ben-Ari’s algorithm is given
in [NE00]; while this examines multiple mutators, the method results in very large
numbers of POs. The proof of Ben-Ari’s algorithm in [vdS87], also using Owicki-
Gries, reasons directly at the code level without using abstraction.

Perhaps the closest approach to the development of the current paper is con-
tained in [PPS10], which presents a refinement-based approach for deriving various
garbage collection algorithms from an abstract specification. This approach is very
interesting and for future work it is worth exploring how the approach given here
could be used to verify a similar family of algorithms. It would appear that the rely-
guarantee method produces a more compositional proof, as the approach in [PPS10]
requires more integrated reasoning about the actions of the Mutator and the Col-
lector. Similarly, in [VYB06], a series of transformations is used to derive various
concurrent garbage collection algorithms from an initial algorithm. The alternative
of tackling the development using, as in [Jon96], the “fiction of atomicity” and “split-
ting atoms” does not appear to work on this example because the “atom” to be split
is in the wrong process.

The objective in the current paper to achieve a compositional development has
been only partially achieved. An unkind conclusion would be that this is because
the authors chose to stay as close as possible to rely-guarantee conditions expressed
as relations. But in so doing, both the inherent difficulty of the interconnection of
the mutator and collector algorithms has been exposed and a clear set of alternative
extensions to the R/G approach have been tabled. More experimentation should
indicate the best way forward. Even if the alternative to use a shared ghost variable
is taken, a clear test is offered to reduce the danger that such variables are used
superfluously with the resulting diminution of separation between the concurrent
processes.

It is hoped that the ten lessons are a transferable message of this paper even for
approaches that do not use R/G thinking. The (garbage collection) example illus-
trates and hopefully clarifies the lessons for the reader. The current authors believe
that examples are essential to drive such research.

To do: Add something on (forthcoming) Isabelle proofs
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