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Abstract Precision agriculture, and more specifically
Site-Specific Crop Management (SSCM), has been imple-
mented in some form across nearly all agricultural
production systems over the past 25 years. Adoption has
been greatest in developed agricultural countries. In this
review article, the current situation of SSCM adoption and
application is investigated from the perspective of a
developed (UK) and developing (China) agricultural
economy. The current state-of-the art is reviewed with an
emphasis on developments in position system technology
and satellite-based remote sensing. This is augmented with
observations on the differences between the use of SSCM
technologies and methodologies in the UK and China and
discussion of the opportunities for (and limitations to)
increasing SSCM adoption in developing agricultural
economies. A particular emphasis is given to the role of
socio-demographic factors and the application of respon-
sible research and innovation (RRI) in translating agri-
technologies into China and other developing agricultural
economies. Several key research and development areas are
identified that need to be addressed to facilitate the delivery
of SSCM as a holistic service into areas with low precision
agriculture (PA) adoption. This has implications for
developed as well as developing agricultural economies.
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1 Introduction

Emerging in the mid-1980s, precision agriculture (PA) is a
farming management concept based on observing, measur-
ing and responding to variability in agricultural production
through the employment of the right technologies in the
right place at the right time in the right way to improve
production while minimizing environment impacts!'!. The
technologies and methodologies for PA are always
evolving with advances in technology and improvements
in our understanding of the actual needs in agriculture.
Site-Specific Crop Management (SSCM) is one facet of PA
for cropping systems. SSCM is defined as an information
technology-based agricultural management system to
identify, analyze and manage spatial and temporal
variability within field crops for optimum profitability,
sustainability, and the protection of the environment!.
SSCM has become a popular approach in developed
agricultural systems with field comparisons between
uniform and variable fertilizer applications clearly demon-
strating that there are advantages to management at scales
finer than the field scale!”). The need for differential in-field
management is due in part to the interactions of variable
natural soil formation factors and processes associated with
anthropogenic soil management activities, generating
considerable spatial variability in soil properties, such as
texture, structure, depth, pH, stoniness and chemical
fertility, at both the farm and field levels!*!. In conven-
tional farming, seeds, fertilisers, herbicides and pesticides
are typically applied uniformly at a field average, leading
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to over-application in some places and under-application in
others. In contrast, SSCM allows growers to improve
efficiencies in input use by adjusting to the observed
variations within fields.

A SSCM strategy has several key attributes for
measuring and managing the within-field spatial variability
of soil and the environment and its impact on crop growth/
productivity. Geo-referenced spatial measurements are
now possible due to the rapid development, miniaturisation
and improved accuracy of global navigation satellite
system (GNSS) technology, of which the USA’s global
positioning system (GPS) is the most commonly used.
GNSS has been widely employed in machinery guidance,
auto-steering and controlled traffic farming systems. A
range of commercial soil and crop sensors, which are
GNSS-linked, are available to measure the within-field
variability of different soil and crop parameters and
monitor their evolution in space and time. Another key
element that makes SSCM possible is variable rate
technology (VRT) that allows precise differential seeding,
fertilising and spraying and is able to respond to the
observed spatial soil and plant information. A geographic
information system (GIS) based farm management infor-
mation system (FMIS) is required to transform all types of
data and information into maps (or something similar) that
farmers can understand and utilize to drive spatial
agronomic decision-making.

SSCM has increased substantially in the UK over the
past two decades, predominantly for nutrient management.
VRT was named one of the Top 5 PA technologies in both
2013 and 2014 by the Precision Ag magazine and is a
driving force to improve productivity using variable
fertiliser application technology'®!. To support the recent
increase in VRT decision-making, multi-spectral satellite
images for fertiliser application and for soil mapping have
been increasingly used by famers in the UK. Data solutions
(i.e., data integration) are also emerging as a key tool for
PA and was also one of the Top 5 PA technologies listed in
both 2013 and 2014 by the Precision Ag magazine!®”!. The
2012 Farm Practices Survey reported that 22% of English
farms used GNSS, 20% used soil mapping and 11% used
yield mapping. These numbers represented an increase of
8%, 6% and 4% respectively compared with the 2009
results®). The reasons cited for the increase in the UK are
to reduce fertiliser and agrichemical input costs (indicated
by 63% of farms), to improve accuracy of application
(indicated by 76% of farms) and to manage crops to soil
conditions (indicated by 48% of farms).

It is recognized that the degree of PA development varies
from one place in the world to another due to the
differences in technology (availability and support),
agronomy, economy and culture!'l. PA adoption is
relatively high in developed countries, such as the UK,
USA and Australia, especially compared to countries in the
Global South, such as China. Recent research in China has
highlighted limited awareness and adoption of PA

technologies on family farms in China®! and suggests
that PA technologies currently mainly hold relevance for
larger farms!'®). This is thought to be due to the lack of
technology relevance to smaller farm scales, and issues
with the land fragmentation of growing family farms,
which makes it difficult to apply these technologies!'' and
can hinder financial investment in agricultural technology
more broadly''*!. However, this is not to say that research
on PA in China (or other large developing countries) is not
advanced or widespread. In China, The National Engineer-
ing Research Centre for Information Technology in
Agriculture (NERCITA) was established in 2001 to
promote PA research and application. There were also
several PA research centers set up in institutions such as the
China Agriculture University!'*). PA was in the national
863 Programme (State High-Tech Development Plan) and
tens of demonstration farms have been established in
China to showcase PA systems!'>'*]. Laser guided land
levelling systems for smoothing and reshaping field
surfaces, especially for irrigated land, and GPS guided
auto-steering have been adopted in China in recent
yearst'”). The gap in PA adoption in China (and other
developing countries) has been in the translation from a
research to a commercial context. There are many reasons
for this, but in part due to a lack of capacity in the industry
and in the population to exploit technology and a lack of IT
infrastructure to support PA!®).

The agricultural landscape in China is changing quickly
in response to the rapid economic development that has
occurred over the past three decades and the latest round of
land reforms. As a result, non-commercial small plot
holdings are diminishing and commercial farms and larger
family-run farms are emerging. This shift in production
size provides opportunities and a demand for PA
development in China. Furthermore, issues arising from
the degradation and deterioration of farm land and the
national cap on total national usage of fertiliser and
pesticides by 2020 is also forcing Chinese growers to
improve productivity. PA, and more particularly SSCM,
has a potentially critical role to play in achieving this
improved productivity.

It is clear that agriculture globally faces many different
challenges in a rapidly evolving technological world. To
better understand these challenges, this paper aims to
review: (1) the current status of the key SSCM technol-
ogies; (2) the opportunities and limitations of SSCM
adoption in China and the UK; and (3) the future direction
of SSCM and PA.

2 Key PA technologies

PA involves data collection, data analysis and information
management, all of which are supported by technological
advances in positioning systems, sensor design, remote
sensing systems, computer processing, and communica-
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tion technologies. The ‘state-of-the-art’ in each of these
technologies will be briefly reviewed in the following
sections.

2.1 Global navigation satellite systems (GNSS)

Different PA applications required different positioning
accuracy[”]: (1) low accuracy (meter level) can be used for
asset management, tracking and tracing; (2) medium
accuracy (sub-meter level) can be used for tractor
guidance, via manual control, for lower accuracy opera-
tions such as spraying, spreading, harvesting bulk crops
and for area measurement and field mapping; (3) high
accuracy real time kinematic (RTK) systems (centimeter
level) can be used for auto-steering systems on tractors and
self-propelled machines (harvesters and sprayers) and for
precision operations such as planting. In PA, it is well
recognized that GNSS are the major enabler of “precision’.

GNSS represents a constellation of satellites providing
signals from space transmitting positioning and timing data
with global coverage. A GNSS receiver employs trilatera-
tion to determine its position on or near the earth’s surface
by timing signals from four or more GNSS satellites. There
are two fully operational GNSS systems at present, the
United States” GPS and the Russian Federation’s Global
Orbiting Navigation Satellite System (GLONASS). The
Chinese Beidou Navigation Satellite System is still being
deployed, but provides operational coverage in regions
such as Asia, Australia and New Zealand. The European
Union’s Galileo system is in initial deployment phase,
scheduled to be fully operational by 2020.

Due to various error sources, including satellite orbit
errors, receiver clock errors and atmospheric delays,
standalone GNSS provides worldwide positioning services
with an accuracy of 3-5 m at best. There are several
commonly used techniques for improving GNSS perfor-
mance:

(1) Differential GNSS. The base station with a high
precision coordinate determines the pseudorange correc-
tions to GNSS satellites in view and sends them to rovers
using a data link, and the rovers incorporate the corrections
into their position calculations. DGNSS services (e.g., UK
General Lighthouse Authorities’ (GLAs) public marine
Differential Global Positioning System, and China Beidou
Radio Beacon-Differential Beidou Navigation Satellite
System (RBN-DBDS)) can provide a meter positioning
accuracy but degrade as the rovers move away from the
base location!'®.

(2) Space-based augmentation system (SBAS). SBAS
broadcasts regional pseudorange correction signals from
geostationary satellites instead of from the ground-based
reference stations as for DGNSS. SBAS examples include
European Geostationary Navigation Overlay Service
(EGNOS) within Europe and South-east Asia, the wide
area augmentation system (WAAS) within North America,
the GPS and geo-augmented navigation (GAGAN) within

India and the multi-functional satellite augmentation
system (MSAS) within Japan. The typical accuracy of
the EU EGNOS is < 3 m!'?!, which has been found useful
for agricultural users.

(3) Real time kinematic (RTK) GNSS. Using carrier
phase measurements (instead of pseudorange measure-
ments only for Differential GNSS and SBAS), RTK GNSS
establishes the most reliable and accurate solution for
GNSS applications in real time, producing typical errors of
less than 2 c¢cm. This level of precision is not needed for
general site-specific farming, but it does permit treatment
of small specific locations, such as a plant-specific
operation, and is essential for precision guidance, con-
trolled traffic farming, mechanical inter-row weed control,
inter-row sowing or crop thinning. In its basic form, a
single reference RTK is located at a known point close to
where the vehicle operates and communicates with rovers
through a radio-transmitter. Rovers determine their posi-
tion using algorithms that incorporate ambiguity resolution
(i.e., determining the number of carrier cycles between the
satellite and the rover receiver) and differential correction.
Note that ambiguity resolution is not required for
Differential GNSS or SBAS since they utilize pseudorange
measurements rather than carrier phase measurements. The
main issue with single reference RTK is that the accuracies
obtained are distance dependant. Therefore, the greater the
distance between the reference and the roving receivers,
the less accurate the results will be. This is because the
atmosphere present at each receiver cannot be assumed to
be identical and as such, cannot be eliminated from
the observations. Baselines greater than approximately
30-70 km (depending on conditions and hardware) are
said to be the maximum without jeopardising data quality.
A new reference station would then have to be established
beyond this point. Accuracies for short baselines can be in
the range of 2-3 cm®”). With a network RTK system, such
as Leica’s SmartNET in the UK, there is no need for
surveyors to set up their own reference stations, as a
network of reference stations are available which provide
corrections and eliminate the distance dependant errors.
Figure 1 shows the overlap of the reference network ranges
so that areas which are covered by more than one reference
station can have more than one set of corrections sent to the
rover. The accuracies of the computed rover positions can
be maintained over larger distances between the reference
stations and the rover. The main disadvantages of network
RTK include: (1) the price of subscribing to an already
established system, and (2) the effects of the distance
and height difference between the rover and the nearest
station. The typical positioning accuracy of RTK GNSS is
1020 mm horizontally and 15-30 mm vertically?'!. As of
April 2015, network RTK GNSS surveying is available in
Great Britain through three commercial service providers,
Leica’s ‘SmartNet’, Trimble’s ‘VRS Now’ and Topcon’s
‘TOPNet+’. All of these services rely largely on the
Ordnance Survey’s high density ‘OS Net’ network of
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around 160 continuously recording GNSS stations (Fig. 1).
In China, there is no RTK GNSS service available across
the whole country, although local RTK networks have been
rapidly developed in the past few years”®”!. It is clear in
Fig. 1(b) that there is only a limited number of GNSS
stations available in western, southern and north-eastern
China.

(4) Precise point positioning (PPP) GNSS. PPP differs
from RTK in the sense that it does not require access to
observations from reference stations but provides an
absolute positioning instead of the location relative to the
reference station as RTK does. A dual-frequency GNSS
receiver is required to remove the first order effect of the
ionosphere. PPP can achieve the same level of accurate
positioning as RTK GNSS with potentially lower capital
and running costs'>***!, Precise satellite information (e.g.,
precise satellite clock and orbit) is required to be generated
at processing centers, and broadcast to rovers. Recent
studies demonstrated a multi-layer processing scheme for
PPP regional augmentation to avoid processing large
reference networks and suggested the positioning accuracy
of 12, 10, and 25 mm in east, north, and vertical directions
can be obtained in real time!**~%/,

2.2 Soil mapping

Variability in soil is the major driver of variation in crop
production, assuming no undesirable management effects.
Detailed spatial soil information is critical for effective
SSCM. With increased precision in soil data, farmers can
make better decisions by targeting crops, inputs and
technologies more efficiently. The national soil map
(NSM) of England and Wales consists of 747 soil series
that are distributed in 300 soil associations (Soil Survey
Staff, 1984). NSM is very informative on general soil
conditions and there are semi-detailed surveys at the scale
of 1:5000 to 1:50000, but the majority of the UK is still

only mapped at the scale of 1:250000. Maps at this scale
lack detail of the within-field variability of soil properties,
such as texture, depth, organic matter, stone content and
pH, and are insufficiently precise for SSCM. Soil survey
maps in China are at an even coarser resolution and often at
a scale of 1:120000001°. Providing better, relevant, soil
information at the farm and field scale will be needed for
SSCM to be effective in China.

High-resolution soil mapping methodologies fall into
two categories: traditional and digital approaches. The
former relies on soil survey with pits and cores and an
expert soil scientist’s interpretation. The latter utilizes
sensor technologies and quantitative data-fusion techni-
ques to model and predict soil properties and in some cases
it may incorporate traditional knowledge via soft-comput-
ing approaches. Digital soil mapping techniques are
becoming more common and effective for intra-field
applications!?”).

(1) Traditional soil survey. Figure 2 shows a typical
example of data derived from a traditional pit survey, with
such approaches common for characterizing soil variability
in high-value horticulture and viticulture systems pre-
planting. In this approach, a soil surveyor’s expertise is
used to partition the landscape into different soil types
based on subjective multi-attribute field judgments of
intrinsic soils characteristics. It does not usually require
revision, but it is a slow, expensive process, hence its use in
high-value cropping systems.

(2) Soil nutrient mapping. Most commercial nutrient
surveys globally are performed as manual surveys, but are
much quicker than a traditional soil survey as it only
focuses on soil nutrients relevant for crop growth.
Georeferenced soil samples are collected in the field,
usually only from the topsoil (e.g., for arable fields, UK
0-15 cm; China 0-20 cm), on a grid at a density of
typically 1 sample per ha in the UK (i.e., multiple samples
per field (Fig. 3)) and are sent directly to a laboratory for

(b)
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Fig. 1 Distribution of continuous GNSS stations. (a) OS Survey Net stations in the UK in 2015 (BIGF, 2015); (b) CORS stations in China in 2017.
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Fig. 3 Example of a commercially supplied soil nutrient (phosphorus) map generated for University of Newcastle’s Cockle Park Farm,

Northumberland. Black points indicate the sampling locations.

analysis of a few key soil nutrients. According to the soil
nutrient analysis, a nutrient map is generated to show
within-field nutrient distributions. This is used for
phosphorus (P), potassium (K) and magnesium (Mg) in
the UK, nutrients that are relatively stable in the soil
system. Soil nitrogen, particularly mineralisable nitrogen
(N) is rarely mapped in this way as it is more transient in
the soil. This method gives relatively dense data and is
possible as the collection and laboratory systems in the UK
(and other developed agricultural economies) are well
developed. This means that soil can be quickly gathered
and analyzed, with turn-around times of typically less than
one week. The method does incur labor and laboratory
costs and is typically done on approximately a 5-year cycle
by UK growers. In China, soil nutrient sampling is often
performed at a density of 1 sample per 10 ha or coarser
(i.e., normally multiple fields per sample).

(3) Apparent electrical conductivity (EC,) and on-the-go
soil sensing. Several on-the-go soil sensors exist that are
capable of assessing a soil response, with the most
common sensors being EC, sensors. Two types of EC,
sensors exist: (i) electromagnetic induction (EMI) sensors
that are non-contact sensors, and (ii) electrical resistivity
(ER) sensors that are invasive sensors requiring contact
with the soil. Both EMI and ER systems can be mounted,
linked to a GNSS and towed behind a vehicle to provide
high spatial density EC, information. The EC, response is
affected by multiple soil properties that influence electrical

conductivity, including texture (clay %), clay mineralogy,
soil moisture content, salinity, cation exchange capacity,
pH, temperature and organic matter level'*”!. On-the-go
EC, surveys are relatively quick but do require careful
interpretation and ground-truthing as the EC, response is a
relative not an absolute value. To obtain actual maps of soil
properties, such as a clay percentage map, a local
calibration function is needed. This in turn requires soil
sampling, but usually at a much lower sample density than
that used for nutrient mapping.

(4) Bare soil imagery and remote sensing. It is well-
known that there are several factors affecting the diffuse
reflectance spectra of soil in the visible and near infrared
range. These include mineral composition, organic matter,
soil moisture, and soil texturel””! along with surface
roughness. Bare soil images have often been used, when
available, to identify soil variability within fields. A recent
advance on this is the development of commercially
available high-resolution soil brightness products (e.g.,
AgSpace Ltd., Swindon, UK). Using the red, blue, green
and near infrared reflectance, an algorithm classifies the
reflectance and generates a ‘soil brightness’ (SOB) map
(Fig. 4(b)). It is clear that there is a spatial correlation
between the traditional soil survey, SOB map, crop vigour
map and the final yield map (Fig. 4). In the UK and other
regions, where cultivation is a common practice, SOB
maps can be generated from historical, archived satellite
imagery and allow farmers to see where variation occurs in
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Fig. 4 Cirencester Park Farms, Cirencester, Gloucestershire: (a) bare soil image; (b) soil brightness map (SOB); (c) normalized
differences vegetation index (NDVI) map showing crop vigour mid-season (red = low to green = high); (d) yield map (red = low to blue =
high). All maps are overlaid with polygons indicating changes in soil types within the field. Images courtesy of Courtyard Partnership Ltd.,

UK.

their fields and, alongside their agronomist, create
management zones based on the spatial differences. SOB
is unable to explain what factors the variation relates to but
coupled with a farmer’s knowledge of their land it can be
used as an inexpensive alternative to soil surveying.
Similar to the EC, mapping, this method requires careful
interpretation and some ground-truthing, but it is very
rapid and can be applied quickly over much larger areas
than is possible with ground-based soil sensors or manual
sampling approaches.

It is no coincidence that the most successful SSCM
service providers in the UK have all had a firm business
model for delivering high-quality spatial soil data to
growers. Different companies target different technologies
to generate and ground-truth soil information, but all
deliver sub-field scale soil maps and prescription variable-
rate fertiliser and lime requirement maps. Growers can
quickly see a benefit for variable fertiliser, seed rate and
lime application, particularly in situations where non-

application is recommended and the input is directly saved.
The success of correctly targeting variable fertiliser, seed
rate and lime is reflected in uptake of these approaches by
over a fifth of British farms.

For SSCM to be adopted successfully in China (and
other developing agricultural economies), comparable soil
information must also be delivered, particularly to the
larger farms. At the moment this data are not available to
all growers. Although a soil database has been established
and is available to the public via a website!*®], the data are
still in a low spatial resolution and difficult to utilize for PA
practice or practical farming. Without accurate high-
resolution soil information it is difficult, if not impossible,
to correctly identify agronomic drivers of spatial crop
production.

2.3 Remote sensing of crop attributes

In PA, remote sensing is based on the interaction of
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electromagnetic radiation with soil or plant material and
involves non-contact measurements of radiation reflected
or emitted from agricultural fields®". An early example of
remote sensing for PA was the use of Landsat imagery, one
of the first earth observation satellites for civilian use, to
estimate the spatial patterns in soil organic matter, soil
phosphorus and crop yield potential®?! and understanding
the growing environment and production potential still
dominates applications of earth observation to PAP*,
Earth observation can be performed from three different
types of platforms: satellite, aerial and ground-based
platforms. These are differentiated by altitude and distance
to the target (crop), which influences the potential
resolutions achievable and the potential for external
interference in the data, such as cloud presence and
atmospheric effects on data from satellite and to a lesser
extent, aerial platforms. It is clear from Fig. 5 that the
frequency of cloud-free conditions varies from place to
place and from season to season>*!. The overall frequency
of cloud-free conditions is about 20% in the UK, with the
highest frequency in the summer*>, a period when there is
little agronomic intervention in production. However,
northern and western regions are cloudier than southern
and eastern areas of the UK where arable agricultural
land use is concentrated. The overall frequencies of cloud-
free conditions in western China are about 60%, much
higher than those in Southeast and Northeast China
(typically 20%—30%)"*. The highest cloud-free frequency
in China was in boreal autumn, while the lowest was in
boreal winter, a period when information on initial crop
establishment and growth in winter cereals is desirable.
The wavelengths used in most agricultural remote
sensing applications cover only a small region of the
electromagnetic spectrum. The visible region of the
electromagnetic spectrum ranges from approximately 390
to 700 nm, the infrared region extends from 700 nm to
1 mm, and the microwave from 1 mm to 1 m. Both the
visible and near-infrared (NIR, 700-1050 nm) regions are

commonly used in agricultural remote sensing and
applications of these data are well developed and
commercially exploited. Where specific wavelengths
within this region exhibit sensitivities to vegetation
parameters, such as color or chlorophyll content, these
act as a proxy for measures of crop type, development and
health. Images, however, captured in these wavelengths are
affected by cloud cover. Data in the microwave region is
less affected by cloud cover and potentially more suited to
areas where cloud cover during key agronomic stages is
common, such as is the case in the UK and parts of China.
Microwave surface interaction is dependent on the
geometric and dielectric properties of the vegetation and
is further influenced by parameters of the radar system
such as wavelength, polarization, and incidence angle.
Historically it has been difficult to unstitch these elements
to establish fully unique signatures for different crops.
More recently, research and development are being
focused on radar observations in the microwave region
for estimating crop varieties and biomass variation with
great successt® 8.

There are several key factors to consider when employ-
ing remote sensing for a particular PA application,
including the spatial, spectral, radiometric and temporal
resolution of the data.

(1) Spatial resolution of a sensor is the size of the
smallest object that can be detected as separate to its
surroundings and is determined by the instantaneous field
of view of the sensor and platform height. Frequently, the
quoted spatial resolution of an image corresponds to the
size of an individual image pixel. The smaller an area
represented by one pixel, the higher the resolution of the
image. Increasing numbers of high spatial resolution
satellite images have been or are becoming available,
e.g., 0.31 m WorldView-3 and 0.25 m TerraSAR-X
(Table S1). The spatial resolution required depends on
the decision and end management operation to be
performed. For example, crop scouting and weed identi-

0 20 40
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Fig. 5 Seasonal frequencies of cloud-free conditions across the globe derived from six years of Terra MODIS Atmosphere Monthly
Global Product (from March 2000 to February 2006)4. (a) Boreal spring (March—May); (b) boreal summer (June—August); (c) boreal
autumn (September—November); (d) boreal winter (December—February).
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fication may require very high-resolution imagery
(< 0.5 m) to identify small infestations and potentially
individual plants (for example from terrestrial or low-
altitude aerial platforms®®)). In contrast, if differential
fertiliser application is limited by the width of the spreader
(typically 24 m in the UK) then lower resolution imagery
(5-10 m pixels) is sufficient to make a sensible manage-
ment decision. In Chinese production systems, agronomic
equipment tends to be smaller in scale (typically 3—5 m)
permitting finer scale management and therefore requiring
higher spatial resolution (smaller pixel) imagery. Both the
UK and China are characterized by small field sizes ( <20
ha) in cereal production systems. This creates limitations
on the use of imagery with larger pixel sizes (> 10 m) as
there are relatively few pixels per field and many are mixed
pixels incorporating edge effects. The number of ‘pure’
pixels per field on which to base an agronomic decision is
therefore small. In larger fields, typical of cereal produc-
tion in Eastern Europe, Australia and North America
(often > 50 ha) this effect is diminished.

(2) Spectral resolution refers to the number of bands and
the wavelength width of each band. A band is a narrow
portion of the electromagnetic spectrum. Narrower wave-
length widths can be measured by higher spectral
resolution sensors. Multispectral imagery measures several
wavelength bands (typically 3—10 bands), such as visible
green or NIR. Hyperspectral imagery measures energy in
narrower and more numerous bands (typically >20 and
usually > 100) than multispectral imagery. The narrow
bands of hyperspectral imagery are more sensitive to subtle
variations in reflectance with wavelength and, therefore,
have a greater potential to detect crop stress than multi-
spectral imagery. For example, recent research has
demonstrated the potential of hyperspectral data to detect
nitrogen stress in potato*”) and water stress in cereals!*'),
among numerous other applications. However, for space-
borne instruments, physical limitations result in trade-offs
in instrument design, so that hyperspectral data are not
generally available at high spatial resolutiont*?!. Such data
acquisition therefore requires ground sensors, costly
airborne acquisition or, as an emerging technology, the
use of unmanned aerial vehicles. However, it is clear from
Table S1 that the number of spectral bands available for
analysis from satellite platforms has improved, from four
bands for Landsat 1 to eight bands for WorldView-2 and 13
bands for Sentinel-2, while bandwidths decreased from
60 to 40 nm or less. This trend is continuing, with the 2014
launch of WorldView-3 (16 bands and 1.24 m spatial
resolution for visible—NIR bands) and future planned
missions such as EnMap (OHB System AG and DLR) and
HyspIRI (NASA).

(3) Radiometric resolution refers to the sensitivity of a
sensor to variations in the radiance levels detected. The
higher the radiometric resolution of a sensor, the more
sensitive it is to detecting small differences in reflectance

values, allowing subtle variations in earth surface
characteristics to be detected.

(4) Temporal resolution refers to how often a remote
sensing platform can provide coverage of an area. Satellite
temporal resolution has improved from 18 days for
Landsat 1-3 to 1 day for WorldView-3 (Table S1). High
earth orbit geostationary satellites can provide continuous
sensing while low earth orbiting satellites can only provide
data each time they pass over an area. Revisit times vary
from a few days to a few weeks. Remote sensing acquired
from cameras or scanners mounted on airplanes and
unmanned aerial vehicles (UAVs) can acquire data at user-
defined intervals and can potentially be used to provide
data for applications that require more frequent sensing at
higher spatial resolutions than satellites can provide.
Effective revisit times for both airborne and satellite
systems can be extended by cloud cover that can interfere
with the data from a scheduled overpass. Alternatively,
proximal sensors using the same sensor technology can be
located in fields or attached to agricultural equipment
(terrestrial systems) to provide timely and frequent
temporal resolutions. These systems can collect informa-
tion during any management operation and usually provide
the most flexibility for growers, although the recent rapid
rise in the availability of UAV platforms has also allowed
greater flexibility and end-user control in airborne data
acquisition!**]. Other flexible approaches have also been
developed to utilize low-cost ground-based sensors, such
as smart phones, for example the development of the
‘CanopyCheck’ smart phone tool for monitoring potato
canopy development (NIAB CUF, Cambridge, UK),
designed to be used directly by growers.

One common application of remote sensing in SSCM is
to use imagery to quantify ground cover and greenness.
This information can be fed into crop models as an
indication of the N status of the crop and therefore the
nitrogen requirement of the crop. Typically, satellite
images are obtained a few weeks to a few days before
fertiliser application and a prescription map generated for
differential N application in a field. For terrestrial systems
with on-board proximal sensors, the sensing and decision-
making can be done in real-time as the tractor and spreader
traverse the field. Managing N fertiliser on the crop canopy
is quick and cost effective in comparison to soil mineral N
testing but it does not actually quantify the available soil N.

Satellite-based sensing systems are rapidly expanding
and evolving. Table S1 lists the satellite platforms and
sensing systems that have previously been available, are
currently available or will soon be available to UK and
Chinese users. It is clear that prior to 1990 there were very
few options, with a very long revisit time for applications
to agriculture. Even in the 1990s, sensor options were
limited and pixel size was restricted to 20 m or greater for
multispectral sensors. In agricultural systems with smaller
field sizes, as is the case in both the UK and China, large
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pixel sizes create problems with mixed pixels at field
boundaries and limit the amount of usable information
over a field. In contrast, users now have access to many
more systems with both higher spatial and temporal
resolution. Multispectral sensors with <6 m pixel size
are available from Chinese, North American and Eur-
opean-based platforms (Table S1), with more planned. The
result is that satellite systems are much more amenable for
agricultural applications, provided that costs permit service
providers to access data from multiple systems. This has
been mirrored by an increase in the use of satellite-based
imagery by third-party agronomic service suppliers in the
UK over the past 5 years. Service suppliers can now
confidently deliver satellite-based products to growers.
Another advantage is that satellite information, especially
information that relates to crop vigour and biomass, are
routinely collected and archived providing a historical
record of crop growth that can be accessed by new entrants
to PA globally in both developed and developing countries.

Another emerging area for optical sensing in both the
UK and China is crop scouting. The deployment of
unmanned aerial vehicles with cameras now permits
growers to achieve very high-resolution images (< 0.1 m
pixels) of production systems. Satellite imagery is typically
too coarse (> 5 m pixels) to distinguish anomalies in a
field, such as a weed infestation, until they are having an
impact on production. Correctly processed high-resolution
imagery has the ability to identify very small effects and
permit targeted early intervention to avoid crop losses. In
the UK, this approach is being used to target management
of black grass (Alopecurus myosuroides) control. In both
the UK and China, commercial UAV applications are
governed by aviation rules which place some restrictions
on service provision.

2.3.1 Hyperspectral imaging system (HIS)

The development and application of imaging systems on
unmanned aerial vehicles/systems (UAVs or UASs) and
unmanned ground vehicles (UGVs) has increased drama-
tically over the past 5 yearsl®*. This has enabled
deployment of more advanced imaging systems, in
particular hyperspectral imaging systems (HIS). UAV-
HSI or UGV-HIS (> 15 bands) provide more information,
higher spatial and spectral resolution, than commercial
multi-spectral imaging (MSI), as well as providing
flexibility with data collection. The system includes a
UAV or UGV body, flight or ground control system, HSI
sensors and oil/electric energy.

(1) UAV and UGV involve platforms for plant informa-
tion collection near, or up to 4 km from the ground. The
UAYV body could be a multi-rotor, helicopter, fixed-wing,
blimp, or flying wing!**. The gross weight (6-318 kg) and
payload capacity (7-67.5 kg) increases with the growing
cost of each UAV. The UGV platforms, phenomobiles or

stationary platforms, are relatively more flexible than the
UAVI™ Payload capacity, including multi-sensors, is
larger than the UAV platform, while data collection speed
is limited.

(2) The flight control system of a UAV, one key
technology of a UAV system, is the core of the whole flight
process, including take-off, flying in the air, executing
tasks and recovery. Generally, UAV flight details, includ-
ing flight height, flight speed, flight location, and missions,
can be pre-set by a rout planning tool, and transmitted to
the flight control system through a data transceiver. For
field UGV platforms, the diverse UGV control systems are
based on the designed objectives. The Field Scanalyzer at
Rothamsted Research, Harpenden (UK), for example, is
one stationary field solution platform for field phenotyp-
ing, moving along designed fixed rails!*®!. Some tractor-
based systems, e.g., low crop UGV by NERCITAM”), can
be remotely controlled based on GNSS (Section 2.1).

(3) Hyperspectral imaging sensors are configured to
obtain information from a large number of narrow and
continuous bands. In contrast, HSI with high spectral
resolution collects more information on spectral character-
istics of the crop in field and spectral differences between
crops than MSI. Given the commercial application, small,
light, and low-cost HSI sensors should be considered for
deployment on UAV platforms. XiSpec, which is 26 mm x
26 mm x 31 mm and 31 g, is the world’s smallest HSI
camera, and is suitable for UAV and UGV platforms™®!.
NERCITA also developed one HSI, mircro-Agrihawk
2014, to deploy in a UAV platform weighing 900 g. A
UAV or UGV platform equipped with hyperspectral
sensors, is becoming a promising approach for high
throughput monitoring of plant variables, e.g., measure-
ments of biomass and nitrogen in wheat and barley!*"],
hydrological soil surface characteristics™”), chlorophyll
content and green biomass of pasture and barley” '), water
statust™?], and pest and disease monitoring!>**. Hyper-
spectral imagery deployed on UAV or UGV overcomes the
shortcomings and complements the advantages of satellite
imagery and hyperspectral field data regarding spectral
resolution, spatial resolution and data acquisition
flexibility!>!.

2.3.2 Light detection and ranging (LiDAR)

LiDAR technology can be mounted on UGV, UAV or
aircraft platforms and provides detailed three dimensional
information on the ground surface in the form of an x, y, z
coordinate ‘point cloud’ and intensity measurements. This
point cloud can provide the basis for generating digital
elevation models and models of vegetation canopies. In a
research context, on-ground or airborne unmanned LiDAR
sensor platforms have shown promise for generating
data on, for example, crop biomass®®, grain yield[57],

leaf areal™ and nitrogen status®”) and for crop
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phenotyping!®”’. Airborne LiDAR has been shown to
successfully estimate maize height and biomass at the
tasseling stage in Gansu Province, Chinal®'!, while in the
UK, it has been used to monitor the agri-environ-
ment'°***) Detailed digital elevation models derived
from airborne LiDAR can also allow the modeling of
water flow, accumulation and runoff from fields!®*..

Uptake of LIDAR methods in agriculture in the UK and
China remains low, with barriers including data avail-
ability, sensor cost and required level of processing
expertise, as well as challenges in accurately estimating
crop parameters in dense, low canopies, for example, early
in the growing season'®'). However, data availability is
improving (airborne LiDAR for much of the UK is now
freely available from the UK Environment Agency) and
further miniaturisation and development of LiDAR
technologies, including multispectral and hyperspectral
LiDAR sensors, will offer new possibilities for PA,
including monitoring of crop biochemistry!®!.

2.3.3 Portable hand-held sensors

Portable hand-held sensors have been developed for crop
growth parameter measurement, based on several channels
with high throughput spectrum signal. They provide
measurements of some specific crop parameters, such as
normalized difference vegetation index (NDVI) or canopy
cover (CC), with sensors that are small, low-cost and
suitable for field use. More importantly, these portable
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hand-held sensors could also be fixed in the field for high
frequency temporal monitoring of crop growth status.
Some commercialized products that have been developed
included the SpectroSense2 Meter for NDVI (Skye
Instruments Ltd., Llandrindod Wells, UK)[“], the Force-
A Dualex Scientific (Force-A, Orsay Cedex, France)®’
Decagon SRS-NDVI (Decagon devices, Washington,
USA)®1 and CropSense (NERCITA, Beijing, China)!*"),
Taking the CropSense as an example (Fig. 6), the diagnosis
models of crop growth status of CropSense are the core of
the CropSense app; it is based on a long time-series of crop
monitoring data collected over the past 15 years in China’s
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sensitive to the change of crop condition at the key growth
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The CropSense app is also customized to provide simple
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production systems are the most advanced, although yield
monitors are available for most crops. Production sensors
that are available for mounting on-combine for cereal
systems include:

(1) Yield monitors. Yield mapping refers to the process
of collecting geo-referenced measurements of crop yield
while harvesting (an example in Fig. 4(d)). Yield monitors
for cereal production were introduced in the early 1990s
and are sold standard on new combines in developed
countries. However, despite the accessibility of this
technology, UK growers do not routinely collect and use
these data, nor do they ensure that yield sensors are
properly calibrated at harvest. Only a small percentage
(8%) of UK growers are using the information!®”,

(2) Moisture sensors. The actual yield must be corrected
against the moisture content in the crop. Moisture content
of grain can vary considerably across a field. Grain
moisture sensors are a standard part of all yield monitoring
systems. They provide information on where grain
moisture, which is ultimately related to soil moisture, is
low or high in a field at harvest. Grain moisture sensors are
typically capacitance-based sensors and very susceptible to
error with any surface moisture, a common harvest
problem in the UK.

(3) Protein sensors. As well as measuring quantity in
combinable crops, harvester-mounted quality sensors are
also commercially available!’”!. Currently these systems
are not commercially supported in the UK and are only
used in research situations; however, quality sensing is a
key parameter in assessing the productivity and profit-
ability of a crop.

Crop production is weather dependent and seasonal. To
assess the effects of weather or other unpredictable factors,
the temporal variation of yield distribution within fields
over multiple years (ideally 5 years or longer) should be
collected and evaluated to define areas with potentially
high and low yields!”'). The indifference to yield data
collection in the UK is therefore a concern for effective
future implementation of many systems. Without yield
data, production is not properly spatially audited. If data
are not collected at harvest it is lost, unlike biomass and
vigour data that can be retrospectively mapped from
archived satellite images. When combined with soil,
landscape variables, other environmental factors and
management (inputs), the processed yield maps can be
used to investigate productivity and efficiency spatially
within a field!”"). This informs differential management in
subsequent seasons. While only anecdotal, the indifference
to yield mapping can be traced to the inability of growers
to effectively use the information and the time, albeit small,
to set up the equipment during a hectic time of year
(harvest). Both points, particularly the former, are valid
arguments. SSCM service providers in the UK have often
not provided effective pathways for yield map processing
and decision support that includes yield maps. The success,
and fiscally quantifiable success, of variable rate fertiliser

management based on soil nutrient mapping and biomass
sensing has lessened the importance of yield maps for in-
season management in the UK. As a result, there appears to
be less appreciation in the farming community of the latent
value of yield maps, especially for interpreting seasonal
(temporal) effects on production.

In China, the situation with yield mapping of cereals,
including rice and maize, has not been fully surveyed but
the technology is not widely utilized for a number of
reasons: (i) a lack of farmers’ interest, (ii) the high cost of
GNSS coupled yield monitors, (iii) the incompatibility
between yield monitors and tractors, and (iv) a lack of
technology support. Regardless of the reasons for the lack
of access and adoption of yield monitors, the lack of
historical yield data in commercial Chinese production
systems will also provide a stumbling block to PA
implementation. As for the UK, if yield data are not
collected at harvest, it is lost.

2.5 Variable rate technology (VRT)

VRT refers to any technology that enables users to vary the
rate of management operations, including crop inputs.
Typically, this combines a variable rate control system with
a GNSS on agricultural machinery and equipment. In the
UK, most agricultural machinery sold, including seed
drills, fertiliser spreaders and sprayers, are now capable of
variable-rate application. Variable fertiliser spreader and
seed drills are not widely available in the Chinese market,
however, although a limited number of farms and research
institutions have started to apply VRT for fertiliser and
seed.

There are three different approaches to implementing
variable-rate applications (VRA):

(1) Manual approach. The machinery operator is
responsible for varying the application rates on the
controller during the operation;

(2) Map-based approach. A differential prescription map
is generated from prior soil and/or crop mapping
information and analysis. The prescription map is
uploaded to the controller (computer system) that controls
an actuator (or similar) capable of automatically changing
the rate of input/management as the machinery moves
across a field.

(3) Sensor-based approach. Appropriate sensors
mounted on farm machinery are used to assess crop or
field conditions in real-time as an operation is being
performed. This real-time information is passed to a
controller that instantaneously determines an optimum
rate, based on a predetermined formula, to vary application
rates ‘on-the-go’.

For application purposes GNSS are not needed for (1)
and (3), however without them the operation cannot be
recorded and analyzed later. Option (2) is conditional on
access to a GNSS. In the UK, VRT is well developed but
the agronomic success of VRA is dependent on the quality
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of the decision process used. This is the same the world
over, including in China. A poor decision will yield the
wrong result even if the VRA is correctly done. The three
approaches above each have different limitations. A
manual approach relies on the operator to correctly
(subjectively) identify and respond to variation, while
also ensuring that the equipment is operating correctly.
This is a difficult task for even skilled operators. The
prescription map approach permits a quantitative analysis
that can be followed by validation and discussion with the
grower before implementation. This should allow pre-
scription maps to be manually adjusted based on local
expert knowledge to generate the best decision based on
available information and knowledge. However, this is a
time-consuming approach and is reliant on good commu-
nication and knowledge exchange between growers,
agronomists and SSCM service providers. Real-time
approaches are also quantitative but assume that this
local knowledge is captured within the software (decision
support system). This is rarely true in current systems, so
the variable applications are rarely done optimally,
although better than a uniform application. Also, ‘on-the-
go’ systems are often unable to respond to anomalous
situations in fields without direct, manual operator
intervention.

Correct VRT provides benefits through!’*:

(1) Economically improved crop yields via the optimal
use of inputs;

(2) Improved in-field equipment efficiency and;

(3) A smaller environmental footprint by minimizing the
over-application of inputs and thereby reducing the risk of
pesticide and fertilizer runoff or leaching into the
environment.

It should be noted that the effort involved in managing
variable rate inputs does raise costs, and that VRT requires
good knowledge of machinery and good compatibility
between hardware (different pieces of equipment) and
software (controlling) systems. On most farms, tractor
implements and controllers are often purchased from
different manufacturers and cross-compatibility and com-
munication issues can reduce reliability and increase user
frustration, creating a barrier to adoption''¥). This is true in
both developed and developing countries, primarily
because the driving factor of maintaining market share is
the same in both situations. The issue of cross-compliance
is being addressed in developed countries and developing
countries should gain from this, either through better co-
operation between large manufacturers or via intervening
third-party controllers, such as Frontier’s iSOYL iPad
application (Frontier Agriculture Ltd., Witham St. Hughs,
Lincolnshire, UK) that are able to link different systems.
Hopefully, the limitations in communication protocols that
have been a part of SSCM in the UK for the past 20 years
will not be replicated in China as VRT becomes more
common.

2.6 GIS-based farm management information system
(FMIS)

GIS is a computer system allowing the visualizing,
questioning, analyzing and interpreting of spatial and
temporal data to understand their relationships, patterns
and trends. An effective GIS should consist of two
fundamental components: precise map data and powerful
computer software to perform calculations and analysis.
The basic functions of a GIS are:

(1) To store different layers of information, which for
SSCM should include soil maps, soil nutrient levels,
remotely sensed data, and crop yields;

(2) To display geo-referenced data adding a visual
perspective for interpretation;

(3) To combine and manipulate data layers to produce a
desired spatial/temporal analysis.

More specifically, FMIS is a GIS-based system for
collecting, processing, storing and disseminating data and
information needed to carry out operations on-farm. A
recent study!’?! suggested that FMIS should meet the
following requirements:

(1) Have a design aimed at the specific needs of farmers;

(2) A simple user-interface;

(3) Automated and simple-to-use methods for data
processing;

(4) A user-controlled interface allowing access to
processing and analysis functions;

(5) Integration of expert knowledge and user prefer-
ences;

(6) Improved integration of standardized computer
systems;

(7) Enhanced integration and interoperability;

(8) Acalability;

(9) Interchange-ability between applications;

(10) Low cost.

Unsurprising there are few software platforms available
that meet all these requirements. In the 1990s and 2000s,
FMIS software was sold and marketed as a stand-alone
package. With the rise of cloud-computing capabilities and
fast broadband internet services, even to rural areas, the
trend in the UK nowadays is strongly toward web- or
cloud-based FMIS. This approach takes the processing
onus off the grower and also provides more ready access
for SSCM service providers to data. Web-based delivery
and processing was recognized as one of the Top 5 PA
technologies in both 2013 and 2014 by the Precision Ag
magazine!®’). The web-based or cloud-based FMIS
enables farmers and their agronomists and fertiliser adviser
to access information simultaneously and anywhere with
an internet connection. It provides the ability for growers to
download prescription map files (e.g., a nutrient manage-
ment plan or seed rate plan) direct to a computer/tablet/
controller in a tractor with 3G/4G signals. Stand-alone
software packages on fertiliser recommendations have
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been developed in many provinces in China but the
majority of systems have only been installed in computers
within agricultural extension offices. Farmers have little
access to the software. Web-based or cloud-based packages
will enable farmers to access or use FMIS more easily.

2.7 The evolution of smart and digital agriculture

Agriculture, like the rest of society, is an area for the
development and deployment of smart, networked tech-
nologies. In the first instance, smart agriculture is likely to
revolve around the networking and connectivity of existing
systems. For example, data transfer from tractor/machinery
to databases has historically relied on farmer intervention.
Improved connectivity will remove the need for this
intervention and ensure that all production data are
properly aggregated, archived and made available for
farm management!’*]. Smart agriculture will be dependent
on communications connectivity, which is still limited
even in ‘developed’ countries such as the UK, USA and
Australial”>7®). " Availability in developing agricultural
economies, especially higher speed broadband connectiv-
ity, is unreported but likely to be limiting to smart
agriculture in ‘developing’ countries as well. Smart and
digital agriculture is in its infancy, but the ability to
automate much of the data transfer and analysis will
transfer the decision process in agriculture and should be
applicable to all types of production systems, both large-
scale and small-scale farming systems, regardless of the
level of mechanisation in production. The CropSense
sensor described above, is a good example of an existing
technology that would be enhanced by being ‘connected’
and applicable to nearly any cropping systems.

3 PA adoption and responsible research
and innovation (RRI)

PA adoption in China in general lags behind the UK; as an
example, only 25% of farmland in one of the most
advances growing regions, Heilongjiang Province, uses PA
technologies!”). The national average will be much lower.
In contrast, the UK had 22% national adoption of GNSS-
controlled steering in 2012 with a rising trend. This did not
include adoption of other PA technologies™..

The key drivers that affect the intention to adopt PA
technologies fall into three categories’ " (1) competitive
and contingent factors, such as soil quality, farm size, and
location; (2) financial resources, such as costs reduction,
total income, and land tenure; (3) socio-demographic
factors, such as Farmers’ education, familiarity with
computers, access to information via service provider
and technology sellers.

The recent review available!’”! reported that farm size
was the most important driver affecting PA adoption,

followed by farmers’ confidence with computers. In
England, the number 1 barrier to adoption identified by
producers was that the technology was not cost effective
(Fig. 7). This is linked to farm size and turnover but also
to the ability of systems to demonstrate a return on
investment. This is often complicated by the fact that many
PA technologies provide a social and environment benefit
that is difficult to translate into a fiscal valuel’®.,

Reasons for not using PA technologies in England (2012)

% “ Not cost effective and/or initial
setup costs too high

“ Not suitable or appropriate for
farm size or type
Not easy to use

& Not accurate enough
Other reasons

Fig. 7 Pie chart visualizing the reasons for farmers in the UK not
adopting PA technologies collected from a Farm Practices Survey
in 2012 from the Department for Environment Food and Rural
Affairs'®).

In the view of US dealers and service providers, the two
most potent limitations to adopting PA techniques are farm
income and cost of precision services, but both financial
barriers have significantly reduced from 2004 to 201317,
In China, the most important limitation factors are farm
income, farmers’ education level, farm size and land
ownership!'?!. In addition, lack of detailed soil information
also constrains PA adoption. With increased precision of
soil maps, farmers will be able to make better decisions or
use of land by targeting crops, inputs and technologies
more efficiently.

Another barrier noted in the VRT section, but applicable
across the entire SSCM and PA system, is the lack of a
globalized standardization for electronic communication in
agriculture. In particular, co-operation among large
agricultural equipment manufacturers about effectively
implementing information transmission between farm
machinery has been slow. Commercial entities have a
conflict between being ‘open-access’ and protection of
their proprietary products that can cause compatibility
issues with equipment and computer systems from other
manufacturers.

Basic and applied research in China was recognized at
the 18th National Congress of the Communist Party of
China (2012) as a priority if the quality of life of Chinese,
and indeed global, citizens is to be improved. Policy
translation of PA requires understanding of how the
innovation process affects all stakeholders, including



Zhenhong LI et al. Comparing precision agriculture in the UK and China 15

agricultural workers, local residents, and rural commu-
nities. A summary of these key stakeholders can be seen
below (Fig. 8). Knowledge exchange between key actors
and stakeholders will also ensure the inclusive adoption of
novel agricultural technologies, which will ensure their
implementation aligns with the preferences and priorities
of end-users and local communities. In addition, ethical
issues (for example in relation to environmental, health or
socio-economic impacts of agricultural practices) must
also be addressed. It is noteworthy that there are ethical
concerns associated with not adopting a technology as well
as with the unintended effects of technology implementa-
tion!™**!!. Therefore, the concept of RRI is clearly an
important part of evolving policy agendas, but it has yet to
be defined and made operational across different contexts
and areas of application.

The importance of RRI as a part of institutional
innovation activities is well recognized®**! and requires
both systematic inclusion of stakeholder views and the
social, economic, ecological and ethical parameters®*l. Tt
has also been proposed that RRI can also support the
introduction of technologies that touch primarily upon
socially sensitive issues®!. These might relate to ethical
concerns, but also to the way in which local communities
are (re)structured as a consequence of technology
implementation. This may be particularly relevant in the
case of agricultural technologies, as local communities
may be highly dependent both economically and socially
on the agricultural systems in which they are embedded.
RRI is intended to help designers and manufacturers of
new technologies identify and accommodate public,
stakeholder and end user concerns when developing a

e [nitiate pilot
programmes
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of farmers, the
environment and
consumers

* Provide training
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development to
local producer
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new technology by engaging with a wide range of relevant
actors in an interactive, transparent process. This is true for
both developed and developing agricultural economies. To
date, social-economic considerations have not been well
incorporated into SSCM adoption in developed countries,
and in some cases the failures of SSCM technologies can
be linked to a failure to address these issues!®®). The
concept of ‘knowledge exchange’ is also central to the
development of effective RRI. However, the impacts of
such RRI processes on policy and innovation trajectories
have been frequently difficult to assess®”-*%].

Capacity and knowledge of emerging agri-food tech-
nologies (e.g., in the case of precision farming) has been
acknowledged as a limitation to adoption. In China,
agronomic services to growers are mainly provided by
local public extension agronomists. RRI must involve
engagement and knowledge exchange not only with the
growers but also the people that provide agronomic
support. Affected communities (primarily rural) also
need to be consulted, not least because community
structures (for example, the skills profile and community
arrangements) may be affected by new agronomic
specializms being introduced into the social mix and shifts
in employment patterns may result in social displacement
of hitherto employed groups. Likewise, technical services
are provided mainly via government agents. Engagement
at the government level, as well as the grower level, is
critical to success. Participatory approaches must be used
to engage all levels of the production and service supply
chain®®, and its impacts on agricultural technology
policies evaluated”). Public participation regarding pre-
ferences for technology implementation and consumer

* Lnsure
infrastructure
requirements
Prioritise
agriculture in
public spending

Enforce good
governance

THE FARMER

Private Sector

Continuously evolve product offerings

Design simple, affordable products and technologies
Leverage local distribution channels

Ensure local interactions for requirement gathering
and knowledge transfer

Fig. 8 Schematic view of the key stakeholders and their perceived roles in the innovation process in Chinese agriculture
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research regarding the ‘refining’ of final products may
optimise the innovation trajectories for agri-food technol-
ogies!”!]. Tt is important to recognize that RRI does not
assume a unidirectional communication process between
stakeholders, and the principal of ‘knowledge exchange’ is
a useful mechanism to ensure that a dialog between all
actors and stakeholders, including the general public, is
optimised.

Taking RRI activities through to impact is something
which has infrequently been assessed, or indeed operatio-
nalised. For example, Owen & Goldberg!®*! have observed
that time lags exist between the development of novel
innovations (e.g., nanotechnologies or genetically mod-
ified organisms), understanding of their wider impacts, and
implementation of appropriate governance. This has led to
repeated calls for more anticipatory and adaptive
approaches to technology implementation. A key chal-
lenge is pragmatic implementation of RRI policies, and the
agri-technology sector is an example of where effective
RRI strategies are required[()z]. Despite difficulties in
making the RRI concept in agri-food production systems
operational, effective agri-food technology innovation is
contingent on understanding its impacts on both local
communities and the supply chain.

RRI is facilitated by agri-food systems that are strongly
vertically integrated from the farm to the consumer or, in
the direct case of SSCM, from the field to the processor.
This relates to vertical integration in product flow,
information flow and service flow. In this context, Chinese
agricultural production systems potentially hold a con-
siderable advantage over many developed agricultural
systems as service provision is still strongly integrated
through government agencies. In the UK, agronomic
services are provided via multiple commercial entities. The
services supplied are fragmented, with different companies
promoting different technologies and methodologies that
suit their core business model, not the business model of
the grower. This provides a barrier to growers being able to
access a ‘total’ SSCM service for their own production
system. In China, the dominance of government agronomy
and agri-machinery agencies in providing support provides
an opportunity to provide effective support to PA adoption.
Unlocking this latent potential will be contingent on
effective government policy and the development of
capacity for PA service provision within these government
agencies. The latter is a particularly difficult proposition
and a known limitation to adoption'®®°? and will require a
coherent national approach.

4 Opportunities for SSCM development in
China and other developing agricultural
economies

The previous two sections have reviewed, compared and

contrasted the key technologies used in SCM and
identified the socio-technological needs associated with
technology translation. The generation of these two
sections has helped to structure the way forward for
SSCM and PA in China (and other developing agricultural
economies) and to set some key questions for framing
future research, development and knowledge exchange
activities. These can be summarized as following.

4.1 Optimisation of approaches to collect spatial and
temporal data

Developing agricultural systems lag behind developed
systems in the amount of spatial information that could be
or is collected in cropping systems. In some cases this data
are lost; however for other data layers, archived remotely
sensed data can be used retrospectively to generate
information. Satellite-based sensors therefore have a key
role to play in providing archived soil and crop informa-
tion. Agriculture in developing countries is generally
characterized by higher labor inputs and lower levels of
mechanization. Consequently, there are options for the
development of novel sensing systems and crop diagnostic
tools to gather ancillary crop and soil data from the labor
force. In these systems, the higher labor component may
actually enable an easier route to measuring crop
parameters, particularly crop quality attributes and crop
protection issues (pest/disease pressure).

Key questions: What and where are the spatio-temporal
information gaps in the agri-systems? What technologies
are needed to fill these gaps—are new sensors/systems
needed or are there transferable options? What are the
limitations to collecting relevant information?

4.2  Better understanding of agronomic relationships

Merging data sets from various sources may provide new
insights into the spatial variability of crop performance and
thus lead to a better understanding of the impact and
interactions of soil properties, topography, climate,
management and other factors on crop productivity. The
key to unlocking this is to ensure that good crop data,
including quality as well as quantity data, is collected in
every production system. If data and information cannot be
ground-truthed and validated it cannot be used with
confidence in any agronomic decision-support. Collecting
large quantities of sensor data, particularly satellite data, is
now fairly easy and routine. Collecting ‘real’, quality-
controlled on-ground data remains a major limitation to PA
research and extension.

Key questions: What are the relationships between
measurements, management and crop growth/yield? What
are the optimal approaches to merge different data sets?
What extra information can be extracted when merging
different data sets?
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4.3 Spatial decision support systems

Technological failures and shortfalls in the adoption of PA
can generally be linked to an inability to generate a good
decision from the technology, rather than a failure of the
technology itself. Agri-tech that provides good data but
cannot be translated into a sensible, effective decision will
not be adopted by growers. The most successful PA
technologies all have effective decision support and can be
linked to improved productivity and profitability. For
example, GNSS guidance and auto-steering systems have a
very simple decision process—Am I driving straight and
parallel at an exact distance from my last pass? This can be
linked to reduced overlap and inputs. Agronomic decisions
that are responding to crop growth and potential growth are
much more complex. Adding a spatial variance dimension
makes them even more complex. In these situations,
incorrect decision-making renders good data redundant
and makes producers distrustful of new technologies. If PA
is further adopted in the UK or is to become common
practice in China, spatial decision support structures must
be in place to support the growers’ use of technology. In
many cases, this will be reliant on good spatial crop
modeling, an area which has not been well advanced in
developed agricultural systems.

Key questions: What will be an appropriate spatial
decision support systems (DSS)? All in One? Customized
(with specific aspects only)? How should it be delivered?
How should local knowledge be incorporated?

4.4 Assessment of economic and environmental benefits of
PA

In nearly all current applications, SSCM is a spatialized
systems approach to improved production efficiencies.
While adoption of agri-technologies is usually driven by an
economic benefit, there are many potential social and
environmental benefits to the adoption of an SSCM
strategy. If the social and environmental benefits can be
metricized or translated into a fiscal value, then the true
value of SSCM could be determined and used by growers
to inform decisions on adoption. Currently, such metrics do
not exist and growers make decisions mainly on an
economic basis. Proper demonstration of potential benefits
from a production, social and environmental perspective in
different regions will increase farmers’ awareness and in
turn adoption of PA.

Key questions: What will be appropriate criteria/metrics
for assessment of the value of technology? Is it required to
be expressed in monetary form? Will policy or attitudes
permit socio-environmental value to be ‘paid’ to a
producer?

4.5 Big data and data sharing

PA and SSCM has always been information rich but is

becoming increasingly so. More data can be beneficial if
used properly, but equally can lead to ‘information
overload’ and result in a confused decision process for
end-users. Big data management is key to ensuring that
only relevant and reliable information is fed forward into
decision support structures. With particular consideration
of remotely sensed data, which is becoming increasingly
important for SSCM, the latest generation of earth
observation (EO) missions will produce a nearly continual
stream of high-dimensional data. This unprecedented
increase in data will, however, come with its own
challenges not least data access and processing. The
development of computationally efficient techniques for
converting massive amounts of remote sensing data into
time critical operational services is imperative for the
widespread reliance and uptake of EO technologies.

Metadata and uncertainty analysis has an important role
to play in this domain and this area must not be neglected
or lost as more data becomes available. This is not an issue
unique to agriculture, regardless of whether it is in a
developed or developing countries, and the agriculture
community needs to work with other domains to optimize
‘big data’ analysis.

Cloud-computing and data-sharing developments are
also integral to the success of a big data approach in
agriculture. These will be critical in developing countries
as it minimizes the computing infrastructure and capacity
that is needed ‘in country’.

Key questions: What will be the best way to process
next-generation agricultural data? How can data sharing be
done cost-effectively and maintaining data security? How
will communication regulations in China impact on data-
sharing and cloud-computing agronomy? How does
agriculture link into the big data community for its own
benefit?

4.6 Smart devices

Linked to cloud-computing is the functionality of everyday
smart devices that can be adapted to agricultural uses. The
advantage is that this technology is almost as ubiquitous in
developing countries as in developed countries. Therefore,
developments on this platform can be quickly transferred.
Multiple apps already exist for single purpose applications,
e.g., crop scouting and canopy area, and more integrated
systems for tablet PCs are in development or have recently
been released in the UK and USA. Smart devices are
internet-enabled and are effective data-sharing tools as
well as basic sensing systems. Typically, sensing is done
via image analysis using a camera function but there exists
a real opportunity to augment the sensing and diagnostic
capabilities of smart devices through add-ons and to
develop new apps for smart phone/tablet for field use.
Key questions: What will be the more effective ways for
the users to collect, analyze, interpret and share informa-
tion, in terms of both smart devices and apps? How ‘good’
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is this data for validation? Is crowd (farmer)-sourcing of
information valid for good decision support?

4.7 Knowledge exchange and transfer (KET) requirements

A range of technologies and knowledge are in place which
makes PA viable. However, PA adoption rates vary from
place to place, highlighting the importance of KET!®),
There is a need to ensure that technology adoption is
facilitated and not hindered through socio-economic
factors. The structure of the Chinese agricultural economy,
with its strong vertical integration in its agronomy and
machinery service supply, provides a method for the
federal government to support and promote adoption. This
will likely require some fusion of commercial and
governmental services to fill technology and knowledge
gaps, and this will provide challenges. Access and
availability of information and communication technology
(ICT) services will also determine the potential for KET for
SSCM and PA adoption.

Key questions: How is agri-tech implemented in a
society that is not highly technologically advanced? What
are the best methods for education of the populace in
technology? How does China (federal governments)
ensure capacity for service support in a potentially rapidly
evolving and expanding technology field? What infra-
structure is required to support ICT services in rural
communities?

The topics and the key questions posed above address
issues associated with technology development, integra-
tion and acceptance. While wide ranging, they are not
intended to be exclusive items but to provide a pathway for
PA going forward. Likewise, these topics and questions
should never be considered in isolation. The linkages
between the topics will be important—smart technologies
must link to big data structures and address known or
desired agronomic decision process. PA will not be
effected by having one smart, connected system but rather
an integrated, ‘smart’ system of systems.

5 Conclusions

Despite their potential, PA and SSCM have not been
universally adopted in highly mechanised, developed
agricultural systems. Adoption rates in the UK are rising,
mainly in response to better developed agronomic services
based on the maturity of existing technologies. Agricul-
tural systems that have a very low rate of technology
adoption will have the opportunity to benefit from these
mature technologies and to learn from the mistakes made
in economies that have had a higher level of SSCM
adoption. Many SSCM services, especially satellite-based
service, that are currently available in the UK, could be
quickly deployed into China. Global developments in ICT
have significantly reduced the gap in potential technology

transfer from developed to developing economies. How-
ever, successful adoption will also be reliant on how the
technology is presented and integrated into the agri-food
system. Key limitations to technical adoption of SSCM
will be costs (and benefits), a lack of service capacity and a
lack of access to key data layers, including high-resolution
soil maps and historical spatial crop production data.
Socio-economic limitations are likely to be associated with
issues of acceptance by growers, communities and
administrative agencies and the changes that the technol-
ogies induce in production practices and the rural
economy. Research into this area has been very limited
to date and will be critical to further adoption in both
developing and developed agricultural systems.
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