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Abstract 6 

Non-thermal plasma (NTP) is an attractive method for decomposing biomass gasification tars. 7 

In this study, the removal of toluene (as a gasification tar analogue) was investigated in a 8 

dielectric barrier discharge (DBD) reactor at ambient and elevated temperatures with hydrogen 9 

as the carrier gas. This study demonstrated that higher temperature in the presence of a DBD 10 

opens up new (thermal) reaction pathways to increase the selectivity to lower hydrocarbons via 11 

DBD promoted ring-opening reactions of toluene in H2 carrier gas. The effect of plasma power 12 

(5 – 40 W), concentration (20-82 g/Nm3), temperature (ambient-400 oC) and residence time 13 

(1.43-4.23 s) were studied. The maximum removal of toluene was observed at 40 W and 4.23 14 

s. The major products were lower hydrocarbons (C1-C6) and solids. The synergetic effect of 15 

power and temperature was investigated to decrease the unwanted solid deposition. It was 16 

observed that the selectivity to lower hydrocarbons (LHCs) increased from 20 to 99.97 %, as 17 

temperature was increased from ambient to 400 oC, at 40 W and 4.23 s. Methane, C2 (C2H6 + 18 

C2H4),  and benzene were the major gaseous products, with a maximum selectivity of 97.93% 19 

(60 %  methane, 9.93 % C2 (C2H6 + C2H4), and 28% benzene). It is important to note that 20 

toluene conversion is not a function of temperature, but the selectivity to lower hydrocarbons 21 

increases significantly at elevated temperatures under plasma conditions. 22 

 23 
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1. Introduction 24 

Biomass can be used as an alternative source of “green” energy and chemicals. Biomass can 25 

be converted into fuels and value-added chemicals by thermal, physical or biological processes. 26 

Thermochemical processes are useful for producing fuels, chemicals, combined power and 27 

heat. Among thermochemical processes, gasification is a promising technique for producing 28 

alternatives, green fuels for transport and power generation. In this method, partial oxidation 29 

of solid biomass is performed at temperatures of 700 to 800 oC, to produce gaseous fuels or 30 

synthesis gas [1, 2]. The product gas contains high concentrations of CO and H2. Its 31 

composition depends upon various parameters such as the nature of the feedstock, method of 32 

gasification, operating conditions, etc [2]. The syngas (CO + H2) can be used as fuel in gas 33 

turbines, gas engines, and it can be used to produce valuable chemicals. However, the product 34 

gas from gasifier also has impurities such as chlorine, sulphur, nitrogen and tar compounds [3]. 35 

Among these, tar creates a significant problem by condensing in filter, heat exchangers and 36 

engines at low temperatures after the exit of biomass gasifier, leading to attrition and choking. 37 

Therefore, it is necessary to decompose or remove the tar compounds from the product gas [4]. 38 

There are numerous techniques that can be implemented to remove tars, such as mechanical 39 

separation, thermal cracking, and catalytic cracking. Tar components can be reduced using 40 

mechanical separation techniques such as Venturi scrubbers, rotational particle separators, 41 

water scrubbers, ESP, and cyclones. However, these techniques only capture or remove the tar 42 

compounds from gasifier product gas, thereby producing secondary pollution. In addition, the 43 

associated chemical energy of the tar is wasted [5]. Thermal and catalytic techniques may be 44 

used to crack tar compounds, but these methods have some drawbacks. In thermal cracking, 45 

for instance, operating cost is significantly increased by maintaining the high temperature [6]. 46 

When using catalytic cracking, tar compounds can be cracked into valuable gaseous 47 

compounds at lower temperatures than in thermal decomposition [7]. However, many catalysts 48 
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have high affinities for chlorine and sulphur, which can poison them. The main contaminants 49 

in typical gasifier product gas are sulphur, chlorine and nitrogen compounds [8]. Therefore, it 50 

is difficult to remove tar compounds completely, due to their complexity and variability and 51 

unavailability of efficient and proven method. 52 

Non thermal plasma (NTP) is widely considered to be an attractive solution for the 53 

decomposition of volatile organic compounds (VOCs) and the production of fuels and 54 

chemicals [9]. Downstream NTP treatment of tar has received considerable attention due to its 55 

easy operation and compact design [10]. In NTP systems, the reactive species are derived from 56 

the carrier gas via the impact of high energy electrons (1-10eV) [11]. This produces a variety 57 

of reactive species (electrons, radicals and excited species), which can interact with the tar to 58 

decompose the tar compounds. Various techniques have been employed to decompose the 59 

biomass tar, often using toluene as a tar analogue. Combined plasma and catalysis techniques 60 

can also be used to crack gasification tars. The plasma can reduce the catalyst’s activation 61 

energy and thereby increases the rate of decomposition of reactants, raising the yield and 62 

possibly the selectivity of valuable gaseous products [12, 13]. Tao et al (2013) investigated the 63 

plasma-assisted catalytic decomposition of a tar model compound (toluene) in a He carrier gas 64 

using DC non-thermal pulsed plasma [14]. They reported that using plasma before the catalytic 65 

steam reforming reactions enhanced the decomposition of toluene. It was observed that the 66 

decomposition of toluene rises from 32 % to 57 % when using NTP before the catalyst bed 67 

[14]. 68 

In another study, the presence of moisture increased the toluene decomposition efficiency in  69 

air in a gliding arc discharge reactor [15]. In previous studies, it has been observed that removal 70 

and energy efficacy of tar compound increases by adding the steam [16-19]. The decomposition 71 

efficiency of toluene increased due to oxidation of toluene through OH radicals, which can 72 
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provide new reaction routes for the direct and indirect removal of toluene [17]. However, 73 

addition of steam increases the operational cost and process complexity. 74 

In this study, a DBD reactor was used to remove toluene in H2 carrier gas. In our previous work 75 

we reported almost complete conversion of tar (toluene) in CO2 carrier gas, but with significant 76 

formation of problematic solid residue occurred [20]. Toluene decomposition in H2 has not 77 

been reported in the literature, even though the product gas from gasification contains 78 

significant amounts of H2 (25.2-49.5 %) [21]. Therefore, for a better understanding of tar 79 

removal from product gas, it is necessary to study the effect of H2 on toluene conversion and 80 

product selectivity in the NTP. 81 

Toluene is one of the main stable compounds produced during biomass gasification process at 82 

higher temperatures [22], and has been used in various experimental studies as a tar analogue 83 

to investigate the removal efficiency [17, 18, 23-25] 84 

The performance of the DBD reactor was also studied by varying power, toluene concentration, 85 

temperature, and residence time. The present study reveals that the operation temperature plays 86 

an important role in toluene conversion to lower hydrocarbons in H2 carrier gas under NTP 87 

conditions. 88 

2. Material s and methods 89 

2.1 Experimental setup 90 

Fig.1 shows a schematic of the experimental setup. The coaxial dielectric barrier discharge 91 
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Fig.1. Schematic diagram of the experimental setup 93 

(DBD) reactor consisted of two coaxial quartz tubes one inside the other. The two metal 94 

electrodes, one outside the external cylindrical quartz tube (330 mm length, 18 mm outer 95 

diameter, 15 mm inner diameter) and the other inside the inner tube (outer diameter 12 mm, 96 

inner diameter 10 mm). The inner and the outer metal mesh electrodes were made from 316 97 

stainless steel. The length of the external mesh was 45 mm resulting in a discharge region of 98 

about 2.86 cm3. The plasma was produced in the annular space between the coaxial cylindrical 99 

tubes. A variac was used to control the input voltage of the plasma generator which delivers 100 

power to DBD reactor. The voltage (0-20 kV peak-peak) and current signals were measured 101 

using an oscilloscope (TPS 2014B, Tektronix) to calculate the power transferred to the reactor. 102 

In this study, the power supplied to the DBD reactor was varied from 5 to 40 W, at a frequency 103 

of about 20 kHz. 104 

Computer-controlled mass flow controllers regulated the flow rate of H2 and N2 from gas 105 

cylinders (BOC, UK, 99.99%), respectively. H2 gas was saturated with toluene by passing 106 

through a bubbler (see Fig.1). The bubbler was placed in an ice bath to minimize the effect of 107 

diurnal fluctuations in ambient temperature on the rate of evaporation of toluene. The gas flow 108 
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rate was varied from 40.6 ml/min to 120 ml/min. To monitor the change of flow rate as a 109 

consequence of plasma chemical reactions, a constant flow of nitrogen (6.0 mL/min) as 110 

reference gas was added to the exit of the reactor. All values are stated at STP.  To study the 111 

effect of temperature on the performance of plasma chemical reactions, the plasma reactor was 112 

placed inside a furnace which can adjust the temperature between ambient and 400oC. 113 

The product compositions were monitored by a Varian 450-GC equipped with a TCD (Thermal 114 

conductivity detector) to measure CH4 and H2, and a FID (Flame ionization detector) to 115 

measure lighter hydrocarbons (LHC) including C2 (C2H4, C2H6), C3 (C3H6, C3H8), C4 (C4H8, 116 

C4H10), C5 (C5H10, C5H12), and C6H6).  117 

2.2 Definitions 118 

The removal efficiency of toluene was defined as follows: 119 

 120 

dT=
toluene in the input stream (mole/min) - toluene in the outlet stream (mole/min)

toluene in input stream (mole/ min)
×100 121 

 122 

The following formulae were used to calculate the selectivity of different LHC products: 123 

 124 

LHC selectivity (%)=
∑ (m × moles of CmHn)

 7× Moles of C7H8 converted
×100 125 

Where n and m are the carbon and hydrogen number respectively in the molecules 126 

The SIE (specific input energy) shows the energy density applied to the plasma system 127 

 128 

Specific input energy (
kJ

L
) =

P (W) × 60/1000

Flow rate total (L/min)
 129 
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 130 

The energy efficiency was calculated as follows: 131 

 132 

Energy efficiency (
g

kWh
) =

converted toluene (g/min)

P (W) × 60/3600000
 133 

 134 

3. Results and Discussion 135 

3.1 Effect of Power 136 

The effect of power on the removal efficiency of toluene is shown in Fig.2 (a), below. Plasma 137 

power was varied from 5 to 40 W (SIE =7.39-59.11 kJ/L). The initial concentration of toluene 138 

was 33 g/m3, and the residence time was 4.23 s. It was found that toluene decomposition 139 

efficiency increased with increasing plasma power, and the maximum removal of toluene was 140 

99.5 % at 40 W and 4.23 s. The similar effect of power on the decomposition of toluene  was  141 

reported in previous experimental study [20, 26].  142 

The energy efficiency and selectivity to LHCs are also shown in Fig.2 (a). The energy 143 

efficiency of the plasma decomposition clearly decreases with increasing plasma power. There 144 

are diminishing returns as the input power is increased. Similar trends have been reported for 145 

the decomposition of tar analogue [16]. However, the overall selectivity of LHC increases from 146 

11.20 to 20 % as the power was increased from 5 to 40 W, which suggested that the aromatic 147 

ring was broken down at higher plasma power.  Fig.2 (b) demonstrated that the selectivity of 148 

LHCs (C1-C5) increased with increasing plasma power 149 
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Fig. 2(a) Effect of plasma power on the conversion, energy efficiency and selectivity to LHC; 151 

bars represent standard deviation. Reaction conditions: concentration = 33 g/Nm3; 152 

Temperature=ambient; flow rate 40.6 ml/min; residence time= 4.23 s; and SIE=7.39-59.11 153 

kJ/L. 154 
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Fig.2 (b) Selectivity of different LHC at 4.23 s. Reaction conditions: concentration = 33 156 

g/Nm3; Temperature=ambient; residence time= 4.23 s; ; and SIE=7.39-59.11 kJ/L. 157 

In a DBD plasma, the mean electron energy is in the range of 1-10 eV. The Maxwellian electron 158 

energy distribution function (EEDF) shows the higher the average electron energy is, the more 159 
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electrons with higher energy will be produced [27]. These energetic electrons can generate 160 

active radicals, ionic and excited atomic and molecular species through electron-impact 161 

dissociation, ionization, and excitation of the source gases, i.e., H2 and toluene, which can 162 

initiate plasma assisted toluene decomposition/hydrocracking in H2 carrier gas. The bond 163 

dissociation energy of H2 is 4.5 eV [28]. In a toluene molecule, the C-H bond dissociation 164 

energy (3.7 eV) of the methyl group is lower than the dissociation energy of the C-H bond, and 165 

C-C and C=C of the aromatic ring [28]. The bond dissociation energy of the C-C bond between 166 

the aromatic ring and the methyl group is also higher (4.4 eV) [29, 30].Therefore, initially, the 167 

toluene could be decomposed via H-abstraction from methyl group, as well as aromatic ring 168 

by electron impact dissociation of C-H bond in the molecule to form benzyl radical, because 169 

the C-H bond in the methyl group and aromatic ring has lower dissociation energy. Moreover, 170 

the energetic electrons could break the C-C bond between benzene ring and methyl group, 171 

generating phenyl and methyl radicals [17]. The benzyl and phenyl radicals could agglomerate 172 

to form solid residue. Meanwhile, these radicals (phenyl, and methyl radicals) could combine 173 

with H radicals or react with H2 to produce methane and benzene, respectively.  The 174 

agglomeration of methyl radicals can form higher hydrocarbons (such as C2, C3, C4, C5 175 

hydrocarbons) [31, 32].  Another route for the decomposition of toluene is the cleavage of the 176 

aromatic ring, which can produces LHCs (<C6) directly by plasma assisted hydrocracking of 177 

aromatic ring in an NTP[33]. “Therefore, both H radicals and energetic electrons contribute to 178 

the decomposition of toluene in H2 carrier gas. In an NTP, the formation of these chemically 179 

reactive species is necessary for the tar decomposition/hydrocracking reactions. In the cracking 180 

of a toluene molecule, the removal of methyl group, and the decomposition of aromatic ring 181 

are important [33]. An increase in plasma power/voltage can increase the electric field strength 182 

and the electron energy, which increases the number of reactive species in a DBD plasma. The 183 

increased electric field strength, the electron density, and the higher energetic electrons at high 184 
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power/voltage could all contribute to the enhanced toluene conversion and the increased 185 

selectivity of LHCs in an NTP. 186 

It was observed that the NTP reactions strongly depended upon input energy.  Hence, the 187 

specific input energy (SIE) is the main factor affecting the performance of the plasma process. 188 

It is reported that, even at 725 oC, the toluene conversion remains below 20 %, although the 189 

complete decomposition occurs by 900 oC [25]. It was observed that the most favourable 190 

required temperatures for toluene conversion was above 650 oC [22].  191 

The decomposition of toluene with respect to SIE can be written as  192 

 193 

𝑟 = − 𝑑[𝐶7𝐻8]/ 𝑑𝑆𝐼𝐸 = 𝑘𝑆𝐼𝐸[𝐶7𝐻8]𝑛 (1) 

  

Here n shows the reaction order and kSIE is the energy constant in the given reaction. The natural 194 

log of remaining fraction of the toluene with respect to SIE in H2 carrier gas is shown in fig. 3. 195 

It can be observed that the cracking of toluene in H2 carrier gas can be represented by the 196 

following equation. 197 

𝑙𝑛
[𝐶7𝐻8]

[𝐶7𝐻8]0
=  −𝑘𝑆𝐼𝐸 × 𝑆𝐼𝐸 198 
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Fig.3 Effect of specific input energy (SIE) on the remaining fraction of toluene 200 

(Reaction conditions: concentration = 33 g/Nm3; Temperature=ambient; and 201 

residence time=1.43 s) 202 

 203 

The values of the R2 here is 0.96. Therefore, the cracking of toluene in dielectric barrier 204 

discharge reactor as a function of SIE exhibits first order behaviour and the value of the energy 205 

constant (kSIE) is 0.16 (L/kJ). It was reported that electron impact plays a key role in NTPs in 206 

similar reactions [30, 34]. 207 

 208 

3.2 Effect of concentration 209 

The toluene concentration was varied between 20 and 82 g/Nm3, to observe the effect on the 210 

conversion of toluene. Fig. 4 shows that the removal of toluene decreased from 98.5 % to 78% 211 

by increasing the concentration from 20 to 82 g/Nm3. The trend is consistent with previous 212 

experimental results in which decomposition efficiency of toluene decreased with increasing 213 

the concentration in a DBD plasma, and that for benzene in a gliding arc plasma [16, 20].  214 
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Fig.4 Effect of concentration on the conversion of toluene and energy efficiency of the 216 

plasma process; bars represent standard deviation. Reaction conditions: input power=10 W; 217 

residence time=4.23 s; flow rate 40.6 ml/min; ambient temperature. ; and SIE=14.77 kJ/L 218 

At constant power, the plasma-generated reactive species react with the toluene to decompose 219 

it. However, when the concentration is increased whilst keeping the others parameters constant, 220 

the relative amount of toluene molecules increases with respect to reactive species 221 

Therefore, as the concentration of toluene increases, the ratio of plasma-activated reactive 222 

species to toluene molecules will decrease, which will reduce the toluene conversion. Due to 223 

this reason, the selectivity to LHCs also decreases with increasing the concentration of toluene 224 

(Fig.4). 225 

Fig.4 also shows the effect of the concentration of toluene on the energy efficiency of plasma. 226 

The energy efficiency increases from 4.79 g/kWh to 15.6 g/kWh by changing the concentration 227 

from 20 g/m3 to 82 g/Nm3. As the concentration is increased, it also increases the total amount 228 

of decomposed toluene, and so the energy efficiency of the plasma process. 229 
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The trend is similar to previous work in which GAD (Gliding Arc Discharge) plasma [16] and 230 

RGD (Rotating Gliding arc Discharge) plasmas [24] were used. 231 

3.3 EFFECT OF RESIDENCE TIME 232 

The removal efficiency of toluene is also influenced by residence time. Fig. 5 (a) shows the 233 

effect of residence time on the conversion of toluene at 20 W. It can be observed that 234 

decomposition of toluene increases with increasing residence time. The removal of toluene 235 

continuously increases from 67 % to 98 % as the residence time increases from 1.43 s to 4.23 236 

s at 20 W (SIE: 10-29.6 kJ/L). At high residence time, the tar compound and carrier gas are 237 

subjected to plasma discharge zone for longer time, which can increase the collision between 238 

reactive species and tar compound. Therefore, increasing residence time promotes the 239 

conversion of toluene due to high number of collision between tar compounds and reactive 240 

species [24]. The maximum conversion attained was 98 % at the highest residence time used 241 

here (4.23 s).  242 
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Fig.5 Effect of residence time (a) on the conversion of toluene, energy efficiency and 245 

selectivity to LHC; bars represent standard deviation (b) Selectivity to individual lower 246 

hydrocarbons. Reaction conditions: concentration = 33 g/Nm3; flow rate 40.6-120 ml/min; 247 

Temperature=ambient; and Power=20 W; and SEI=10-29.6 kJ/L 248 

The energy efficiency and selectivity towards the lower hydrocarbons (C1-C6) are shown in 249 

Fig. 5 (a). The energy efficiency of the process decreases with increasing residence time. It can 250 

be seen that energy efficiency decreases from 7.9 g/kWh to 3.9 g/kWh with increasing 251 

residence time from 1.43 s to 4.23 s. A similar trend of decreasing flow rate has been reported 252 

on the conversion of benzene [16].The residence time is associated with the flow rate, and for 253 

high residence time flow rate needs to be reduced. At low flow rate, the amount of tar 254 

compound subjected to plasma reactor also decreases, which decreases the total amount of 255 

decomposed toluene. Therefore, at high residence time, energy efficiency of the system 256 

decreases due to reduction in the total amount of decomposed toluene.  Fig.5 (b) shows that 257 
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selectivity of LHC (C1 –C5) increases with residence time. The H2 carrier gas spends more time 258 

in the plasma discharge with increasing residence time, which produces more H reactive 259 

radicals. These H radicals may contribute to increases the selectivity of lower hydrocarbons by 260 

reacting with toluene and its fragments.  261 

During the decomposition of toluene, a solid yellow residue was found inside the plasma zone. 262 

In some reports, these deposits were described as polymeric substances, or carbonaceous 263 

deposits [35, 36]. It was also reported that solid particles formed during the cracking of toluene 264 

in air, leading to the formation of solid deposits on the surface of the catalyst, thereby 265 

decreasing catalytic activity [37]. Moreover, formation of these solid residues can also clog the 266 

reactor. Therefore, it is very important to avoid the deposition of solid residue. However, in 267 

current study we have observed that the formation of solid residue completely disappeared (fig. 268 

6 b) at elevated temperature in the presence of H2 carrier gas. 269 

3.4 Effect of temperature 270 

Experiments were conducted to investigate the effect of temperature on product distribution 271 

and solid residue formation, at various powers (5-40 W) and a specific residence time (4.23 s). 272 

Fig. 6 (a), below, shows that removal of toluene is not affected by increasing the temperature. 273 

However, Song et al. (2002) reported that decomposition of toluene increased at elevated 274 

temperatures [38].  In other research, it was demonstrated that elevated temperature increased 275 

the removal efficiency of VOC in a non-thermal plasma reactor, and it was explained on the 276 

basis of increased kinetic reaction rate of O radicals [39]. However, in those experiments air 277 

was used as the carrier gas instead of H2. In this research, at 40 W, almost complete removal 278 

of toluene was obtained at all temperatures. 279 

Fig. 6 (b) shows the effect of temperature on the total selectivity to lower hydrocarbons at 280 

various levels of power and 4.23 s, it can be seen that total selectivity significantly increases 281 
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with increasing temperature at each level of power. At 400oC and 40 W, the selectivity rises 282 

from 20 % to 99.97 %, without the formation of solid residue. At 400oC and 4.23 s, the 283 

minimum selectivity towards LHC reaches to 81 % even at 10 W, which shows the high 284 

conversion of toluene to LHC, at high temperature, in the presence of H2 carrier gas. There are 285 

three different types of reaction involve in hydrocracking of aromatics: (a) hydrogenation-286 

dehydrogenation (b) isomerization and (c) cracking. 287 
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Fig.6 Effect of temperature on: (a) the conversion of toluene; (b) Total selectivity LHC; (c) 288 

Selectivity to various LHCs at 10 W;(d) selectivity to various LHCs at 20 W;(e) selectivity to 289 

various LHCs at 30 W; and (f) selectivity to various LHCs at 40 W. Reaction conditions: 290 

concentration = 33 g/Nm3; flow rate 40.6 ml/min; residence time=4.23 s; and SIE=14.77-291 

59.11 kJ/L 292 

The cracking reaction can be categorized as primary (ring-opening), secondary and tertiary 293 

[40]. Hydrogenation and isomerization take place at lower temperature because of lower 294 

activation energy, whereas the rate of cracking (ring-opening) increases with increasing 295 

temperature [41].  296 

Fig. 6(c), (d), (e), and (f) show the effect of temperature on the selectivity of individual LHCs 297 

at 10, 20, 30 and 40 W, respectively. Fig.6 (c) shows that, at 10 W, selectivity of benzene and 298 

methane reaches 50 % and 21% respectively, with increasing temperature up to 400 oC. 299 

However, the selectivity of C2 (C2H6 + C2H4) and C3 (C3H8+C3H6) remains below 11%. It has 300 

been reported that formation of benzene increases rapidly when increasing the temperature to 301 

400oC [42]. The high selectivity to the aromatic compounds may be due to a radical exchange 302 

reactions during the hydrocracking of toluene at high temperature [43]. It can be observed from 303 

fig. 6(f) that the selectivity of methane increases to 60%, whereas selectivity of benzene 304 
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reduces to 28%, at 40 W and 400oC. This happened due to the high population of energetic 305 

electrons at high power. In the absence of plasma, the selectivity of methane was reported to 306 

be nearly 10% at 450oC by hydrocracking of toluene [41]. It was reported that higher 307 

temperatures (>850 oC) are required to produce CH4 and C2H4 as the major gaseous products 308 

[44, 45]. However, in this study, selectivity to methane reaches 60 % at 400 oC, due to the 309 

additional effect of non-thermal plasma. 310 

The selectivity of C2 (C2H6 + C2H4) increases to 16.3 % by increasing the temperature up to 311 

300oC, afterwards it decreases to 9.93 % at 400 oC. Similarly, the selectivity to C3 (C3H8+C3H6) 312 

increased when increasing the temperature from ambient to 200 oC, after which it decreased, 313 

from 200 to 400 oC. This occurred because of formation of methane in the presence of excess 314 

H2 at high temperature [46]. Hence, the synergetic effect of plasma and temperature enhance 315 

the selectivity to lower hydrocarbons rather than solid residue. Plasma causes the production 316 

of reactive H radicals which hydrocrack toluene into lower hydrocarbons, when operating at 317 

elevated temperatures. It has been reported that adding steam reduces the formation of solid 318 

carbon and heavy hydrocarbons [47], which increase the operational cost and process 319 

complexity. However in this study, it was noted that problem can instead be resolved using 320 

hydrogen gas, which is already present (27-53 %) [48] in fuel product gas. The installation of 321 

a DBD reactor at a suitable location after the gasifier exit, where the temperature was high 322 

enough, could therefore have a substantial impact on tar mitigation. 323 

4. Conclusions 324 

In this study, the decomposition of toluene was studied in a dielectric barrier discharge (DBD) 325 

reactor using H2 as carrier gas, as a proxy for biomass gasification tars. For the first time, this 326 

study investigated that elevated temperature in the presence of a DBD opens up new (thermal) 327 

reaction pathways to raise the selectivity to lower hydrocarbons via DBD promoted ring-328 

opening reactions of toluene. H2 was selected as a carrier gas because it is the major component 329 
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in most steam gasifier effluents. Experiments were performed at various levels of power (5-40 330 

W) and residence time (1.43-4.23 s), at ambient and elevated temperature (20-400 oC), to 331 

determine the conversion and selectivity towards valuable gaseous products. 332 

The main findings are as follows: 333 

i. The removal efficiency of toluene can be as high as 99.5 % in this design of DBD 334 

reactor. The toluene is converted to lower hydrocarbons (C1-C6) and solid residue. 335 

ii. The rate of decomposition of toluene increases with power input and residence time.  336 

At ambient temperature, solid residue was formed in the reactor, which would create 337 

various problems over time.  338 

iii. Toluene conversion is not a function of temperature, but the selectivity is under plasma 339 

conditions, which is different from conventional chemical process. The selectivity 340 

towards lower hydrocarbons increases with increasing temperature, reaching 99.9 % at 341 

400oC, without formation of solid deposits and heavy hydrocarbons (>C6). Clearly, 342 

there are benefits of combining thermal and non-thermal effects in this particular 343 

application. Here, adding in thermal effects allows high selectivity to LHCs, without 344 

solid residue formation: both desirable outcomes. 345 

iv. Formation of methane, C2 (C2H6 + C2H4) and benzene increases with increasing 346 

temperature. Here, the maximum selectivities observed were 60%, 9.93 % and 28%, 347 

respectively, at 400oC and 40 W (the highest values used). 348 
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