FSHD type 2 and Bosma arhinia microphthalmia syndrome: two faces of the same mutation

Authors: *Karlien Mul MD1, *Richard J.L.F. Lemmers PhD2, Marjolein Kriek MD, PhD3, Patrick J. van der Vliet BSc2, Marline L. van den Boogaard MSc2, Umesh A. Badrising MD, PhD4, John M. Graham, Jr MD5, Angela E. Lin MD6, Harrison Brand PhD7; Steven A. Moore MD PhD8; Katherine Johnson PhD9; Teresinha Evangelista MD9, Ana Töpf PhD9, Volker Straub MD PhD9, Solange Kapetanovic García MD10, Sabrina Sacconi MD PhD11, Rabi Tawil MD12, Stephen J. Tapscott MD PhD13, Nicol C. Voermans MD PhD1, Baziel G.M. van Engelen MD PhD1, Corinne G.C. Horlings MD PhD1, Natalie D. Shaw PhD14,†, Silvère M. van der Maarel PhD2,†

1Department of Neurology, Radboud University Medical Center, Nijmegen, the Netherlands
2Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
3Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
4Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
5Department of Pediatrics, Cedars Sinai Medical Center, Los Angeles, California, USA
6Department of Medical Genetics, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
7Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
8Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
9The John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
10Neuromuscular consult unit, Bilbo-Basurto Erakunde Sanitario Integratua, Organización Sanitaria Integrada Bilbao-Basurto, Spain
11Centre de référence des Maladies Neuromusculaires, Nice, France
12Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
13Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
14National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA

*These authors contributed equally to the manuscript; †Senior authors

Classification: article

Title character count: 85
Number of references: 15
Number of tables: 4
Number of figures: 3

Word count abstract: 170
Word count paper: 1719
Corresponding author:

Karlien Mul

Department of Neurology (935)
Radboud University Medical Center
PO Box 9101, 6500HB Nijmegen, the Netherlands
Tel:+31-(0)24-3616600
Fax:+31-(0)24-3618837
Email: karlien.mul@radboudumc.nl

Richard Lemmers r.j.l.f.lemmers@lumc.nl
Marjolein Kriek m.kriek@lumcn.nl
Patrick van der Vliet p.j.van_der_vliet@lumc.nl
Marlinde van den Boogaard T.L.van_den_Boogaard@lumc.nl
Umesh Badrising U.A.Badrising@lumc.nl
John Graham Jr John.Graham@cshs.org
Angela Lin alin@partners.org
Harrison Brand HBRAND1@mgh.harvard.edu
Steven Moore steven-moore@uiowa.edu
Katherine Johnson Katherine.Johnson@newcastle.ac.uk
Teresinha Evangelista Teresinha.Evangelista@newcastle.ac.uk
Ana Töpf ana.topf@newcastle.ac.uk
Volker Straub volker.straub@newcastle.ac.uk
Solangé Kapetanovic García Solange.kapetanovicgarcia@osakidetza.net
Sabrina Sacconi SACCONI.S@chu-nice.fr
Rabi Tawil Rabi_Tawil@URMC.Rochester.edu
Statistical analysis conducted by Karlien Mul, MD, department of Neurology, Radboud University Medical Center, Nijmegen, the Netherlands and by Richard Lemmers, PhD, department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.

Search terms: facioscapulohumeral muscular dystrophy, arhinia, Bosma arhinia microphthalmia syndrome, *SMCHD1* gene, muscle disease, genetics

Author contributions:

KM, RJLFL, BvE, CGCH, NDS and SMvdM: study concept and design, acquisition of data, analysis and interpretation of data, drafting of manuscript and tables/figures.

MK: acquisition of data, analysis and interpretation of data, drafting of tables/figures, revision of the manuscript.

PJvdV, MLvdB, UAB, JMG, AEL, HB, SAM, KJ, TE, AT, VS, SKG, SS, RT, SJT, NV: acquisition of data, analysis and interpretation of data, revision of the manuscript.

BvE, NDS and SMvdM: obtained funding for the study.

Acknowledgements

We sincerely thank all participants for their contribution to this study.
Author disclosures

Authors Mul, Lemmers, Kriek, Van der Vliet, Van den Boogaard report no disclosures. Dr. Badrising receives compensation for consultancy for Novartis Pharma A.G and Argen-X. Authors Graham Jr, Lin, Brand, Moore, Johnson, Evangelista, Töpf, Straub, Kapetanovic García, Sacconi, Tawil, Tapscott and Voermans report no disclosures. Prof. Van Engelen receives grants from Prinses Beatrix Spierfonds, Association Francaise contre les Myopathies, Stichting Spieren voor Spieren, FSHD Stichting, NWO Dutch Organisation for scientific research. Authors Horlings and Shaw report no disclosures. Prof. Van der Maarel receives compensation for consultancy for Atyr-Pharma and Fulcrum therapeutics, receives grants from the NIH National Institute of Neurological Disorders and Stroke (P01NS069539), the Princes Beatrix Spierfonds, the European Union Framework Programme 7 (agreement 2012-305121, NEUROMICS), the FSH Society, and Stichting Spieren voor Spieren.

Funding

This study was funded by the Princes Beatrix Spierfonds (W.OR12.22, W.OP14-01, W.OB17-01), the National Institute of Neurological Disorders and Stroke award number P01NS069539, the National Institute of Arthritis Musculoskeletal and Skin Disease award number R01AR066248, and Stichting Spieren voor Spieren and was supported, in part, by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences (Z01-ES103315).

List of abbreviations

FSHD – facioscapulohumeral muscular dystrophy

BAMS – Bosma arhinia microphthalmia syndrome

SMCHD1 - structural maintenance of chromosomes flexible hinge domain containing 1
Abstract

Objective: This study aims to determine whether congenital arhinia/Bosma arhinia microphthalmia syndrome (BAMS) and facioscapulohumeral muscular dystrophy type 2 (FSHD2), two seemingly unrelated disorders both caused by heterozygous pathogenic missense variants in the SMCHD1 gene, might represent different ends of a broad single phenotypic spectrum associated with SMCHD1 dysfunction.

Methods: We examined and/or interviewed 14 FSHD2 patients and 4 unaffected family members with N-terminal SMCHD1 pathogenic missense variants to identify BAMS sub-phenotypes.

Results: None of the FSHD2 patients or family members demonstrated any congenital defects or dysmorphic features commonly found in patients with BAMS. One patient became anosmic after nasal surgery and one patient was hyposmic; one man was infertile (unknown cause) but reported normal pubertal development.

Conclusions: These data suggest that arhinia/BAMS and FSHD2 do not represent one phenotypic spectrum and that SMCHD1 pathogenic variants by themselves are insufficient to cause either of the two disorders. More likely, both arhinia/BAMS and FSHD2 are caused by complex oligogenic or multifactorial mechanisms which only partially overlap at the level of SMCHD1.
Introduction

Identical pathogenic variants in the ‘structural maintenance of chromosomes flexible hinge domain containing 1’ (SMCHD1) gene are associated with two seemingly unrelated disorders: facioscapulohumeral muscular dystrophy type 2 (FSHD2), a rare form of adult onset muscular dystrophy, and arhinia, a severe congenital malformation often accompanied by reproductive and ocular defects, a triad called Bosma arhinia microphthalmia syndrome (BAMS).2-4

FSHD2 has a complex etiology that involves SMCHD1 (18p11.32) and the D4Z4 macrosatellite repeat array (4q35).1 Loss of SMCHD1 repressive activity leads to partial relaxation of the D4Z4 chromatin structure and de-repression of the normally suppressed DUX4 retrogene in the D4Z4 unit. Only specific 4q35 haplotypes provide a poly-adenylation signal (DUX4PAS) that stabilizes the DUX4 mRNA, permitting translation of the myotoxic DUX4 protein.1, 5 Contraction of the D4Z4 repeat array to 1-10 units can also relax the D4Z4 locus and de-repress DUX4 expression; this is the mechanism underlying the more common form of FSHD called FSHD type 1 (FSHD1).5

In contrast to FSHD2, where missense and loss-of-function variants are distributed along the entire SMCHD1 locus, in BAMS patients, the variants are all missense and clustered within or immediately downstream of the ATPase domain.2, 3 While D4Z4 hypomethylation akin to FSHD2 in BAMS patients suggests a loss-of-function mechanism2, a gain of function mode of action has also been proposed.3

To date, only one patient with both arhinia and FSHD2 and one multiplex family with both conditions have been reported.2 There has yet to be a systematic investigation of BAMS-associated features in FSHD2 patients. Therefore, we performed phenotypic and genotypic studies in FSHD2 patients and their family members with pathogenic missense variants in the N-terminal region of SMCHD1 to identify potential areas of overlap.
Materials and methods

Patients

We identified 23 FSHD patients with heterozygous pathogenic missense variants near the ATPase domain of SMCHD1 in the FSHD genetic database in the Human Genetics department of the Leiden University Medical Center. Family members of one patient were recruited through a cohort-study (FSHD-FOCUS study) by the Neurology department of the Radboud University Medical Center, Nijmegen. Another 10 sporadic cases were recruited for participation by referring clinicians from the USA, France, United Kingdom and the Netherlands.

Genetic testing

DNA was extracted from blood samples and analyzed for D4Z4 repeat size, chromosome 4q and 10q haplotypes, as described previously, and for SMCHD1 pathogenic variants by Sanger sequencing. CpG methylation at the D4Z4 repeat was determined by Southern blot and the methylation sensitive restriction enzyme FseI. Detailed protocols are freely available from the Fields Center website (www.urmc.rochester.edu/fields-center). The Delta1 score, a measure of the degree of D4Z4 hypomethylation, was calculated as described previously. The Delta1 threshold for FSHD-associated SMCHD1 pathogenic variants lies below -21%.

Clinical assessment

All participants were interviewed regarding nasal and olfactory abnormalities, pubertal development, fertility, eye anatomy and vision, history of maxillofacial surgery, and presence of cleft lip/palate. Photographs were available for 10 participants, which were independently assessed by three clinicians.
In addition, ten members of one FSHD family were examined in person for (subtle) signs of arhinia or associated comorbidities by a clinical geneticist (MK) who was blinded to mutation status. Olfactory function was assessed using the Sniffin' Sticks Screening Test (Burghart, Medizintechnik, GmbH, Wedel, Germany) which assigns a sex and age-adjusted olfactory score. One family member was examined using Skype.

Ethical approval

This study was conducted according to the principles of the Declaration of Helsinki (version October 2013) and in accordance with the Medical Research Involving Human Subjects Act (WMO). Participants were consented under a protocol approved by the local ethics committee of the Radboud University Medical Center, Nijmegen.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Results

Genetic results

In the large Euro-Caucasian FSHD family, 8 family members carried a pathogenic missense variant in SMCHD1 (c.320T>C; p.Leu107Pro) (fig 1 and 2, table 1). Importantly this pathogenic variant was previously reported in an unrelated, African-American female with BAMS. All pathogenic variant carriers showed profound hypomethylation at the D4Z4 locus on chromosome 4q with Delta1 scores below -26%. The 5 affected individuals had the FSHD-permissive, 4qA haplotype that contains the somatic DUX4 PAS. In addition, four of them had a D4Z4 repeat array of 9 units, compatible with an additional molecular diagnosis of FSHD1, but also found in 1-2% of the Caucasian control population. The three unaffected
individuals were homozygous for the 4qB haplotype, which is not FSHD-permissive because of the absence of a somatic DUX4 PAS. One family member that tested negative for the SMCHD1 pathogenic variant, did carry a 9 unit repeat on a 4qA haplotype. Her Delta1 score was -9%.

We identified 23 other sporadic FSHD2 patients in the FSHD genetic database with a pathogenic missense variant in close proximity to or identical to those previously identified in patients with arhinia or BAMS (2,3, Shaw, unpublished observation). All FSHD2 patients had a permissive haplotype and D4Z4 hypomethylation (table 2). Seventeen of the 20 pathogenic variants in these FSHD2 patients involved the same SMCHD1 exon as in arhinia patients and three pathogenic variants were identical to those found in arhinia patients (figure 3). We also identified one family with a heterozygous 3-bp deletion in exon 6 (c.729_731delCTT; p.Phe244del) resulting in the deletion of a single amino acid just two positions downstream of an amino acid affected in BAMS patients.

Clinical characteristics

In the large FSHD family, six individuals with an N-terminal SMCHD1 pathogenic missense variant were examined (individuals II:1 and II:4 were deceased at the time of the study). None of them had microphthalmia, congenital cataracts, coloboma, nasolacrimal duct atresia, mid-face hypoplasia, or cleft lip/palate (table 3). Several family members had narrow nares and/or hypoplastic alae nasi (rounded prominence of nostril) but these features did not segregate with the SMCHD1 pathogenic variant, suggesting they were unrelated, familial traits. One family member with FSHD1 and 2 (II-3) developed anosmia shortly after surgery for a deviated nasal septum. A second affected patient with both FSHD1 and 2 (III-3) was hyposmic (Sniffin' Sticks Screening Test result below the 10th percentile). All family members who were questioned reported normal pubertal timing and denied infertility.
Four family members had symptoms of FSHD: the two older individuals (50 years and older) displayed severe muscle weakness and were wheelchair-dependent, whereas the two younger individuals had facial weakness, an early sign of FSHD. Three of them had both FSHD1 and 2, and one of the younger individuals only had FSHD1.

The 10 sporadic FSHD2 patients who were phenotyped did not have physical features consistent with arhinia/BAMS (table 4). One male reported normal pubertal development but had infertility of unknown etiology. He denied other signs of hypogonadism such as cryptorchidism or micropenis and had never required testosterone replacement. Photographs of this patient revealed no signs of a craniofacial defect.

Discussion

We assessed FSHD patients with pathogenic missense variants in the N-terminal region of SMCHD1, which were recently shown to cause arhinia/BAMS, to determine whether FSHD2 and BAMS might represent the opposite ends of one broad, phenotypic spectrum or if each condition is caused by SMCHD1 dysfunction in the presence of a genetic background unique to each condition. Only one patient with arhinia has been identified thus far who meets clinical and genetic criteria for FSHD2, and until now, FSHD2 patients had never been specifically assessed for BAMS-like features.

Detailed examination of a large FSHD family with an SMCHD1 pathogenic variant identical to one found in BAMS patients did not uncover any congenital defects or dysmorphic features commonly found in patients with BAMS. We identified one patient in this family who developed cataracts in her 70’s and lost olfaction after nasal surgery. These findings are unlikely to be related to BAMS as cataracts are very common with aging secondary to cumulative photo-oxidative insults (e.g. ultraviolet-B) and she did not have congenital anosmia as occurs in BAMS patients; rather she lost olfactory function after nasal surgery.
which is a recognized, albeit rare, potential side effect of septoplasty.11, 12 We also observed several family members with nasal hypoplasia. The power of our combined genetic and phenotypic approach, however, allowed us to confidently classify this phenotype as a familial rather than SMCHD1-related trait as it did not segregate with the \textit{SMCHD1} pathogenic variant.

All other FSHD2 patients included in this study reported normal olfaction, no craniofacial or ocular abnormalities and normal pubertal development and those of reproductive age were fertile with the exception of one male patient with infertility of unknown cause. Thus, we find no evidence for phenotypic overlap in FSHD2 and BAMS patients.

The phenotyping protocol for this study was intentionally simple and non-invasive in design such that all study procedures could be performed by patients from afar. Although we performed detailed, structured interviews to collect phenotypic data on the sporadic cases, it is possible that patients were not fully aware of any subtle BAMS-associated features. Future studies will be required to confirm our findings in a larger number of FSHD patients using more sophisticated tools such brain imaging to assess the integrity of the olfactory bulbs and tracts, dilated eye exams, and reproductive hormone testing.

Our data support the hypothesis that arhinia/BAMS and FSHD2 represent two distinct oligogenic disorders. In both conditions, SMCHD1 dysfunction appears to be necessary but not sufficient to cause disease. In FSHD2, a permissive 4q35 haplotype is one known requirement, but the variability in muscle weakness that is seen among family members with the same \textit{SMCHD1} pathogenic variant (and D4Z4 repeat size) suggests that there are other genetic or environmental modifiers yet to be discovered. Incomplete penetrance of \textit{SMCHD1} variants in the form of nasal hypoplasia or isolated anosmia has also been observed in multiplex arhinia/BAMS families.2 Modifier genes have not been identified in arhinia but SMCHD1 binding partners and/or downstream targets are rational candidates. Thus, in the
extremely rare chance that a patient has an N-terminal SMCHD1 pathogenic variant and
meets the genetic requirements unique to arhinia/BAMS and to FSHD2, he/she can
demonstrate both conditions.

Pathogenic variants in the N-terminal region of SMCHD1 play a critical role in the
pathogenesis of both FSHD2 and arhinia/BAMS and. The complete absence of phenotypic
overlap between these two disorders, however, suggests that these variants are, by themselves,
insufficient to cause either disorder. The current study instead supports an oligogenic or
multifactorial disease mechanism for both FSHD2 and arhinia/BAMS.
References

Table 1. Genetic characteristics of FSHD family members.

<table>
<thead>
<tr>
<th>ID</th>
<th>Fig 1</th>
<th>Sex</th>
<th>Age</th>
<th>4q35 locus</th>
<th>SMCHD1 variant and D4Z4 methylation (%)</th>
<th>At risk for FSHD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FseI</td>
<td>Delta1 methylation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4q_1</td>
<td>4q_1</td>
<td>units haplotype</td>
<td>units haplotype</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4q_2</td>
<td>4q_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II-1</td>
<td>F</td>
<td>†</td>
<td>20U</td>
<td>4B163 23U</td>
<td>4B163</td>
<td>3%</td>
</tr>
<tr>
<td>II-2</td>
<td>M</td>
<td>80y</td>
<td>27U</td>
<td>4A161 28U</td>
<td>4B163</td>
<td>58%</td>
</tr>
<tr>
<td>II-3</td>
<td>F</td>
<td>75y</td>
<td>9U</td>
<td>4A161 20U</td>
<td>4B163</td>
<td>4%</td>
</tr>
<tr>
<td>II-4</td>
<td>M</td>
<td>†</td>
<td>9U</td>
<td>4A161 20U</td>
<td>4B163</td>
<td>n/a</td>
</tr>
<tr>
<td>II-5</td>
<td>M</td>
<td>†</td>
<td>20U</td>
<td>4B163 23U</td>
<td>4B163</td>
<td>25%</td>
</tr>
<tr>
<td>III-1</td>
<td>F</td>
<td>52y</td>
<td>20U</td>
<td>4B163 28U</td>
<td>4B163</td>
<td>11%</td>
</tr>
<tr>
<td>III-2</td>
<td>M</td>
<td>61y</td>
<td>39U</td>
<td>4A161 45U</td>
<td>4B168</td>
<td>n/a</td>
</tr>
<tr>
<td>III-3</td>
<td>F</td>
<td>51y</td>
<td>9U</td>
<td>4A161 27U</td>
<td>4A161</td>
<td>6%</td>
</tr>
<tr>
<td>III-4</td>
<td>M</td>
<td>47y</td>
<td>20U</td>
<td>4B163 28U</td>
<td>4B163</td>
<td>7%</td>
</tr>
<tr>
<td>IV-1</td>
<td>F</td>
<td>21y</td>
<td>18U</td>
<td>4B163 66U</td>
<td>4A161</td>
<td>22%</td>
</tr>
<tr>
<td>IV-2</td>
<td>F</td>
<td>18y</td>
<td>9U</td>
<td>4A161 45U</td>
<td>4B168</td>
<td>36%</td>
</tr>
<tr>
<td>IV-3</td>
<td>M</td>
<td>16y</td>
<td>9U</td>
<td>4A161 39U</td>
<td>4A161</td>
<td>16%</td>
</tr>
<tr>
<td>IV-4</td>
<td>M</td>
<td>19y</td>
<td>28U</td>
<td>4B163 40U</td>
<td>4B168</td>
<td>52%</td>
</tr>
<tr>
<td>IV-5</td>
<td>F</td>
<td>14y</td>
<td>20U</td>
<td>4B163 40U</td>
<td>4B168</td>
<td>47%</td>
</tr>
</tbody>
</table>

M: male; F: female; n/a: not available; 4q_1 and 4q_2 represent the two alleles on chromosome 4q35; †: deceased; U: units. IDs correspond to those in the pedigree (Figure 1).
Table 2. Genetic characteristics of FSHD2 patients.

<table>
<thead>
<tr>
<th>ID</th>
<th>Sex</th>
<th>4q35 locus</th>
<th>SMCHD1 variant and D4Z4 methylation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4q_1</td>
<td>FseI methylation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4q_1 haplotype</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4q_2</td>
<td>deltal methylation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4q_2 haplotype</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>see Table 1</td>
<td>see Table 1</td>
<td>c.320T>C</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>11 A 39 B</td>
<td>5 -33</td>
</tr>
<tr>
<td>10a</td>
<td>M</td>
<td>no genotype data (no DNA)</td>
<td>3 n/a</td>
</tr>
<tr>
<td>10b</td>
<td>F</td>
<td>no genotype data (no DNA)</td>
<td>NA n/a</td>
</tr>
<tr>
<td>10c</td>
<td>M</td>
<td>no genotype data (no DNA)</td>
<td>NA n/a</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>13 A n/a</td>
<td>5 n/a</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>17 A 47 A</td>
<td>9 -41</td>
</tr>
<tr>
<td>19</td>
<td>F</td>
<td>17 A 18 A</td>
<td>11 -31</td>
</tr>
</tbody>
</table>
M: male; F: female; n/a: not available; nl: normal; 4q_1 and 4q_2 represent the two alleles on chromosome 4q35. IDs correspond to the mutation number in Figure 3.
Table 3. Clinical findings in FSHD family with a pathogenic \textit{SMCHD1} variant.

<table>
<thead>
<tr>
<th>ID</th>
<th>Sex</th>
<th>Age (y)</th>
<th>SMCHD1 variant</th>
<th>Signs of FSHD</th>
<th>Interview and assessment of dysmorphic features</th>
<th>Pubertal development</th>
<th>Sniffin’ sticks test</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>II-1</td>
<td>F †</td>
<td>80</td>
<td>+/-</td>
<td>n/a (not at risk)</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>II-2</td>
<td>M</td>
<td>75</td>
<td>+/-</td>
<td>severe FSHD, wheelchair bound</td>
<td>narrow nares; high nasal bridge; hypoplastic alae nasi; bilateral cataracts at age 73y; dystopia canthorum; elongated philtrum</td>
<td>nl; fertile</td>
<td>anosmia</td>
<td>anosmia after nasal septum surgery</td>
</tr>
<tr>
<td>II-3</td>
<td>F</td>
<td>52</td>
<td>+/-</td>
<td>nl (not at risk)</td>
<td>hypoplastic alae nasi; unilateral epicanthal fold; glasses (-0.25 and -4.25)</td>
<td>nl; fertile</td>
<td>n/a</td>
<td>assessment using photographs</td>
</tr>
<tr>
<td>II-4</td>
<td>M †</td>
<td>51</td>
<td>+/-</td>
<td>severe FSHD, wheelchair bound</td>
<td>narrow nares and nose; high nasal bridge; hypoplastic and asymmetrical alae nasi; micrognatia</td>
<td>nl; fertile</td>
<td>hyposmia</td>
<td></td>
</tr>
<tr>
<td>II-5</td>
<td>M †</td>
<td>51</td>
<td>+/-</td>
<td>n/a (not at risk)</td>
<td>narrow nares; hypoplastic alae nasi</td>
<td>nl</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>III-1</td>
<td>F</td>
<td>52</td>
<td>+/-</td>
<td>nl (not at risk)</td>
<td>hypoplastic alae nasi; unilateral epicanthal fold; glasses (-0.25 and -4.25)</td>
<td>nl; fertile</td>
<td>n/a</td>
<td>assessment using Skype</td>
</tr>
<tr>
<td>III-3</td>
<td>F</td>
<td>51</td>
<td>+/-</td>
<td>severe FSHD, able to walk a</td>
<td>narrow nares and nose; high nasal bridge; hypoplastic and asymmetrical alae nasi; micrognatia</td>
<td>nl; fertile</td>
<td>hyposmia</td>
<td></td>
</tr>
<tr>
<td>Family</td>
<td>Gender</td>
<td>Age</td>
<td>Genotype</td>
<td>Clinical Features</td>
<td>Other Features</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>-----</td>
<td>----------</td>
<td>------------------</td>
<td>---------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III-4</td>
<td>M</td>
<td>47</td>
<td>+/-</td>
<td>high nasal bridge; asymmetrical alae nasi; long philtrum</td>
<td>nl; fertile; normosmia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV-1</td>
<td>F</td>
<td>21</td>
<td>+/-</td>
<td>asymmetrical alae nasi</td>
<td>nl; normosmia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV-2</td>
<td>F</td>
<td>18</td>
<td>+/-</td>
<td>mild facial weakness</td>
<td>tend to hypertelorism; short philtrum</td>
<td>nl; normosmia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV-3</td>
<td>M</td>
<td>16</td>
<td>+/-</td>
<td>facial weakness</td>
<td>coarse facial features; thick and asymmetrical alae nasi; strabism; tend to hypertelorism; retrognatia</td>
<td>nl; normosmia; mild learning disability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV-4</td>
<td>M</td>
<td>19</td>
<td>+/-</td>
<td>none</td>
<td>nl; normosmia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV-5</td>
<td>F</td>
<td>14</td>
<td>+/-</td>
<td>midline raphe</td>
<td>nl; normosmia</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F: female; M: male; †: deceased; y: years; n/a: not available; nl: normal. IDs correspond to those in the pedigree (Figure 1).
Table 4. Clinical findings in sporadic FSHD2 patients as determined by interview and photographs

<table>
<thead>
<tr>
<th>ID Fig 3</th>
<th>Sex</th>
<th>Smell</th>
<th>Nasal abnormalities</th>
<th>Nasal surgery</th>
<th>Open nostrils</th>
<th>Vision anatomical abnormalities</th>
<th>Tear production</th>
<th>Pubertal development</th>
<th>Fertility</th>
<th>Cleft lip/palate</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>M</td>
<td>nl</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>nl glasses</td>
<td>no</td>
<td>nl</td>
<td>nl</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>nl</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>Adenoid removal</td>
<td>no</td>
<td>nl</td>
<td>nl</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>10a</td>
<td>M</td>
<td>nl</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>Astigmatism, hypermetropy</td>
<td>no</td>
<td>nl</td>
<td>nl</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>10b</td>
<td>F</td>
<td>nl</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>nl</td>
<td>no</td>
<td>nl</td>
<td>nl</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>10c</td>
<td>M</td>
<td>nl</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>nl</td>
<td>no</td>
<td>nl</td>
<td>nl</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>nl</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>nl</td>
<td>no</td>
<td>nl</td>
<td>no</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>no abnormalities</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>nl</td>
<td>Difficulty clearing secretions</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>nl</td>
<td>nl</td>
<td>Decreased (Schirmer's test score 4)</td>
<td>Decreased body hair</td>
</tr>
<tr>
<td></td>
<td>no abnormalities</td>
</tr>
<tr>
<td>15</td>
<td>F</td>
<td>nl</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>nl</td>
<td>no</td>
<td>nl</td>
<td>nl</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>18</td>
<td>M</td>
<td>nl</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>nl</td>
<td>no</td>
<td>nl</td>
<td>nl</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>19</td>
<td>F</td>
<td>nl</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>nl</td>
<td>no</td>
<td>nl</td>
<td>nl</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td>n/a</td>
</tr>
</tbody>
</table>

n/a: not available; nl: normal. IDs correspond to the mutation number in Figure 3.
Figures legends

Figure 1. Pedigree for FSHD2 multiplex family with pathogenic variant (p.L107P) in *SMCHD1*. Shaded symbols represent family members meeting clinical criteria for FSHD2. Genetic information is listed below each family member: top box is mutation status (*SMCHD1* variant present or WT- wild type), lower boxes indicate the 4q35 haplotype (A or B) and D4Z4 repeat length (units) for each allele.

Figure 2. Sequence track of the *SMCHD1* pathogenic variant in the FSHD2 family and in a control sample. The position of the variant in exon 3 is indicated above the sequence traces and is highlighted in yellow. The genomic position is based on reference genome hg19 and the transcript and protein position on accession number NM015295 and NP056110, respectively.

Figure 3. Schematic of pathogenic missense variants in the N-terminal region of *SMCHD1* associated with FSHD2 and/or arhinia/BAMS. Pathogenic variants in the FSHD2 cohort in the current study are in bold (see also table 2), and the pathogenic variants that have been implicated in both FSHD2 and BAMS are underlined.
Rf6 (exon 3), chr18:g.2666926T>C, c.320T>C, p.Leu107Pro
FSHD2:
1. p.N104S
2. p.L107P
3. p.A110T
4. p.G137E
5. p.D150H
6. p.M189V
7. p.L194F
8. p.K204E
9. p.A242T
10. p.F244del
11. p.H263D
12. p.Y283C
13. p.R344Q
14. p.Y353C
15. p.G425R
17. p.R479P
18. p.C492R
19. p.F519S
20. p.T527M
21. p.V615D
22. p.P690S
23. p.L748P

BAMS:
1. p.L107P
2. p.M129K
3. p.A134S
4. p.S135C
5. p.S135N
6. p.E136G
7. p.G137E
8. p.N139H
9. p.L141F
10. p.F171V
11. p.A242G
12. p.W342S
13. p.Q345R
15. p.Q400L
16. p.D420V
17. p.E473Q
18. p.K518E
19. p.T523K
20. p.N524S
21. p.R552Q

SMCHD1 (exon 1-48)
GHKL ATPase domain (exon 3-5)
ATPase adjacent C-terminal region (exon 5-16)
aa 1-2,005
aa 111-365
aa 365-702