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Abstract 

This paper demonstrates how the stoichiometry and kinetic model of a chemical synthesis 
involving multiple reactions can be selected via a computational approach which uses 
consecutive optimisation steps. First, a list of all feasible stoichiometric relations consistent 
with the molecular weights or the elemental makeup of participating species is developed 
using integer linear programming (ILP). A second ILP is then used to construct all plausible 
stoichiometric schemata (combinations of the stoichiometric equations) which are used to 
instantiate kinetic model structures. Using a numerical integration routine, the models are 
simulated and unknown parameters estimated using an iterative optimisation algorithm. 
Produced model structures are then numerically scored, ranked and compared. This allows 
selection between competing models using both physical and the statistical evidence the data 
provides. The methods are demonstrated using synthetic and experimental data sets 
assuming liquid-phase reactions occurring in a well-mixed isothermally operated batch 
reactor. 

Keywords: Reaction engineering; Kinetic modelling; Model structure selection; Parameter 
identification; Statistical inference. 

1.0 Introduction 

The fine chemical and pharmaceutical industries have always focussed on new product 
development as a means of growth, with time to market being a critical success factor. A 
major bottleneck in the transition from chemistry research to process development is that 
more quantitative chemical synthesis information is needed. An important part of this 
information is the development of a kinetic model of the reaction system. This provides the 
ability to apply classical (but nowadays software based) reaction engineering principles 
to shorten chemical development time and costs through a reduction in laboratory 
experiments, rapid scale up and the avoidance of the need for expensive pilot trials. 

Batch and semi-batch reactors tend to be used in the fine chemical and pharmaceutical 
industries during the chemical development lifecycle. These reactors may provide 
experimental data suitable for estimating the unknown parameters of any proposed kinetic 
model. For chemical reactions occurring under isothermal conditions in a well-mixed (fed -) 
batch reactor, the kinetic model comprises a set of ordinary differential equations (ODEs) 
which describe the rate of change of the moles (or concentration, assuming constant density) 
of each of the chemical species with respect to time. Using readily available commercial 
kinetic fitting software, the ODEs are simulated, and unknown parameters are estimated 
using iterative optimisation algorithms. These algorithms aim to minimise a measure of the 
goodness of fit, which is normally the sum of the squared error between the model 
prediction and measured values of the moles of the chemical species.  

However, the selection of an appropriate model structure often requires considerable time, 
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expertise and intellectual effort. An incorrect structure (stoichiometry, reaction rate terms 
etc.) will give inaccurate predictions of the experimental measurements and decisions to 
change any of the coupled sub-components of the overall dynamic model require extensive 
re-simulation and parameter re-optimisation studies. In this paper we describe a 
computational approach used to systematically select kinetic model structure(s) and estimate 
unknown model parameters using experimental data, in an effort to partially automate the 
process. 

1.1 Relevant literature 

The essential components of a kinetic model of a chemical synthesis involving multiple 
reactions are a description of stoichiometry and the kinetic rate laws. If all the species 
participating within a chemical synthesis have been characterised, a set of independent 
chemical reactions can be obtained using the atomic matrix (a matrix of the number and type 
of chemical elements of each of the species), e.g. see Smith and Missen, (1979). It has also 
been demonstrated by Yin (1990) that multiple stoichiometric expressions can be generated 
by systematic elimination of the species and hence reduction of the structure of the atomic 
matrix. Exhaustive search can be replaced by more systematic strategies, for example, Linear 
programming (LP) has been used by Sen et al., (2006) to determine the stoichiometric 
coefficients of known chemical equations and for efficient, sparse biological network 
determination, August and Papachristodoulou, (2009).  

One of the first data driven approaches to determine reaction chemistry was published by 
Aris and Mah (1963). Their method allows the number of independent reactions to be 
established assuming that all the chemical species are measured. Later, Bonvin and Rippin 
(1990) proposed target factor analysis (TFA). This may be used to identify the number of 
linearly independent reactions and test if suggested reaction stoichiometry is consistent with 
experimental data. TFA has been used and advanced a number of times e.g. Fotopoulos et al., 
1994; Amrhein et al., 1999; Georgakis and Lin, 2005 as a tool to verify proposed reaction 
stoichiometry using process data. 

Using TFA as a basis, Brendel et al. (2006) and Bhatt et al. (2012) proposed and demonstrated 
an incremental identification method for kinetic models of homogeneous reactions systems. 
In their step-wise procedure, reaction stoichiometry is verified using TFA and then kinetic 
model identification strategies are used to determine the most appropriate ODE model, i.e. 
the structure and parameters of the rate laws. An alternative step-wise procedure has also 
been proposed by Burnham et al. (2008). This method uses statistical indices to guide the 
manual selection of kinetic terms from ODE models that correspond to the set of possible 
unimolecular and bimolecular elementary reactions. More recently, Willis and von Stosch 
(2016) used mixed integer linear programming (MILP) to determine kinetic model structure 
and associated parameters. A global ODE model structure was used describe all feasible 
unimolecular and bimolecular elementary reactions between chemical species. Network 
search within this superstructure using MILP was designed to promote sparse connectivity 
between chemical species. 

1.2 Methodology and relation to previous work 

In this work we use a layered approach to model development, shown in figure 1. First, we 
generate a list of all feasible stoichiometric relations consistent with the molecular weights, or 
the elemental makeup of participating species, and any constraints that capture reaction 
characteristics, e.g. that they are unimolecular or bimolecular. This is posed as an 
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optimisation problem with a linear objective function and constraints – an integer linear 
programming (ILP) problem. The list is then used to develop plausible stoichiometric 
schemata, i.e. combinations of the stoichiometric relations describing the stoichiometry of 
multiple reactions.  

 

 

Figure 1. A layered approach to kinetic model development. Using information regarding the chemical species, 

we generate all feasible stoichiometry (a library of terms and their combinations). All model structures are 

simulated using a numerical integration routine, and unknown parameters are estimated using an iterative 

optimisation algorithm. All plausible candidates are then evaluated using a corrected Akaike’s information 

criterion (AICc) and Monte Carlo Simulations to provide a ranked list of plausible model candidates. 

To automate schema selection, we use a second ILP. By default, this uses a limited constraint 
set; knowledge that a particular species is a reactant, product, or intermediate. However, this 
can be complemented by chemical insights e.g. that a particular reaction is known to occur. 
Our results demonstrate that the approach can provide a tractable number of schemata and 
hence ODE model structures. We simulate all kinetic models using a numerical integration 
routine, and estimate unknown parameters using an iterative optimisation algorithm. Over 
the last twenty years, there have been significant algorithmic advances and computer 
hardware improvements, to the extent that we suggest and demonstrate that this approach is 
computationally feasible.  

Previous work that has investigated the identification of kinetic model structure (discussed 
above) advocate avoiding the computational expense associated with repeated integration of 
alternative model structures, by approximation of the derivatives of the measured 
experimental data. This reduces kinetic model parameter identification to the solution of a 
set of algebraic equations. However, this approximation is generally ill-posed, i.e. small errors 
in the measured experimental data can be amplified to large errors in the estimated 
derivatives, which can cause structural as well as parameter identification problems. As an 
alternative, the integral of the measured data may be used, e.g. see Himmelblau et al. (1967). 
While being more robust it is still prone to systematic error in the estimation of the integrated 
expressions; exacerbated by typical experimental protocols that offer sparsely sampled 
measured data. Numerical simulation of the ODEs, whilst being more computationally 
intensive, aligns more closely to established kinetic fitting practice, and is known to produce 
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statistically optimal parameter estimates, provided the model structure is correct (e.g. see 
Bard, 1974), and can accommodate more readily sparsely sampled measured data. 

To discriminate between rival model structures, we use post-optimisation analysis to reveal a 
ranked list of the most plausible model(s). We use formal statistical metrics (information 
criteria; IC) which trade-off model complexity and goodness of fit, e.g. Akaike’s information 
criterion (!)#; Akaike, 1974) to develop a Pareto front of optimal solutions with respect to 
complexity of the stoichiometric schemata. This is complemented by the use of Monte-Carlo 
simulation (MCS) to obtain model parameter distributions. This then allows assessment as to 
whether the model structure has been uniquely identified and can be supported by 
theoretical considerations or physical reality. A number of authors discuss practical 
identifiability analysis, e.g. see Raue et al. (2009) which considers the obstacles to parameter 
estimation caused by data quality, quantity etc. 

In summary, the approach we adopt reflects the steps used when developing a kinetic model, 
given a limited understanding of a chemical synthesis and sets of exploratory experimental 
data. Our contribution is to suggest computational approaches that may be used to 
complement existing practice and provide a rigorous and systematic assessment of all 
plausible kinetic model alternatives. Our emphasis is on the development of kinetic models 
for novel chemical syntheses, which enables model development workflow to be automated 
using a layered optimisation framework. Automated construction of biochemical models has 
been considered by e.g. Herold et al. (2017), Kroll et al. (2017), where alternative software 
frameworks were used to investigate feasible models. These works share the same underlying 
philosophy, i.e. to systematically consider all alternative structures to mitigate the risk 
associated with promising models being over-looked during the early stages of process 
development. The novel aspect of this work is the development of an ILP approach to 
systematically develop a large set of feasible reaction schemata. Combined with existing 
approaches to kinetic parameter fitting and model discrimination, a step-wise assessment 
and ranking of all feasible model candidates can automate the task of kinetic model 
development, see discussions in Bonvin et al., (2016). 

1.3 Structure of the paper 

First, we describe the development of kinetic models for a chemical synthesis, highlighting 
the assumptions used in their construction as this is related to, and directly impacts, the 
process of model structure selection using measured data. In sections (3) – (6) of the paper, 
we describe the detail of the computational approaches and in section (7) their 
implementation. In section (8) we present two case studies that consider liquid-phase 
reactions in a well-mixed, isothermally operated batch reactor. In the first, we use simulated 
data to highlight the performance aspects of our approach using noisy data and scenarios 
where certain species are unmeasured. The CRN used comprises six species with four 
chemical reactions. The second case study uses a real data set where we consider what 
conclusions regarding model structure are supported by the data. This data set comprises 
four chemical species and pure batch operation is again assumed. Finally, in section (9) we 
provide discussions and conclusions. 

2.0 Developing a kinetic model of a chemical synthesis involving multiple reactions 

If ὔ  chemical reactions take place between ὔ  chemical species ὼ Ὦ ρȟȣȟὔ  a chemical 

synthesis may be described as, 
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ἡ╡ὀO ἡ╟ὀ      (1) 

ὀ ὔ Ø ρ is a list of the chemical species which is normally expressed in terms of their 
chemical formula,  ὀ ὼ ȣ ὼ , ἡ╡ ὔ Ø ὔ  the stoichiometric amounts of the 
reactant species, ἡ╟ ὔ Ø ὔ  the stoichiometric amounts of the product species (in any 

particular reaction). The stoichiometric amounts (ί  ȟί  of the Ὦ  chemical species 

involved in the Ὥ  chemical reaction are determined to obtain balanced stoichiometric 
equations.  

Kinetic models are defined to reflect pragmatic assumptions regarding the experimental 
regime. In this work we consider batch reactions only, i.e. there is no materials added or 
removed during the course of an experiment and that the homogeneous phase reactor is 
well-mixed and operating isothermally. This reduces the kinetic model to component 
balances, which can then be expressed in terms of stoichiometry and ὔ  individual reaction 
rates, 

Äἶ

ÄÔ
ὠἡἺȟ     ἶὸ ἶ  (2) 

The ODEs describe the rate of change of the moles, ἶ ὔ Ø ρ, of the chemical species with 
respect to time, Ô.  Ἲ ὔ Ø ρ are the ὔ  reaction rate terms, ὠ the volume, ἶ ὔ Ø ρ the 
initial conditions at time, ὸ. The matrix, ἡ ἡ╟ ἡ╡ is the stoichiometric matrix. An 
advantage of using the reactant ἡ╡ and product ἡ╟ matrices to represent the 
stoichiometry is that it is possible to uniquely represent a reaction scheme, which is not the 
case if ἡ is defined without reference to these. 

If the components have different densities the volume, ὠ of the reacting mass can be 
calculated using, 

ὠ ὠ
ὲ ὓὡ

”
 (3) 

This assumes additive volumes (an ideal solution) with ὓὡ the molecular weight, ὲ the 

moles and ” the density of species Ὦ.  

Chemical reaction rates are, in general, nonlinear functions of species concentrations, ὧ. For 

chemical reactions occurring in well-mixed ideal solution, a description of reaction rate is 
provided by the law of mass action kinetics (MaK). This states that the reaction rate of the Ὥ  
chemical reaction, ὶ, is proportional to the product of the concentration of the reactants 
raised to the power of their stoichiometric amounts,  

ὶ Ὧ ὧ  (4) 

The constant of proportionality, Ὧ, is the isothermal rate constant for the Ὥ  reaction. 

2.1 Selecting a kinetic model structure 

Using equations (1) – (4), the problem of selecting the structure of a kinetic model describing 



6 

 

a chemical synthesis is: given measured experimental data obtained from ὔ  experiments, 
develop one or more plausible models. This requires selection of the number and nature of 
the chemical reactions, i.e. defining ἡ╡ and ἡ╟, specification of the structure of the reaction 
rates, Ἲ and estimation of the isothermal rate constants. Assuming MaK, the structure of the 
rate terms is defined by (4) using the stoichiometric amounts in ἡ╡. We use this assumption 
to develop kinetic models unless there is evidence to suggest otherwise, e.g. inhibition and so 
on.  

3.0 Developing a list of all feasible stoichiometric relations 

Knowledge of the participating species and their molecular formula may be used to specify 
the atomic matrix, Ἃ ὔ Ø ὔ  where ὔ  is the number of species and ὔ  the number of 

atom types. In other words, the constants within Ἃ ὥȟ  are the subscript to element, Ὢ, 

in the molecular formula of species, Ὦ. This atomic matrix allows each stoichiometric relation 
within (1) to be written as,  

Ἳ╟ Ἳ╡Ἃ         (5) 

These linear algebraic equations may be solved to give the stoichiometric amounts of the Ὥ  
reaction, i.e. ▼╡ ί

ȟ ȟȣȟίȟ  and ▼╟ ί
ȟ ȟȣȟίȟ . Equations (5) are 

often an underdetermined set (there are fewer equations than unknowns), and without 
additional constraints, any vector Ἳ╟ Ἳ╡  that satisfies (6) represents a possible 
stoichiometry. When multiple reactions take place, a set of independent chemical reactions 
are sufficient to represent the change in species compositions, in terms of the symbolic 
representation of stoichiometric equations. The resulting independent set of elemental 
balance expressions may also be used to perform material balances, provided the number of 
equations is equal to the number of unknowns, e.g. see Smith and Missen, 1979; Gadewar et 
al., 2001. However, reaction rates depend on the actual reactions that take place, which must 
be identified (as closely as possible) in order to develop a dynamic model.  

Therefore, our aim is to generate a feasible subset of stoichiometric relations that are 
consistent with (5) and provide a list of terms that can be used as a basis for dynamic model 
development. To do this, we repeatedly minimise (6) using the constraints (5), to obtain the 
numerical values of the stoichiometric amounts within ▼╡ and ▼╟ (the decision variables for 
this ILP), 

ὐ ί ί  (6) 

A number of additional constraints are used (see Table 1) where binary variables, 
ȟ

 and 


ȟ

 Ὦ ρȟȣȟὔ  are linked to each of the stoichiometric amounts. The binary variables are 

used to define specific reaction characteristics e.g. unimolecular, bimolecular reactions and 
that a species cannot be a reactant and product in the same reaction. Furthermore, they 
enable a list of all feasible stoichiometric relations to be obtained using integer cuts 
(constraints that cut-out the previous solution to the optimisation problem). 

3.1 Integer cuts 

Integer cuts are successively introduced after each repeated solution of the ILP. If ♯
♯╡
♯╟
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is the concatenated ςὔ Ø ρ vector of binary variables, ♯╡ ὙὭȟὔὛὙὭȟρȟȣȟ
 and ♯╟

ὖὭȟὔὛὖὭȟρȟȣȟ
 obtained after the Ὥ  solution of the ILP, the following integer cut is added,   

ς♯ ♯ ᴁ♯ᴁ ρ (7) 

This guarantees that the same combination of binary variables and hence stoichiometry are 
not obtained when the optimisation problem is solved again. ᴁ♯ᴁ is the L0 – pseudo norm 
(the cardinality of the vector of binary variables) and ♯  ςὔ Ø ρ the vector of binary 
variables to be obtained at the next solution of the ILP. The integer cuts allow (6) to be solved 
repeatedly, successively adding the constraint (7) to the constraint set until the solution of (6) 
is no longer feasible, i.e. all ὔ  feasible solutions have been found. All the solutions are then 

concatenated into three matrices, ἡ╡╔ ὔ  Ø ὔ , ἡ╟╔ ὔ  Ø ὔ , and ἡ╔ ὔ  Ø ὔ  which 

we refer to as extended reactant, product and stoichiometric matrices respectively. It should 
be noted that, as a result of the repeated solution of this ILP, all forward and the equivalent 
reverse reactions are found and concatenated into the above matrices. This provides the 
basis for modelling reversible reactions as, in the subsequent stages of our approach, if a 
reversible reaction was supported by the data, then the two stoichiometric expressions 
(describing the forward and reverse reaction) would be included in the schema which is 
constructed as discussed in section 4.0. 

Constraint Comments 
 

ί
ȟ
ȟί

ȟ
ᶰᴚ  

The stoichiometric amounts are constrained to be positive 

integers. It is generally found convenient to choose the 

stoichiometric amounts so that they are all integers (with the 

integers being as close as possible to zero). 

ίὙὭȟὮ ὓ

ίὖὭȟὮ ὓ
      Ὦ ρȟȣȟὔ  

The stoichiometric amounts are constrained to be less than a 

maximum, ὓ (e.g. for the stoichiometry of elementary reactions 

an upper bound of two would be appropriate). 

ίὙὭȟὮ ά

ίὖὭȟὮ ά

     

The molecularity of a chemical reaction is constrained to a 

maximum value, ά (e.g. given elementary reactions, the 

molecularity may be specified as being no more than two), 

 


ȟ
ί
ȟ
ὓ

ȟ


ȟ
ί
ȟ
ὓ

ȟ

     Ὦ ρȟȣȟὔ  


ȟ
ȟ

ȟ
 ɴ πȟρ 

The inequalities ensure that if a binary variable is one the 

corresponding stoichiometric amount is greater than zero (and if 

it is zero, the stoichiometric amount is zero). M is the upper 

bound on the numerical value of the corresponding 

stoichiometric amounts. 

ὙὭȟὮ Ὑ

ὖὭȟὮ ὖ

   

Specify a limit on the number of types of reactants or products 

within a stoichiometric equation, i.e. the sum of the 
ȟ
 values 

must be less than a maximum number of types of reactants 

(Ὑ ) and the sum of the 
ȟ
 values must be less than a 

maximum number of types of products (ὖ ). For most 

reaction schemes an upper limit of two would be appropriate. 

ὙὭȟὮ ὖὭȟὮ ρ     Ὦ ρȟȣȟὔ  
It may (for most chemical reactions) be appropriate to assume 

that a species cannot be a reactant and a product within the same 

reaction. 

Table 1. Constraints used to generate feasible reaction stoichiometry by repeated solution of the ILP 
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Ὥ ρȟȣȟὔ . To exert control over the structural make-up of the stoichiometric expressions binary indicator 

variables are used, 
ȟ
 and 

ȟ
. The number and type of constraints that may be implemented using the binary 

variables will be dependent upon the chemical synthesis. Two potential examples are given, a limit on the 

number of reactants and products that appear in a stoichiometric equation and that a species cannot be a reactant 

and product in the same stoichiometric expression. 

Example 3.1 

We consider a coupled reaction system using as reactants butanol, acetic acid, and acetic 
anhydride, with product species butyl acetate and water (esterification reactions). The list of 
chemical species and corresponding atomic matrix are, 

ὀ

ở

Ở
ờ

ὅὌὅὌ ὕὌ
ὅὌὅὕὕὌ
ὅὌὅὕὕ

ὅὌὅὕὕὅὌ ὅὌ
Ὄὕ Ợ

ỡ
Ỡ

 Ἃ

ở

Ở
ờ

τ ρπρ
ς τ ς
τ φ σ
φ ρςς
π ς ρỢ

ỡ
Ỡ

 

Each row of Ἃ represents a chemical species (in the same order as the list of species) and 
each column the chemical elements, ὅȟὌȟὕ. To obtain the list of all feasible stoichiometric 
relations between the five species, we specify the maximum stoichiometric amount as, ὓ
ς, the maximum molecularity as, ά ς and the maximum number of reactants and products 
in a stoichiometric equation as, Ὑ ὖ ς. This is a default constraint set that we 
generally use to generate stoichiometric relations. We then repeatedly minimise (6) using the 
constraints (5) as well as those listed in table 1. This results in the following extended 
stoichiometric matrix through concatenation of the individual stoichiometries obtained at 
each iteration of the ILP, 

ἡ╔

ở

ỞỞ
ờ

ρ ρ ρ ρ π
ρ ρ ρ ρ π
ρ ρ π ρ ρ
ρ ρ π ρ ρ
π ς ρ π ρ
π ς ρ π ρỢ

ỡỡ
Ỡ

 

In other words, the stoichiometric relations, 

ὅὌὅὌ ὕὌ ὅὌὅὕὕᵶὅὌὅὕὕὅὌ ὅὌ ὅὌὅὕὕὌ 

ὅὌὅὌ ὕὌ ὅὌὅὕὕὌᵵὅὌὅὕὕὅὌ ὅὌ Ὄὕ 

ὅὌὅὕὕ ὌὕᵶςὅὌὅὕὕὌ 

In the first expression, the ester is being synthesised using acetic anhydride which is known to 
be relatively fast and essentially irreversible reaction. The second stoichiometric relation, 
represents the Fischer esterification reaction. This is known to be a slow reversible reaction. 
The last stoichiometric relation demonstrates that water hydrolyses the acetic anhydride into 
acetic acid. To develop a kinetic model, these relations could be used as the basis, or a 
decision could be made to explore the synthesis in more detail, such as the effect of a 
typically used acid catalyst. 

3.2 Using the list of stoichiometric relations 

For a novel synthesis, involving a number of chemical species, a generated list of potential 
stoichiometric relations can be large, i.e. ὔ  can be significantly large than the actual 
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number of reactions, ὔ . Our aim is to use a combination of these terms as a basis for kinetic 
model development. However, as the number of reactions are not known theoretically all 
ὔ ρȟςȟσȣ etc. combinations of the list should be considered. Very quickly, the number of 
possible combinations becomes large. The theoretical maximum being the total number of 

binomial combinations, ὔ В
ὔ

Ὥ
, where ὔ  is the total number of stoichiometric 

equations.  

To develop a robust identification framework suitable to problems of practical size, an 
efficient strategy is required to remove irrelevant model terms, i.e. incorrect combinations of 
stoichiometric equations within the list. The approach we adopt is based upon practical and 
physical considerations, e.g. ensuring all known species are within a proposed schema, 
identifying intermediate species from exploratory data, placing a limit on the maximum 
number of reactions and so on. 

4.0 Plausible stoichiometric schemata 

We use an index vector, ⱴ ὔ  Ø ρ, where •ᶰπȟρ to form a reduced matrix ἡ╔ⱴ  of ἡ╔ 

by removing all the rows which correspond to index values in ⱴ that are zero. This defines the 
stoichiometric schema ἡ╔ⱴ  ὔ Ø ὔ  where ὔ В•, the number of reactions included 
in the particular schema and hence the ODE description of the chemical synthesis,  

Äἶ

ÄÔ
ὠἡ╔ⱴ Ἲȟ     ἶὸ ἶ  

(8) 

Using experimental data, each structure may then be calibrated (unknown model parameters 
estimated). To obtain the numerical values of the index vector and each plausible ODE 
structure, we repeatedly minimise (9) to obtain the decision variables, •ᶰπȟρ. 

ὐ • (9) 

To obtain structurally feasible schema, we define ╢╡╔ὙὍ as a ὔ Ø ὙὍ submatrix of the 

columns of ╢╡╔ where ὙὍṖ ρȟȣȟὔ  is an index of known reactant and intermediate 

species and ╢╟╔ὖὍ as a ὔ Ø ὖὍ submatrix of the columns of ╢╟╔ with ὖὍṖ ρȟȣȟὔ  an 

index of known product and intermediate species and ὙὍ and ὖὍ are the cardinalities of the 
two sets. The following inequalities ensure the schema is constructed containing 
stoichiometric relations where our classified reactant species react, product species are 
produced and intermediate species are produced and react in at least one stoichiometric 
expression, 

ⱴ╢╡╔ὙὍ   ȟ ⱴ╢╟╔ὖὍ     (10) 

To exert control over the complexity of the schemata generated, ὔ , we also use the 

following inequality, 
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• ὔ  (11) 

A large number of schemata can be generated by repeatedly minimising (9) using constraints 
(10) and (11) and applying integer cuts to remove the previous solution and generate a new 
schema (the integer cuts are implemented using (7) replacing ♯ with ⱴ). In some instances, 
thousands of schemata can be produced because of the limited constraint set, but this is 
generally significantly less than the theoretical maximum, ὔ . However, this can reveal 
important structural information, e.g. the minimum number of reactions that are required, 
the maximum possible number of feasible schemata and the total number of possible 
schemata comprising ὔ ρȟςȟσȣ etc. reactions. It also allows scenario analysis to be 
performed, e.g. by restricting the maximum number of reactions that a particular species is 
allowed to participate in either as a reactant or a product, incorporating partial structure if a 
particular reaction is known or suspected to occur, and applying stoichiometric restrictions 
that are either known or can be determined from the experimental data. By stoichiometric 
restrictions, we mean for example, that two reactants combine in a particular ratio or that a 
particular reaction cannot proceed without the presence of a catalyst and so on. 

Example 4.1 

Consider the following common (although somewhat simplified) problem often encountered 
in process development – an organic synthesis involving a known main reaction, ὃ ὄᴼὅ 
which also forms a by-product, Ὀ. We wish to explore how the by-product is being produced. 
Suppose, that the relative molecular weights of the species are, 

Ἃ ρ ρ ς ς  

This represents a reduced description of the atomic matrix, where the terms in Ἃ have been 
multiplied by their respective atomic weights to give a vector of molecular weights 
(considered as being normalised for this example), i.e. equation (5) is reduced to a single 
equation representing the overall mass balance as opposed to individual elemental balance 
equations. 

To obtain a list of all feasible stoichiometric relations between the four species, we use our 
default constraint and repeatedly minimise (6). The full list of stoichiometries comprises ten 
reversible reactions. This list may be reduced by considering the known main reaction and all 
feasible reactions producing species, Ὀ, giving the extended stoichiometric matrix, 

ἡ╔

ở

ỞỞ
ờ

ρ ρ ρ π
ς π π ρ
π ς π ρ
π π ρ ρ
ρ ρ ρ ρ
ρ ρ ρ ρỢ

ỡỡ
Ỡ

 

Categorizing the first two chemical species as reactants, ὙὍ ρȟς, and the others as 
products, ὖὍ σȟτ, for the index vector, ⱴ ρ ρ π Ễ π  and the submatrices, 
╢ ὙὍ and ╢ ὖὍ we have the constraints, 
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ⱴ╢╡╔ὙὍ ρ ρ π Ễ π

ở

Ở
ờ

ρ ρ
ς π
π ς
ể ể
ρ πỢ

ỡ
Ỡ
 σ ρ  

 ⱴ╢╟╔ὖὍ ρ ρ π Ễ π

ở

Ở
ờ

ρ π
π ρ
π ρ
ể ể
π ρỢ

ỡ
Ỡ

ρ ρ  

This represents a feasible schema corresponding to the reduced stoichiometric matrix, 

╢╔ⱴ
ρ ρ ρ π
ς π π ρ

 

i.e. the stoichiometry, ὃ ὄᴼὅ, ςὃᴼὈ. Repeated solution will generate all feasible 
schema. If the ILP were further constrained so that the stoichiometry ὃ ὄᴼὅ appears in 
each of the schemata and that ὔ = 2, i.e. only one additional reaction produces species, 

Ὀ, then six feasible combinations are possible, all of which we would calibrate and assess 
using experimental data. 

5.0 Identifying kinetic model parameters using measured data 

To identify unknown kinetic model parameters, the following objective function is normally 
minimised, 

ὐ ὲ ἳȟὸ ὲὸ

ȟ

 

 

 

(12) 

This is the sum of the squared error (SSE) between the measured moles of the chemical 
species and the estimated values, obtained through simulation of the ODE model. ὔ ȟ is the 

number of measurements of species Ὦ, ὲ ὸ  is the measurement of the moles of species Ὦ at 

time, ὸ and ὲ ἳȟὸ  is the model estimate which is a function of the estimated rate 

constants in the vector, ἳ ρ Ø ὔ  and the time ὸ.  

To minimise (12) we use iterative optimisation techniques e.g. gradient based methods. This 
involves repeated numerical solution of the ODEs using many trial parameter sets until the 
simulation closely matches the experimental data. If there are multiple datasets, ὔ , and the 
data has been collected under different experimental conditions e.g. collected under two 
different isothermal temperature regimes, multiple models may be simulated, and separate 
objective functions minimised to give different sets of estimated rate constants, 

ἳ ρ Ø ὔ  Ὀ ρȟȣȟὔ . 

When using gradient based optimisation algorithms to solve constrained nonlinear 
optimisation problems, practical difficulties may occur. For example, if the model parameters 
are correlated, then flat regions in the parameter space can slow the progress of a gradient 
based optimisation algorithm. Furthermore, as experimental data contains measurement 
errors, the objective function may be a rough surface, which can potentially trap the 
algorithm in local minima, rather than the global solution. In these situations, global 
optimisation techniques may be more appropriate e.g. see Esposito and Floudas (2000); 
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Floudas et al. (2004); Singer et al. (2006) for an overview. More recently, Raue et al. (2013) 
advocate the use of multi-start procedures with gradient based optimisation routines to over-
come these problems and achieve globally optimal parameter estimates when the model 
structure is known. 

To perform screening of all plausible model structures via kinetic fitting model, uncertainty 
arises as a result of multiple factors; the data, the model structure (all models are a 
simplification of reality but many of the schema will be incorrectly aligned with the data), the 
estimated model parameters. To select a model structure, we rank the models according to 
information criteria (see section 6), using differences in model predictions as a measure of 
model structural uncertainty. While parameter estimation may potentially be sub-optimal at 
this stage, we have found that this provides a robust method to eliminate a significant 
number of the generated schemata, where the poorly proposed model structure dominates 
the achievable prediction error. However, to do this effectively, it is necessary to apply the 
additional constraints, 

π Ὧȟ Ὗ  (13) 

The lower bound assures that any identified isothermal rate constant is positive. We 
conservatively define the numerical value of the upper bounds as, 

Ὗ ἳ   

ἳ  ρ ὼ ὔ  are estimates of the isothermal rate constants obtained by minimising (12) 

using the entire list of ὔ  stoichiometries, where generally all the kinetic parameters within 

ἳ   will be non-zero, and ᴁ Ͻ ᴁ is the L1 – norm. The parameter bounds reduce the space of 

admissible parameter values and prevent sets of large values being used which can cause 
numerical problems with the numerical integrator, e.g., performing iterations over regions 
where the ODEs become stiff. 

6.0 Selection between competing models 

Popular metrics are based upon IC, e.g. Akaike information criteria (AIC; Akaike, 1974) and 
Bayesian Information Criteria (BIC; Schwarz, 1978). Both the AIC and BIC provide scalar 
metrics that express how likely it is that a specific model approximates the ‘truth’, or best 
model, in relation to others considered. For multiple model candidates this may be used to 
provide a ranked list of alternative structures. It is known, however, that IC-based methods 
are not always consistent for model selection as irrelevant model parameters may be selected 
e.g. see Shao, (1993). Therefore, as a complement to the use of IC, we use MCS to determine 
whether a model structure has been uniquely identified and further discriminate between 
plausible models. MCS is used to obtain model parameter distributions and their respective 
confidence bounds, from which an assessment may be made regarding practical 
identifiability. 

6.1 Akaike’s information criteria (AIC) 

!)# is probably the most popular method that is used for model structure selection given a 
data set, e.g. see Wagenmakers and Farrell (2004). It is calculated as follows, 
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!)#ὔὰὲ
В ὐȢ
ὔ

ςὔ  (14) 

This uses the minimum the value of (12), ὐȟ , obtained using dataset Ὀ (i.e. the value that 

gives the estimated parameters ἳ  assuming the structure is known). ὔ  is the total number 
of data points while ὔ  is the total number of parameters associated with the particular 

model structure. 

!)# assumes the amount of data is sufficiently large in relation to the number of model 
parameters. Burnham and Anderson (2002) suggest that provided ὔ τπὔ ρ, then 

the !)# formula is appropriate, otherwise a corrected value, Hurvich and Tsai (1989), should 
be considered to compensate for the reduced sample size, 

!)#!)#
ςὔ ὔ ρ

ὔ ὔ ς
 (15) 

Moreover, as the !)# converges to the !)# for large sample sizes, it is more appropriate 
generally to use the !)#. Normally, the aim given (15) is to select a model with the minimum 
!)#. However, as noted in Burnham and Anderson (2002), if theoretical information is 
available, then it is more appropriate to consider a number of models that are meaningful 
and credible. We therefore produce a ranked list of model structures based upon the !)#. 
We do this through consideration of the Pareto front of optimal solutions with regard to 
schema complexity (discussed further in section 7).  

6.2 Parameter distributions 

To obtain parameter distributions and confidence bounds we use MCS. While this is a 
computationally intensive approach, it avoids local approximation of nonlinear models, giving 
a realistic measure of the bounds of the model parameters and their respective distributions. 
The method that we use follows Motulsky & Christopoulos (2003). For each model to be 
investigated, which are normally those on the Pareto front of optimal solutions, the 
parameter estimates obtained through solution of (12) are used to generate an ‘ideal’ data 
set. Given this ideal data set, random error is added to each of the species moles, with a 
mean of zero and a variance, „ (where the variance estimate is obtained from the error of the 
original kinetic fit). Minimising (12) subject to constraints (13) provides a new estimate of the 
kinetic model parameters using the noise corrupted ideal data set. This process of scattering 
the ideal data and kinetic parameter estimation is repeated for a statistically large amount of 
times (e.g. 300 runs). Each parameter’s 95% confidence bounds can be determined by taking 
the 2.5th and 97.5th percentile values from the pool and the distributions of the model 
parameters visualised graphically. As the MCS essentially bootstraps the error to a fixed value 
based on the initial model’s error and randomly allocates this to recreate a model if a 
candidate model structure is overfitting the data, it would be expected that large changes in 
the parameter values may occur. Whereas, if the model is not overfitting the data, narrow 
and normally distributed parameter bounds should be obtained. 

6.3 Physical and additional statistical evidence 

Additional statistical evidence regarding the appropriateness of a model structure can be 
obtained by examination of the residual errors between the model and the measured data. 
These should be centred around zero and as close to being normally distributed as possible; 
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which may be visualised graphically. For kinetic parameters, as well as determining confidence 
bounds, physical meaning can also be investigated; are the numerical values sensible in 
relation to the data, does the confidence intervals imply potentially zero values, and is there a 
commensurate increase in their values for isothermal experiments conducted at higher 
temperatures etc. 

7.0 Implementation of the computational methods 

The algorithms and methods discussed in this work are coded in MATLAB. For simulation of 
the ODEs, we use, ode45 (found appropriate in this work however, if the system of equations 
were known to be stiff an alternative integrator such as ODE15s could be used); to generate 
the list of feasible stoichiometries’ and assess feasible stoichiometric schemata we use 
intlinprog; to perform kinetic fitting, we use fmincon (all with default settings). Following 
Degasperi et al. (2017) to reduce unintended increases of non-identifiability, data-driven 
normalization is used. This is performed post-simulation, where each species' measured and 
model-predicted values are divided by its measured maximum, to scale values between zero 
and one. For a fair comparison between species which have different numerical values, all 
quoted objective function and IC values use these scaled values. 

 
Figure 2. Pareto front of solutions (best solution obtained from schema containing ὔ πȟρȟςȟσ etc. reactions). 

Initially, there is a large prediction error and value of the !)# as 
ἶ
π . As the number of reactions in the 

schema increase the prediction error will decrease; the minimum error being obtained for schema comprising all 

feasible stoichiometry (this is normally a model structure that overfits the data). However, as the number of 

reactions increase the value of the !)# should reach a minimum (indicted with the circle at  ὔ υ reactions) 

and then start to increase. At the minimum there is a balance between model error and complexity (parsimony). 

To select model structures, we first generate all feasible stoichiometry. The stoichiometries 
are then used to generate plausible schemata. Minimum complexity schema is generated 
first, with increasing complexity as the number of integer cuts increase. For each schema we 
perform kinetic fitting. The best model obtained (as judged by the !)#) is used to obtain the 
Pareto optimal solution for each of the ὔ ςȟσȟτ etc. reactions, see figure 2. The iterations 
are stopped once an increase in the value of the  !)# is detected. For example, in figure 3, 
this would be after the parameters and hence the !)# of all schema comprising ὔ φ 
reactions have been determined with their Pareto optimal solution being greater than that of 
the best schema comprising ὔ υ reactions. 
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Prior analysis of the number of feasible schemata that can be generated given a particular 
value of ὔ  is used to assess the practicality of this approach, i.e. whether there is a 
significant reduction in the maximum number of combinations, ὔ  using identified or 
suggested structural constraints. 

8.0 Case studies 

Initially, we use simulated data to highlight the performance aspects of our approach. As the 
ideal structure exists, we can consider the consequence of data quantity and quality and 
validate the methods used to discriminate between plausible model candidates. The second 
case study investigates kinetic model selection for the thermal isomerization of - pinene to 
dipentene and allo–ocimene which also produces - and - pyronene and a dimer. The 
kinetics of the reaction have been extensively investigated e.g. Box et al. (1973); Stewart and 
Sorensen (1981); Rodriguez – Fernandez et al. (2006); Zhang, et al., (2017) using the 
concentrations of the reactant and product species that were reported by Fuguitt and 
Hawkins (1947). 

8.1 Simulated data 

The chemical synthesis consists of the following set of ὔ τ chemical reactions, 

ὃ ὄᴼὅ Ὀ 

ὄ ὅᴼὉ 

ὃ ὈᵵὊ 

The chemical reaction rates are defined assuming MaK, Ἲ ὧὧ ὧὧ ὧὧ ὧ , with 
isothermal rate constants, ἳ πȢς πȢρ πȢρυπȢπυ. To perform model selection, we 
assume that two sets of experimental data are available which are obtained under identical 
operating conditions, but with different initial moles of the reactant species. It is also 
assumed that there is no change in density, i.e. constant volume. Therefore, the data displays 
the concentration of each reactant species. Initially, we used the data set shown in figure 3, 
which is considered to be a rich data set – there are 30 measurements of each species and a 
measurement error of 10% (white noise with a standard deviation equal to 10% of the mean 
of the respective species concentration). In other experiments (section 8.1.3) we vary the 
amount of data and the level of measurement error; reducing the samples to as few as 10 
measurements of each species and a measurement error of 20% (white noise with a standard 
deviation equal to 20% of the mean of the respective species concentration). 

8.1.1 Generating the list of feasible stoichiometry and plausible stoichiometric schemata 

We define the reduced atomic matrix, Ἃ, of arbitrarily chosen molecular weights that are 
consistent with the reaction set, 

Ἃ  συφπρπψυχπρςπ 

By repeatedly minimising (6) using our default constraint set, eighteen feasible stoichiometric 
equations are obtained (see figure 3). Each row of the extended stoichiometric matrix 
represents a possible reaction stoichiometry, e.g. the first, ςὄᴼὊ, the second, ὄ ὅᴼὉ 
and so on.   

We use the full list to generate plausible schemata. Based on the species concentration 
profiles the only apparent intermediate is species Ὀ (the concentration goes through a 
maximum). The reaction and product species indices are therefore defined as, ὙὍ ρȟςȟτ 



16 

 

and ὖὍ σȟτȟυȟφ. The number of potential schemata considering ὔ ÍÉÎ = 3 (as there are 
six chemical species, this is the minimum number of reactions) to ὔ ÍÁØ = 5 are then 
identified by minimisation of (10). From a theoretical maximum of ὔ ςφςȟρτσ 
combinations which assumes all combinations of all eighteen stoichiometric relations, the 
actual number of plausible schemata is ὔ ρȟψρτ assuming ὔ υ.  
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Figure 3. To the left, the list of feasible stoichiometric relations generated assuming the atomic matrix, Ἃ
 συφπρπψυχπρςπ.To the right, simulated data (the ‘o’ and ‘x’ represent sampled data points of 

each species with superimposed measurement error, the solid line is the underlying signal). Two data-sets are 

displayed with different initial conditions. White noise with standard deviation equal to a 10% of the mean value 

of the species concentration was added to the simulated values of the species concentrations in order to simulate 

experimental measurement errors (30 samples of each species are assumed – a rich data set).  

8.1.2 Model selection 

Preliminary fitting of the over-parametrised model  (using all 18 stoichiometries) gave the 
model parameter upper bounds, Ὗ ȟ  1.81, 0.92. For each plausible schema, we 

performed kinetic fitting using the data set shown in figure 3. Typically, the runtime was of 
the order of 2 – 5 seconds for each model, with all ὔ ρȟψρτ structures being optimised in 
around 2 hours using an Intel® Core™ i7-7700HQ CPU @ 2.80GHz laptop with a 64-bit 
Windows 10 Operating System. Greater detail regarding the computational performance is 
shown in figure 6 and discussed in section 8.3. 

All the models were then ranked using the !)#. Table 2 presents a summary of the best 
model structures, as well as the Pareto front of optimal solutions obtained for increasing 
schema complexity, i.e. ὔ σȟτȟυ reactions. The (known) underlying model structure was 
correctly identified using the !)#, demonstrating that using sufficient good quality data, the 
procedure is able to identify the correct kinetic model structure. 
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Table 2. The best model (the one with the minimum, !)# ςπψρ) had the correct structure corresponding to 

the ὔ τ simulated reactions. The estimates of the isothermal rate constants obtained are shown. The best two 

alternative models (on the Pareto front of solutions) were for ὔ υ, all the correct reactions were identified 

with an additional reaction ςὄᴼὃ Ὀ (!)# ςπχω) and for ὔ σ, where three of the correct reactions 

were identified with the reaction Ὂᴼὃ Ὀ missing (!)# ρωσπ. A number of competing model 

structures were observed for schema comprising ὔ υ reactions (see the bar chart showing the top 50 

models). In all ὔ υ model structures, the underlying schema of four reactions were selected with an 

additional stoichiometric expression being included. 

8.1.3 Measurement noise and unmeasured species 

In a practical scenario, the signal to noise ratio may be lower, measurements of the chemical 
species may be missing due to analytical difficulties and the number of samples of the 
measured species may be small. We assessed the performance of the algorithm over a 
number of scenarios. As we decreased the number of samples of each measured species 
(maintaining the measurement noise at 10%), with as few as 10 samples per species the 
simulated model structure was selected. However, increasing the noise to 20% required a 
greater amount of measurements before the true underlying structure was revealed (15 
measurements per species). This is to be expected as the underlying species trajectories are 
difficult to establish due to large noise corruption and small sample size.  

In addition, we tried various examples assuming that a particular species was unmeasured 
and assuming fifteen measurements of the remaining species over the course of an 
experiment with 10% measurement error. The results confirmed what would be expected; 
provided an unmeasured species is not entirely independent, it is still possible to perform 
correct structural identification. For example, if species ὃ is not measured (for this particular 
set of reactions) it has ὄ and Ὀ to act as an indicator for its accompanying reactions the 
correct model structure was obtained. This was also the case, assuming either species ὅ, Ὀ or 
Ὁ were unmeasured. In contrast, when attempting to identify the underlying structure when 
species Ὂ was unmeasured, its reverse reaction Ὂᴼὃ ὄ cannot be easily detected. 
Moreover, it was found that removal of multiple species often resulted in an incorrect model 
structure, in that additional stoichiometries where included in the schema. In these instances, 
further model analysis using MCS was found to assist model selection. For example, assuming 
that species ὅ and Ὀ are unmeasured species gave the results shown in Table 3; an incorrect 
structure is indicated by the !)#, the next best model being the underlying simulated 
structure. 
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Table 3. With species ὅ and Ὀ unmeasured (15 samples of all other species with measurement noise of 10%) a 

set of ὔ υ chemical reactions were ranked as the best model according to the !)# . Four of the reactions 

correspond to the underlying simulated model structure. An additional reaction was also obtained ὅ Ὂᴼὄ
Ὁ. When compared to the correct model structure (!)# χχπȢωψ), a value of !)# χχσȢτ was obtained. 

The results of the MCS, shown in figure 4, indicate that for the incorrectly proposed reaction 
ὅ Ὂᴼὄ Ὁ, a significant population of estimated rate constants are at zero; suggesting 
that that reaction may be removed as it is likely fitting noise. Moreover, from a practical 
perspective, the value of the identified parameter is an order of magnitude smaller than the 
others and could be considered for elimination on this basis alone. Furthermore, the 
distributions of the parameter estimates are significantly different from an expected normal 
distribution suggesting that the model structure is over-parameterised. This is in contrast to 
the second model with ὔ τ reactions, where normal parameter distributions are 
obtained. Note that, the residuals of the prediction errors of the two models do not appear 
statistically different. Evidence would indicate the model structure with ὔ τ reactions, 
however, a definitive decision should not be made at this stage without additional knowledge 
or data.  

8.1.4 A note regarding plausible schemata 

The results obtained in section 8.1.3 (summarised in Table 3) indicate that the best schema 
comprised ὔ υ reactions. Increasing the maximum number of reactions to ὔ φ 

gives ὔ ψρυφ; a large number of possibilities given that we are simulating and kinetic 
fitting all structures. As this can be determined in advance, a decision can be made to 
perform kinetic fitting using all these structures or scenario analysis may be performed to 
reduce the number of possibilities. For example, as species ὃ and ὄ are reactants, the only 
feasible stoichiometry between these species is ὃ ὄᴼὅ Ὀ, if expert knowledge 
corroborates this, then using this stoichiometry in all the generated schemata reduces 
plausible structures significantly, ὔ φ gives ὔ σχπχ. A further reduction can be 

achieved by limiting the participation of each species in the total number of reactions. If 

ὔ τ, i.e. each species participates in less than four reactions, for ὔ φ there 

are ὔ ρψσς. Decisions to apply these constraints would be based upon expert 
knowledge, and we see this as part of the model development process. 
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(a) Parameter distributions obtained using MCS, ὔ υ to the left and ὔ τ to the right 

  

(b) Distribution of model residual errors, ὔ υ to the left and ὔ τ to the right 

Figure 4. 300 Monte Carlo simulations were performed using the model structures shown in Table 3. The 

combined distributions of the parameter estimates are shown and the red bar shows the nominal model 

parameter. For the model with ὔ υ reactions (to the left) the model parameter distributions are indicative of a 

over-parameterised model structure, since within its own error, its model parameters can change dramatically. 

The plots to the right show the parameter distributions for the model with ὔ τ reactions. The residuals 

(prediction errors) of the two models (shown separately for both sets of data) do not appear statistically different 

and appear to be normally distributed. 

Furthermore, note that for this example, we used limited information regarding the species, 
i.e. their molecular weights. A more significant reduction in schemata may be obtained if 
additional information regarding the chemical species is used, e.g. if the atomic matrix 
describing the elemental make-up of the species were known to be, 

!  
ς σ π υ σ χ
σ ς π υ ς ψ
ρ τ ς σ φ τ

 

Generation of the number of feasible stoichiometries would be reduced to six, of which the 
number of plausible schemata is only ten using the categorisation of the chemical species 
ὙὍ ρȟςȟτ and ὖὍ σȟτȟυȟφ. 

8.2 The thermal isomerization of -pinene 

The species involved in the chemical synthesis are α-Pinene !, α/β-Pyronene ", 
Dipentene #, Allo-ocimene $, and Various Dimers %. To determine a kinetic model 
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structure, we use two data sets that both use pure α-Pinene as the reactant at 189.5oC and 
204.5oC respectively - the data are tabulated in Stewart and Sorensen (1981). The atomic 
matrix (which is again the molecular weights of the species) is, 

Ἃ ρσφρσφρσφρσφςχς 

As a result of analytical difficulties (it was not possible to measure α/β-Pyronene) the 
reported data assumes 3% of the α-Pinene is converted to α/β-Pyronene. This assumption 
implies the reaction ὃᴼὄ, and any method used to select model structure would 
immediately identify this, possibly at the expense of other relationships. Box, et al., (1973) 
referenced this specific data set and reported difficulties in fitting data with data sets with 
such internal dependencies. Separate and independent studies, Stewart & Sorensen, (1981); 
Zhang, et al., (2017) that used postulated model structures did not propose the ὃᴼὄ 
reaction.  Further investigation of the dissertation by (Fuguitt, 1943) shows that the reported 
yields of α/β-Pyronene in the main body of the report were extracted from the Dipentene 
yield. Full distillation composition breakdowns in the dissertation’s appendix shows the true 
measured values of each species apart from α/β-Pyronene. Thus, data for α/β-Pyronene is not 
used and focus placed on determining the kinetic model structure describing the reactions 
between the remaining four chemical species, i.e. the chemical species considered are, 

 ὀ ! # $ %  , Ἃ ρσφρσφρσφςχς. 

As the chemical synthesis consists of isomers and dimers it can be assumed that species 
would not react with one another. Therefore, to generate feasible stoichiometry the default 
constraint set was adjusted by specifying, Ὑ ὖ ρ and a total of twelve possible 
stoichiometries are obtained, shown in figure 5. The first row representing the reaction, ὃᴼ
ὅ, the second, Ὀᴼὅ and so on.  
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Figure 5. To the left, experimental concentration data (shown as  black ‘o’ and ‘x’ for the two data-sets) and 

model prediction, for the model structure with . τ reactions. The time axis has been scaled using the 

maximum reported time a sample was taken in data-set 1. The red dashed line with red circles shows the model 

predictions. To the right, the full list of stoichiometric relations, where i.e. the chemical species considered are, 

 ὼ ὃ ὅ Ὀ Ὁ  , ὃ ρσφρσφρσφςχς. 
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8.2.1 Kinetic fitting of plausible stoichiometric schemata 

Based upon an analysis of the species concentration profiles (see figure 6), the only obvious 
intermediate species is Ὀ. Therefore, we classify ὃ as the reactant species and species ὅ and 
Ὁ as product species, i.e. ὙὍ ρȟσ and ὖὍ ςȟσȟτ. The minimum number of reactions 
that can occur, ὔ ÍÉÎ = 3 (no reversible reactions and all species connected in the 
schema), the maximum, ὔ ÍÁØ = 12 and each chemical species can participate in up to six 
reactions. The total combination of alternative schemata that may theoretically occur is, 
ὔ τπωυ. However, repeatedly minimising (10) using this limited constraint set with 
ὔ φ gives 749 plausible stoichiometric schemata. 

Initially we performed kinetic fitting using all twelve stoichiometric expressions as a basis for 
kinetic model construction, and the parameter bounds for subsequent kinetic fitting of all 
plausible schema were determined to be, Ὗ ȟ = 4.45, 24.7. We then carried out kinetic 

fitting using all 749 schemata (run time was around 3 – 10 seconds per schema with a total 
run-time of around 1.5 hours) – see Figure 6. The models were then ranked according to the 
!)#. The best models (those on the Pareto front) are shown in Table 4. We were able to 
select structures for the stoichiometric schema that have been proposed in the literature e.g. 
see Stewart & Sorensen (1981) and Zhang et al. (2017).  

It should be noted that Stewart & Sorensen (1981) fitted Arrhenius kinetics to ensure larger 
reaction rates for higher temperatures. However, we do not force larger rate constants for run 
2, neither were the kinetics fitted to Arrhenius-type relationships. This was to accommodate 
more possible scenarios which may be overlooked, like imperfect mass-action kinetics 
structures or experimental errors. While less applicable for this study, this may also detect 
reaction suppression at higher temperatures due to factors like catalyst saturation by more 
dominant reactions or the various reasons reported by Revell and Williamson (2013) which 
occur in more unique reaction networks.  

To further assess the kinetic model structures, 300 Monte Carlo simulations were performed 
for the reaction schemes involving ὔ τȟυȟφ reactions. The variation of the parameter 
estimates for the structures with ὔ υȟφ reactions suggested that both models represent 
an over-parameterised structure. The next best structure, according to the !)# is a model 
with ὔ τ terms, which corresponds to one of the model structures reported in Stewart 
and Sorensen (1981). Figure 5 displays the model predictions using this model. The model 
predicts the data well and the parameter distributions being close to normally distributed 
(see table 4); evidence of an acceptable model structure given the data. In addition, if we 
consider the general rule of thumb, that the isothermal rate constant doubles approximately 
every 10oC, the model structure with ὔ τ terms approximately follows this heuristic. 

8.3 Assessment of computational performance 

All reported experiments were performed using an Intel® Core™ i7-7700HQ CPU @ 2.80GHz 
laptop with a 64-bit Windows 10 Operating System. While algorithm run-time will be machine 
dependent, figure 6 demonstrates typical performance of the methods. Generally, kinetic 
fitting occurs in a few seconds; there are however, some outliers as a result of incorrect 
structures causing a greater number of iterations by the optimiser.  
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Table 4. The best model structures obtained for ὔ τȟυȟφ reactions. The scaled SSE (summed over both data 

sets) for each structure were, 0.086, 0.029 and 0.02. The values of the estimated kinetic rate constants are 

shown. The first column is the estimated parameters for data-set 1 (experiments at 189.5oC) and the second for 

data-set 2 (experiments at 204.6oC). The suggested structures for ὔ τȟυ reactions are those proposed in the 

literature and reported by Stewart & Sorensen (1981) and Zhang, et al. (2017). The two schema are shown in red 

on the bar chart showing the top 50 schema. The parameter distributions that are shown correspond to the ὔ
τ reaction structure. This would appear to be the most plausible structure as all the identified rate constants 

increase significantly with temperature. All quoted values of the rate constants are scaled (for kinetic fitting the 

data was scaled between 0 -10 time units using the maximum experimentally reported time). 

Although we did not investigate this, there is the potential to accelerate the solution times 
e.g. via the use of compiled code or parallel processing. In addition, it is known that by 
supplying the nonlinear optimiser with the model parameter sensitivities (known derivatives) 
improved performance can be obtained when compared to the use of numerical 
approximations (as used by fmincon). Furthermore, if the initial estimates of the rate 
constants were more accurate (rather than choosing a random value within the parameter 
bounds) less iterations would be required by the optimisation algorithm with fewer 
simulations of the ODE structures being required. A possible strategy here would be to use 
estimated derivatives; reducing the model structures to a set of algebraic equations and 
using this to generate an initial estimate of the unknown parameters for each model 
structure using a computationally efficient batch least squares approach. While our results 
are indicative of the performance these additional methods would allow an assessment to be 
made to the scalability of the method for problems where the number of unknown model 
parameters is large. 
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Figure 6. Algorithm run-time as a function of the number of terms in a schema (simulated example to the left 

and the -pinene case study to the right). Typically, kinetic fitting occurs in a few seconds; there are however, 

some outliers as a result of incorrect structures causing an increase in the number of iterations of the optimiser. 

A break-down of the run-time results indicated that the average percentage of time within the ODE solver was 

around 98% (demonstrating the computation burden of numerical simulation). Nevertheless, the total time taken 

to optimise all of the plausible stoichiometric schemata was around 2 hours (simulated data set, ὔ ρψρτ) 

and 1.5 hours (-pinene, ὔ χτω). 

9.0 Discussion and conclusions 

The selection of an appropriate kinetic model structure using exploratory experimental data is 
a challenging problem whose solution would have significant commercial impact. It would 
allow novel synthetic routes to be characterised, analysed and optimised efficiently using 
modern simulation tools. This work demonstrated that computational approaches to model 
selection can be systematically applied to analyse all plausible model structures. The methods 
we suggest may be used to automate the traditional approach to kinetic model development, 
where models are often developed based upon chemical intuition. As a demonstration, the 
computational approaches were successfully tested using two reaction systems; a simulated 
example and the thermal isomerization of -pinene.  

The reported results used data from batch reactor experiments and assumed the initial 
conditions of the species were known. We would like to further investigate aspects such as, 
how sensitive the method is to errors in the initial conditions and the use of data from semi-
batch experiments. Data from semi-batch reactors may impact on the computational 
efficiency of the approaches as the numerical integration of the ODE models may be more 
time consuming due to discontinuities, e.g. caused by changing feed conditions. This 
additional work will be combined with a more detailed assessment of the computational 
methods as discussed in section 8.3. In addition, we have used relatively low complexity 
systems (up to six chemical species and assuming and assuming an ideal batch reactor model) 
and would like to further assess the scalability of the method using more complex models and 
systems with a greater number of species. In section 8.1.4, we provide an initial assessment 
of the scalability of the problem. While it is obvious that the search space increases 
exponentially with problem size, i.e. the problem is NP-hard, it is not obvious whether the 
step-wise approach of progressively increasing the number of reactions in a schema until the 
!)# is minimised will be detrimentally affected by this, as we would expect that the any 
developed model would be relatively sparse. Furthermore, as noted in section 8.1.4 the size 
of the problem is dramatically reduced through the application of additional constraints – the 
use of all columns of the atomic matrix rather than a vector of species molecular weights. In 
this work, we used a limited constraint set which could be further extended. For example, the 
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temporal behaviour of chemical reaction networks is constrained not only by mass flow, but 
also by energy flow. At constant pressure, an isothermal reaction can only proceed in the 
forward direction if the Gibbs free energy of the reactants consumed is greater than the 
Gibbs free energy of the products produced e.g. see Beard et al. (2002). Therefore, energy 
constraints, as well as those based on mass, could be used to enhance the network search 
process.  

As a basis for the development of feasible stoichiometry we assumed the atomic matrix was 
available, e.g. the species molecular weights or complete knowledge of species molecular 
formula. However, this only allows stoichiometric relationships to be developed using a 
theoretical stoichiometric space, i.e. it is applicable where all species participating in the 
chemical synthesis are known. In a typical industrial synthesis, there may also be unknown 
species, which could be verified via a mass balance using the species molecular weights. 

It is known that the observed stoichiometric space can be generated from process data, e.g. 
using TFA (Bonvin and Rippin, 1990), and it would therefore be possible to obtain the 
necessary invariant relationships required to generate feasible stoichiometry using (6) via TFA 
(and the singular valued decomposition of the data matrix) if all species are measured. If only 
subsets of species are measured, then it may also be possible to discover subsets of invariant 
relationships between variables, sufficient to generate sets of feasible stoichiometric 
relations. This would also assist in situations where the elemental make-up of some of the 
chemical species is only known approximately, e.g. biomass composition, reactions involving 
macro-molecules etc. This is an area we would wish to investigate in future work. 

Finally, the case studies we presented highlight the importance of process data when 
considering the selection of kinetic model structure. It would be advantageous therefore, to 
incorporate design of experiments using automated experimental protocols, see Jeraal et al 
(2018), extending the work of Von Stosch and Willis (2016) using intensified DoE for optimal 
parameter identification and to discriminate between model structures, e.g. see Blanquero et 
al. (2016). 

10.0 Notation 

ἳ  Vector of estimated rate constants (using ὔ  stoichiometries and dataset, Ὀ) 

ἳ  Vector of estimated rate constants using dataset, Ὀ 
ὲ ὸ  Measurement of moles of species Ὦ at sample time ὸ 

ἡⱴ   Submatrix of ἡ 
ἡ╟ Matrix of stoichiometric amounts of product species 
ἡ╟╔ Matrix of all the feasible stoichiometric amounts of product species 
ἡ╡ Matrix of stoichiometric amounts of reactant species 
ἡ╡╔ Matrix of all the feasible stoichiometric amounts of reactant species 
ἶ  Vector of initial moles of species άέὰ 
ὐ  Objective function (plausible stoichiometric schemata generation) 

ὐ Objective function (feasible stoichiometry generation) 
ὓὡ Molecular weight of species Ὦ ÇȢÇÍÏÌ 

ὔ  Number of feasible stoichiometries 

ὔ  Number of plausible stoichiometric schemata 

ὔ  Number of binomial combinations of stoichiometric schemata 
ὔ  Number of datasets 
ὔ ȟ Number of measurements of species Ὦ in a dataset 

ὔ  Number of model parameters (in any given model) 
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ὔ  Number of chemical reactions 
ὔ  Number of chemical species 
ὔ  Total number of data points (measurements) 

ὖὍ Cardinality of ὖὍ 
ὖ  Maximum number of products in a stoichiometric equation 

ὙὍ Cardinality of ὙὍ 
Ὑ  Maximum number of reactants in a stoichiometric equation 
Ὗ  Upper bound for the estimated rate constants using dataset, Ὀ 

ὧ Concentration of the Ὦ  chemical species άέὰȢὰ  

Ὧ Isothermal rate constant of the Ὥ  chemical reaction ὰȢάέὰ
В

ȢὬὶ  

ὶ Rate of the Ὥ  chemical reaction άέὰȢὰ ȢὬὶ  

ί  Stoichiometric amount of product (Ὥ  chemical reaction, Ὦ  chemical species)  

ί  Stoichiometric amount of reactant (Ὥ  chemical reaction, Ὦ  chemical species)  

ὼ The Ὦ  chemical species 

!)# Calculated value of the Akaike information criteria 
!)# Corrected !)# for small sample sizes 
Ô Time Ὤὶ 
Ἃ The Atomic (or elemental) matrix 
ἡ Stoichiometric matrix 
ἶ Vector of moles of chemical species άέὰ 
Ἲ Vector of reaction rates άέὰȢὰ ȢὬὶ  
ὀ Vector of the ὔ  chemical species 
ὐ Objective function (kinetic fitting) 
ὓ Maximum stoichiometric amount 
ὖὍ Index of product and intermediate species 
ὙὍ Index of reactant and intermediate species 
ὠ Volume ὰ 
ά Molecularity of a chemical reaction 

Greek letters 


ȟ

 Binary variable associated with ί
ȟ

 


ȟ

 Binary variable associated with ί
ȟ

 

♯  Vector of binary variables 

ⱴ Index vector used to construct all feasible stoichiometric schemata 
” Density of species Ὦ ὯὫȢὰ  
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