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ABSTRACT Data analytics processes such as scientific workflows tend to be executed repeatedly, with
varying dependencies and input datasets. The case has been made in the past for tracking the provenance
of the final information products through the workflow steps, to enable their reproducibility. In this
paper, we explore the hypothesis that provenance traces recorded during execution are also instrumental
to answering questions about the observed differences between sets of results obtained from similar but
not identical workflow configurations. Such differences in configurations may be introduced deliberately,
i.e., to explore process variations or accidentally, typically as the result of porting efforts or of changes in the
computing environment. Using a commonly used workflow programming model as a reference, we consider
both structural variations in the workflows as well as variations within their individual components. Our
why-diff algorithm compares the graph representations of two provenance traces derived from two workflow
variations. It produces a delta graph that can be used to produce human-readable explanations of the impact
of workflow differences on observed output differences. We report with Neo4j graph database. Further, we
report explanations of the difference between workflow results using a suite of synthetic workflows as well
as real-world workflows.

INDEX TERMS Why-diff, provenance, reproducibility, big data, eScience Central, workflow.

I. INTRODUCTION
Advances in experimental science depend on the ability
to explore variations of data-driven, computational experi-
ments,1 which often are represented as scripts or workflows.
This is usually done by changing either the structure or the
parameters of the program, or by reproducing other scientists’
experiments. While successful reproducibility remains a fun-
damental goal in general, a number of research ideas have
been proposed to address the reproducibility crisis [2]–[4]
in specific settings, notably by virtualising the computation
environment [5]. Successful reproducible science requires
the ability to compare results across variations of an e-science
experiment, and to provide explanations for sets of results that
differ across executions. Our work compares two experiments
that are slight variations of one another, under the assumption
that both were executed successfully. In abstract, we assume
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1Following Jim Gray’s classic definition [1], we are going to use the term
e-science to refer to a broad area of experimental, data-driven science

an experiment E = (W ,C,D) consists of a workflow, W ,
along with configuration settings C and a set of dependen-
ciesD, which are typically external reference datasets, or soft-
ware libraries. An execution of E of a (multi-valued) input
X produces a (multi-valued) result Y = exec(E,X ). Clearly,
changing any of the components of E and/or X will likely
change the outcome Y . Thus, a number of specific scenarios
may unfold in this setting.
1. Suppose initially that a first experimenter, Alice, delib-

erately introduces changes in E producing E ′ and then
computing Y ′ = exec(E ′,X ). These changes may
include updating some library, using a new version of
a data source (changes to D), as well as modifying
the structure of W itself, namely by adding, remov-
ing, or changing some of its functionality. Given these
changes, Alice is then interested in understanding which
of the changes E → E ′ are responsible for the changes
Y → Y ′.

2. Later, a new experimenter, Bob, obtains a copy ofAlice’s
specification E and of X , introduces variations of his
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own producing E ′′, successfully executes E ′′ either on
X or on new inputs X ′ obtaining Y ′′, and then wants to
analyse the effect of these variations, where once again
Y 6= Y ′′.

3. Finally, Ted again obtains a copy of E and of X , attempts
to re-deploy E in his own environment but instead he
obtains Y ′′′ = exec(E,X ) with Y ′′′ 6= Y , an indication
that some unintentional change was introduced during
the porting operation.

Understanding the causes for these observed variations
is arguably important. For instance, in our own study on
providing a genetic interpretation for suspected diseases,
we have observed that the analysis of human variants com-
ing from high-throughput genomic data is sensitive to the
specific version of each of the reference databases used by
the analysis process [6]. In particular, changes in database
version may sometime cause the diagnosis for important
neuro-degenerative diseases such as Alzheimer to change
over time for the same patient. Similarly, as explained in
our previous work [7], we have observed striking difference
while reproducing a sentiment analysis experiment when we
changed the underlying software dependencies. With this
motivation, our work aims to develop a generic technique
to help the experimenters understand observed differences in
outcomes, either intentional or unintentional, between E and
other versions produced over time.

A. HYPOTHESIS AND ASSUMPTIONS
Knowledge of a program structure and of the variations
injected by the same or a different experimenter may help
explain differences in outputs Y ,Y ′ observed when the work-
flows are executed. We argue, however, that in order to
understand the impact of these variations, one also needs
information about the actual data flows through the program,
which is only available when observing the program execu-
tion. We, therefore, study the problem of generating expla-
nations for variations in experimental outcomes, in a general
setting where (1)W is structured as a workflow, and (2) each
of W ’s executions generate provenance traces that account
for the flow of data throughW givenC,D, and inputX . These
both are very realistic settings: many workflow management
systems are in use in e-science, and a number of these sup-
port automated tracking and provenance trace generation,
for instance eScience Central [8], Pegasus [9], Galaxy [10],
VisTrails [11], Kepler [12], Taverna [13], SciCumulus [14],
and others.
Hypothesis: The provenance of experiment executions,

in combination with the ability to compare datasets (inputs,
intermediate results, outputs) provides a useful foundation for
generating explanations as described above. This hypothesis
rests on two main assumptions: (1) that sufficiently detailed
provenance can be associated to an experiment and to its
execution, and (2) that ‘‘diff’’ functions are available to com-
pare the datasets involved in the experiment, i.e., X ,Y , and
the intermediate results. These assumptions come with their
challenges, for two main reasons. Firstly, provenance comes

at different levels of detail and completeness, depending on
the nature of the experiment and the runtime infrastructure
should be able to capture details of process structure as well
as execution. Secondly, the datasets used in e-science tend
to be complex, they vary vastly across disciplines, and their
interpretation is very domain- and application -specific. Thus,
diff functions that operate on data content are type- and
application-specific and may be difficult to define.

B. CONTRIBUTIONS
The main contribution presented in the paper is an algorithm,
which we have called Why-Diff, to compare two provenance
traces representing the executions of two workflows. It is
supposed to work given a well-defined set of possible work-
flow edits and under assumptions regarding the completeness
of the provenance graphs, and the availability of data diff
functions. In earlier work [7], [15], we studied the simple case
where only C and D may change, but not the structure of the
programsW ,W ′, and thus the provenance traces generated by
E,E ′, when they are represented as provenance graphs, are
isomorphic. Here we extend our previous study to cover the
general case where E ′ is obtained from E through a sequence
of edits, and as a consequence, the traces collected at runtime
are non-isomorphic and reflect structural differences intro-
duced through these edits. The abstract idea of comparing two
non-isomorphic graphs is proposed in our earlier work [16].

TheWhy-Diff algorithm accounts for a set of possible edits
that can be applied to transform W into a modified work-
flow W ′ (in addition to changes to D and C), and looks for
differences in the corresponding provenance graphs. It then
constructs a new delta graph that formally captures such dif-
ferences. Currently, a graphical rendering of the delta graph
is produced as a preliminary step to generating user-level
explanations, which is left for future work.

C. USE CASE 1: SIMPLE VARIANT INTERPRETATION (SVI)
‘‘Simple Variant Interpretation (SVI)’’ [6] is an experi-
ment which was developed as part of Recomp project
(recomp.org.uk). SVI tracks the entire diagnostic process
through storing of data consumed and data produced at
each step of process. SVI uses two external data sources
OMIM GeneMap [17] and NCBI ClinVar [18] to provide
interpretation of human variants to facilitate clinical diagno-
sis of genetic diseases say, for example, Alzheimer’s disease.
ClinVar’s clinical significance is simple to interpret. The
experiment helps to classify the pathogenicity of variants
into three classes: red, green and amber depending whether
the variants are known to be pathogenic, benign or have
unknown pathogenicity, respectively. The structure of the SVI
workflow is presented in Fig. 1.
This experiment is well suited for testing our hypoth-

esis as we store execution provenance of the workflow
executed between July 2015 and October 2016 and pro-
vides a good testbed with varied combination of changes
in the workflow, dependencies and input, thus observ-
ing above stated Why-Diff scenario in SVI Workflow.

34974 VOLUME 7, 2019



P. Thavasimani et al.: Why-Diff: Exploiting Provenance to Understand Outcome Differences

FIGURE 1. SVI workflow.

TABLE 1. Changes observed in the output of the SVI tool for a cohort of 33 patients following updates in the NCBI ClinVar reference database between
july 2015 and october 2016.

Table. 1 shows 528 workflow executions which anal-
ysed the variants for a cohort of 33 patients with three
distinct phenotypes: Alzheimer’s disease, Frontotemporal
Dementia-Amyotrophic Lateral Sclerosis (FTD-ALS) and
the CADASIL syndrome. For each patient we ran SVI
16 times, using consecutive monthly versions of ClinVar,
from July 2015 to October 2016, and recorded to what
extent the subsequent version modified a diagnosis that was
obtained using the preceding ClinVar version.

Table 1 summarises the results. We recorded four types
of outcomes. First, confirming the current diagnosis (�),

which happens when additional variants are added to the
red class. Second, retracting the diagnosis, which may hap-
pen (rarely) when all red variants are retracted, denoted v.
Thirdly, changes in the amber class which do not alter the
diagnosis (�), and finally, no change at all (�).

Thus, when a change in the input or reference data occurs,
a natural question arises: which of the past outcomes (patient
diagnoses) are affected by the change? If a new researcher
joins the same project, he/she might want to know what
caused these differences. These are the two interesting ques-
tions which laid the foundation for our further investigation.
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FIGURE 2. Sentiment analysis. (a) Version 1 and (b) version 2.

D. USE CASE 2: TWITTER SENTIMENT ANALYSIS
The ‘‘Twitter Sentiment Analysis’’ workflow [7] is a simple
workflow to illustrate a straightforward case of differences
in outcomes that originate from minor workflow revisions,
namely a different choice of library to achieve the same
goal. Using a Natural Language Processing API, the goal
of the workflow is to analyse the tweets and categorizing
them into positive, negative and neutral sentiment scores. We
have implemented two versions of the workflow as shown
in Fig. 2a and 2b, which differ only in the APIs used to assess
sentiment, namely ‘‘TextBLOB’’ and ‘‘NLTK’’, respectively.
When presented with the same input tweets, the TextBLOB-
based workflow produced 38.0% positive, 12.0% negative,
and 50.0% neutral sentiments (Fig. 3), while the NLTK-based
workflow (Fig. 4) reported 18.0%, 17.0% and 65.0% positive,
negative and neutral sentiments respectively.

FIGURE 3. Sentiment scores using TextBLOB.

FIGURE 4. Sentiment scores using NLTK.

II. RELATED WORK
We have experimented with varied workflow structures,
dependencies (NLTK instead of TextBlob) and inputs and
collected the execution provenance of the workflow evolution
which is well-suited to test our hypothesis.

Git [19] is perhaps the most popular software and docu-
ment versioning environment, however it only offers ‘‘raw
diff’’ capability for software engineers to understand why
two versions of the software produce different results. The
NoWorkflow tool [20] tracks low-level provenance from
python scripts, to support their debugging and reproducibility.
NoWorkflow captures execution provenance and provides
facilities to compare two different executions by visualising
low-level provenance details that show divergence in function
calls. However, NoWorkflow is not language-neutral and also
captures very low-level details that lack clarity in answering
the reason for different results. Vistrail [21] provides mech-
anisms for users to perform parameter sweeps and to vary
input data to compare results side by side.While it is useful to
compare the specification of different workflow, in our work
we are primarily interested in investigating the execution
provenance to look deeper into changes in D, C and W, i.e.
into the structure, configuration and input differences that
caused the change in Y.

Closer to our scope, PDIFFView [22] addresses the prob-
lem of comparing two workflow graphs in order to under-
stand the provenance of the result. The workflow structure
is captured as series-parallel graph overlaid with well-nested
forking and looping (SPFL). Similarly, Provenance Differ-
ence Viewer [23] is based on time-differencing algorithms
for differencing workflow runs. Four types of path edit oper-
ations (Path insertion, Path deletion, Path expansion, Path
contraction) are considered. The prototype system shows the
inserted and deleted paths in the original workflow. Each and
every workflow blocks are associated with the generic prop-
erties like title, block id, block description, block details, etc.,
and the variations in these properties could impact the final
output of the workflow. However, in the papers [22] and [23],
the comparison is made between abstract provenance of the
workflows and not between execution provenance.

The Delta Tool presented in [24] compares workflows at
three level of granularities: a high-level, clustered view; an
intermediate-level view focusing on workflow summaries;
and a low-level detail view. They focus on image-editing
workflows and so their criteria to compare two workflows
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include the quality of the result, Photoshop commands, and
efficiency of the workflow. In comparison, our work is more
general, as unlike image-editing workflows, in our compar-
ison we include activities, external data sources, external
libraries, input data, intermediate data, and output data.

Motivated by the problem of removing duplicates while
merging databases, [25] addresses approximate alignment of
RDF graphs using bi-simulation. The approach involves cre-
ating an alignment that connects pairs of nodes, in the two ver-
sions, that represent the same entity, and results in three types
of alignments: trivial alignment, bisimulation alignment and
similarity measure alignment. We have used trivial alignment
described in [25] inwhy-diff, when matching the input/output
of the first workflow with the input/output of the second
workflow irrespective of the structure of the workflow. This
is logical as the reproducibility is possible with the assump-
tion that input/output entities in the original and reproduced
workflows should be comparable.

Graph visualisation plays a key role in helping humans
understand differences between two similar versions of a
workflow. The delta graph defined in this paper, which we
visualise as result of the comparison, bears some resemblance
to the Direct Classification of node Attendance (DCA) [26],
an algorithm to find isomorphisms between both graphs and
subgraphs, with the main difference that why-diff highlights
the unmatched nodes as a subgraph. The DCA algorithm is
used in [27] on two use cases of a satellite imagery ingest
processing pipeline, and a provenance capture of the net-
work layers of large-scale distributed network applications.
Exploratory and explanatory visualizations are discussed;
the former helps researchers explore large volumes of data,
while the latter aids in explaining the provenance. This paper
partially relates to our research problem of explaining the
provenance but not address comparing workflow topologies.

Finally, an initial attempt at addressing the provenance
differencing problem to provide explanations can be found in
the ‘‘PDIFF’’ algorithm [28], where the idea of type-specific
and diff functions that reflect specific data semantics is also
introduced.

III. THE WHY-DIFF APPROACH
As mentioned in the introduction, the main idea behindWhy-
diff is to use the provenance traces produced during the
execution of two workflows that are each a slight variation
of the other. To provide a standard grounding for our study,
we are going to assume, realistically, that provenance traces
are expressed using the W3C PROV data model [29], and
represented in practice as graphs. We, therefore, start describ-
ing our approach by introducing the core PROV concepts
and its graph representation, and will then present the graph
matching algorithm that is central to the why-diff approach.

A. PROVENANCE GRAPHS FROM WORKFLOW EXECUTION
The PROVmodel (Fig. 5) defined by theW3C is essentially a
relational data model which includes three types of elements:

FIGURE 5. Prov-DM.

Entities, Activities, and Agents, and defines fifteen types of
relationships amongst them. To represent the basic prove-
nance of a workflow execution, however, we only need to use
Entities (En) and Activities (Act), and two of the available
relationships, namely used ⊆ Act × En and genBy ⊆
En×Act . Our representation of workflow provenance follows
a common pattern, suggested for instance in [30], where a
workflow W is defined by a collection b1 . . . bn of com-
ponents (‘‘blocks’’), and a collection {bi → bj} of data
dependencies (‘‘channels’’) amongst blocks.

When W is executed, a provenance recorder observes the
flow of data items along the channels as individual events
and records these events using the provenance model. Specif-
ically, one execution of block b is represented by a PROV
Activity, a, and each data item d seen on a channel by an
Entity, e. An event where data item d represented by e flows
from block bi to bj (usually, these channels are terminated
by output/input ports) is captured as genBy(e, ai), used(aj, e),
where ai, aj represent the activities for the execution of bi, bj,
respectively. At the end of the execution, the collection of all
Entities, Activites, and their relationships forms a PROV doc-
ument, which describes the entire provenance trace. As these
relationships are binary, it is straightforward to represent a
PROV document P as a directed graphG = (V ,E), where the
nodes V ⊂ En ∪ Act are labelled as either Entities or Activ-
ities, and the edges represent the relationships, i.e., a

used
−−→

e ∈ E iff used(a, e) ∈ P, e
genBy
−−−→ a ∈ E iff genBy(e, a) ∈

P. Why-diff operates on this graph representation for PROV
documents.

In addition to Node types (i.e. Entity and Activity), arbi-
trary properties may also be associated to graph nodes. These
are used to represent block-specific attributes for activities,
such as the block’s configuration, the set of its library depen-
dencies, its version, and possibly more. Similarly, properties
such as version number may be associated to entity nodes that
represent data. It is essential to capture all properties that are
useful for why-diff to distinguish between two versions of a
block, or of a reference dataset.

VOLUME 7, 2019 34977



P. Thavasimani et al.: Why-Diff: Exploiting Provenance to Understand Outcome Differences

FIGURE 6. Provenance patterns. (a) Activity insertion. (b) Activity deletion. (c) Activity update (isomorphic traces).

B. TYPES OF WORKFLOW EDITS
We model the transformation of a workflow W into W ′ in
terms of a sequence of elementary edits, where an edit is
one of:
• inserting a new block into a sequence of existing work-
flow blocks (Fig. 6a),

• removing a block (Fig. 6b), and
• updating a block (Fig. 6c).

These three elementary workflow edits translate into simple
patterns in the corresponding provenance traces observed
upon execution ofW ,W ′, as shown in Fig. 6a, 6b, and 6c. In
these traces, data is represented by ‘‘entities’’ as oval-shaped
nodes, while the activities that represent workflow block
executions are the box-shaped nodes. Edges from entities to
activities and from activities to entities denote genBy and
used relationships, respectively.

1) ACTIVITY INSERTION
In Fig. 6a, the trace on the left indicates that the initial input
E1 was consumed by A1, which generated E2, which in turn
was consumed by A3 to produce output E4. The trace on
the right includes the new activity A2, corresponds to a new
block placed between A1 and A3 in the edited workflow. This
means that the output E2 was consumed by A2, and that A3
receives A2’s new output E3 instead in the edited workflow.
Note that, because of this insertion, A3’s own output would
have changed, i.e., we expect to observe E4 6= E4′.

2) ACTIVITY DELETION
Fig. 6b shows the complementary pattern where the block
corresponding to A2 is removed inW ′. Again, the final output
E4′ is affected by the edit.

3) ACTIVITY UPDATE
Finally, Fig. 6c shows two isomorphic provenance graphs,
where the only variation is in A3, which becomes A3′ as

the properties in the block it represents have changed. Once
again, output E4 is affected by this change.
The latter accounts for any change in the block’s configura-

tion, or in one of its properties, for instance, the version of one
of the libraries it depends on. Note that processing blocks can
also be used to load external datasets. Thus, an update of such
data reading block may be used to model a version change in
the data being loaded.

The dotted lines in the figures represent matching nodes,
and are described later in the section III-D.

C. COMPARING DATA AND ACTIVITY NODES
Comparing two provenance graphs requires a family of diff
functions to compare any two entity and activity nodes in the
graph. Let V A

1 and V A
2 be the activities in first and second

worflow graph respectively. An activity node a1 that repre-
sents a block in V A

1 can be in one of three states with respect
to activity node in V A

2 : two nodes a1 ∈ V A
1 , a2 ∈ V A

2 are
either (1) the same, when they represent exactly the same
block, which is unchanged fromW toW ′; (2)matched to each
other if they both represent the same workflow block, which
however has been edited (as in Fig. 6c); or (3) a1 ∈ V A

1 (resp
a2 ∈ V A

2 ) is unmatched when a1 (resp a2) does not have a
matching activity node in the other graph.

Let V E
1 and V E

2 be the entities in first and second wor-
flow graph respectively. We make the same distinction for
data items, represented by entity nodes V E

1 ,V E
2 , namely:

two entity nodes e1, e2 are (a) the same if they contain
the same data, (b) matched if they have the same name,
or WFMS-assigned identifier, but their contents are differ-
ent, or (c) unmatched if no entity nodes match them in the
other graph.

To capture these three possibilities we introduce two
abstract diff functions:

equal : En ∪ Act × En ∪ Act → {True,False} (1)
match : En ∪ Act × En ∪ Act → {True,False} (2)
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(with the implicit understanding that entities are only com-
pared to entities, and activities to activities). Thus, for any
〈x, y〉 ∈ V E

1 × V E
2 ∪ V

A
1 × V A

2 , same(x, y) denotes case
(1), match(x, y) case (2), and ¬match(x, y) case (3). Note
that same(x, y) implies match(x, y), but a pair of matched
activities may or may not be the same. As we will see, why-
diff searches for pairs of nodes that can be ‘‘matched’’ to each
other.

In our implementation we have realised these functions to
operate on data types and block properties that are specific
to the eScience Central workflow manager [8]. For concrete-
ness, in the following we refer to this implementation (see
also Sec. IV for further details).

The comparison method of activities works differently
form that of activities, as follows.

Regarding activities, we note that in eScience Central,
a block is associated with identifier and properties. The
block’s identifier is a combination of invocation id (i.e.Work-
flow’s id) and unique block instance’s id. when comparing
activities, we compare the entire set of properties for each
of two activities to determine whether they are the same.
If they are not, we use their block instance’s id to determine
whether two activities are matched.When a block is modified
as in Fig. 6c, the block instance’s id remains the same. This is
therefore a sufficient condition to match two activities. Thus,
if for instance a library version for block b fromW is updated
in W ′, b will be represented by two activities a, a′ in the
executions of W , W ′ respectively, and a, a′ will be matched
but not the same, because their block instance’s id are the
same but their properties do not match exactly. For example,
consider the SVI workflow (Fig. 1). A join activity from W
will only be matched with a corresponding join activity from
W ′ with the same ID (as there may be more than one block
of type join in the workflow), and these two activities may or
may not be the same.

Regarding entities, we make a distinction between input
and output files and intermediate data products. For I/O
files represented by e, e′, we define an implementation of
equal(e, e′) for each known data type for e, e′, so that e, e′

are the same if and only if the two files have the same con-
tent, as well as the same ids. Two entities e, e′ are matched,
i.e., match(e, e′), if e, e′ have the same filename, and they
are unmatched otherwise. Intermediate data products are rep-
resented by entity nodes, too, however in this case deep
comparison is not possible because eScience Central does
not store these files. Thus, we use the WFM-generated entity
ID along with a WFM-provided hash of the content, and
define equal(e, e′) if the hash values match, and match(e, e′)
(matched) if they have the same ID. Thus, two entities which
differ both in ID and hash value remain unmatched.

D. NODES MATCHING
Given two input provenance graphs PG1 = (V1,E1), PG2 =

(V2,E2), thewhy-diff algorithm tries to match pairs of entities
and activity nodes from each of the two graphs, using the
diff functions just presented.While theoretically thematching

process is equivalent to subgraph isomorphism, in this setting
the complexity of the matching is greatly reduced, because
nodes can be matched only with nodes of the same type, and
the edges represent relationships that are similarly typed. For
instance, from the provenance statement ‘‘x used y’’ we infer
that x is an activity node, and y an entity node.

To understand the changes in the workflows, we use the
equal() andmatch() operators to compare pairs of nodes from
the first and second provenance graph, as described in the
previous section (Sec. III-C). Three outcomes are possible:
either two nodes e1, e2 are equal: equal(e1, e2) = True,
or they are matched: match(e1, e2) = True, or they are
unmatched: match(e1, e2) = False. Considering for con-
venience a partitioning between Entity and Activity nodes:
i.e., V1 = V E

1 ∪ V
A
1 , V2 = V E

2 ∪ V
A
2 , these three outcomes

result in the following sets of nodes:

1) The set EQE of identical pairs of entities:

EQE = {〈e1, e2〉 ∈ V
E
1 × V

E
2 |equal(e1, e2)}

2) the set EQA of pairs of identical activities:

EQA = {〈a1, a2〉 ∈ V
A
1 × V

A
2 |equal(a1, a2)}

3) the setMN of pairs of matched nodes:

MN = MNE ∪MNA where (3)

MNE = {〈e1, e2〉 ∈ V E
1 × V

E
2 |match(e1, e2)} (4)

MNA = {〈a1, a2〉 ∈ V A
1 × V

A
2 |match(a1, a2)} (5)

(MN indicates ‘‘Matched Nodes’’, that is, pairs of
nodes that have been matched.

4) Note thatMatchedNodesMN may ormay not be equal.
Matched but unequal entity and nodes can be derived
from

UEQ = UEQE ∪ UEQA (6)

where
UEQE = {〈e1, e2〉 ∈ V E

1 × V E
2 |¬equal(e1, e2) ∧

match(e1, e2)}
UEQA = {〈a1, a2〉 ∈ V A

1 × V A
2 |¬equal(a1, a2) ∧

match(a1, a2)}
5) The set UM1 (for ‘‘UnMatched’’) of activity nodes in

V1 that have not been matched by any other node in V2:

UM1 = V1 \MN [0]

where MN [0] denotes the set of first elements of each
pair in MN , that is, the contributions to MN coming
from V1.

6) Similarly, the setUM2 of new activity nodes V2 that are
unmatched in the previous version of the graph, V1:

UM2 = V2 \MN [1]

where MN [1] denotes the set of second elements of
each pair inMN .
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FIGURE 7. Activity insertion & deletion. (a) Activity insertion and (b) activity deletion.

E. THE DELTA GRAPH
The sets just introduced are used to construct a new graph
1(PG1,PG2) = (V1,E1), where the nodes V1 are derived
from the sets above, and the edges E1 are derived from those
of the original graphs PG1,PG2, as described below. The
delta graph is designed to provide an intuitive summary of
the differences between PG1,PG2. To illustrate, consider the
examples in Fig. 7a and 7b, which show the cases of inserting
(resp. deleting) a single activity a21, and changing activity
a11 from PG1 into a22 in PG2 (see also Table 2).2

We use the convention that entity names from PG1,PG2
are represented by e1, e2 respectively, followed by the node
number. Similarly, activity names are represented by a1, a2,
followed by the node number. For example, e12 refers to the
2nd entity of the first graph and a23 refers to the 3rd activity of
the second graph. If the entity/activity from 1st graph has the
same identifier as a node in the 2nd graph, it is represented
with the ≈ symbol. For example, e12 ≈ e22 indicates 2nd
entity from 1st graph is equal to 2nd entity from 2nd graph.

In the example of Fig. 7a, the sets defined above are:

EQE = {〈e10, e20〉, 〈e11, e21〉}, single-border ovals;
EQA = {〈a10, a20〉} single-border rectangles;
UEQ = {〈a11, a22〉, 〈e12, e23〉}double-border rectangles

& ovals;
UM2 = {a21, e22} shaded areas

2These provenance graphs are rendered using GraphViz [31].

TABLE 2. Differences between the two graphs in Fig. 7a and 7b.

The pair 〈e12, e23〉 denotes that e12, e23 are matching
outputs, that is, they each represent the (only, in this case)
output from each execution, however they are ‘‘not equal’’.
The case for Fig. 7b is similar, with the pair 〈e13, e22〉.

Edges are added to E1 by noting that all original nodes
from V1 ∪V2 appear in V1, either on their own or as part of a
pair. Thus, for each edge x → y ∈ E1∪E2, an edge x ′→ y′ is
added to E1, where x ′, y′ ∈ V1, and either x ′ = x (resp y′ =
y), that is, x and/or y are single nodes in V1, or x ′ = 〈x, z〉
or x ′ = 〈z, x〉 in V1, that is, x is now part of a pair (similarly
for y′).

Note that, using this construction, the delta graph is not
strictly a provenance graph, because nodes may contain pairs.
However, we can still interpret the edges as usage/generation
relationships, and use them to provide explanations for the
observed differences in the output, namely e12 6= e23. Specif-
ically, edge 〈a11, a22〉 → 〈e11, e21〉 is interpreted as ‘‘the
activity was edited and one of the two versions consumed
input e11 ≈ e21’’, while 〈a11, a22〉 → e22 is read as ‘‘the
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Algorithm 1 Top-LevelWhy-Diff
Input: PG1, PG2
Output: 1 Graph
Begin

(MN, UEQ, UM1,UM2)←
TraverseAndMatch(PG1, PG2);

(MN’, UEQ’, UM’1,UM’2)←
Resync(MN, UEQ, UM1,UM2);

1Graph←
Contruct1Graph(PG1, PG2,MN’, UEQ’, UM’1,UM’2);

activity was edited and one of the two versions consumed the
new input e22’’. Other edges are interpreted similarly.

F. PROPOSED ALGORITHM: WHY-DIFF
We now present the matching algorithm that computes the
sets defined in Sec. III-D and the delta graph presented in
Sec. III-E. Why-diff extends the algorithm described in [15],
which was limited to the simple case of a change in activity
properties.

At the top level, the algorithm consists of three phases
(see Alg. 1). Initially, a matching phase populates the sets
MN ,UEQ,UM1,UM2 by simultaneously traversing the two
input graphs PG1,PG2, starting from their respective input
entities. This is shown formally in Alg. 2 and also described in
more detail below, where we will note that some of the poten-
tial matches between pairs of nodes may have been missed,
unless the two graphs are isomorphic. Thus, we introduce
a second phase, called Resync, where we attempt to find a
match for some of the unmatched nodes that emerge from the
first phase. Indeed, it may not always be possible to ‘‘syn-
chronise’’ two traces that diverge too much. The algorithm
will signal when this is the case. Specifically, it keeps a list of
‘‘out of order’’ nodes. During the resync phase, the algorithm
goes through the lists and attempts to match these ‘‘out of
order’’ nodes. Those that cannot be matched are returned as
such. Lists that have not been exhausted after this phase can
be inspected further. Note that, by construction, the ‘‘delta
graph’’ produced by the algorithm will always identify the
points where the traces diverge beyond possibility of resync.
Once the sets are computed, they are used to build the delta
graph as sketched above, and described in detail in Alg. 3.

We illustrate Alg. 2 with reference to Fig. 8. The algorithm
starts by finding all input entity nodes in each of the two
graphs. At each step, the compare() function makes use of the
equal(.) and match() functions as explained above (Sec. III-
D).

The algorithm begins by finding the input nodes of each of
the two graphs using findInputs() method. These are entity
nodes with no outgoing genBy edges, that is they have no
generating activity. In the example these are {e10, e11} and
{e20, e21}. These nodes are used to initialise the four target
setsMN ,UEQ,UM1,UM2. The algorithm then moves to the
activities that consume each of the two sets of inputs, in this
case, a10 and a20. These are found by finding the activity

Algorithm 2 TraverseAndMatch
Input: PG1, PG2
Output:MN , UEQ, UM1,UM2
Begin

(E1)← findInputs(PG1);
(E2)← findInputs(PG2);
(MN,UEQ,UM1,UM2)← Compare(E1,E2);
do

(A1)← getUsed(E1);
(A2)← getUsed(E2);
(MN,UEQ,UM1,UM2)←
append((MN,UEQ,UM1,UM2),

Compare(A1,A2));
(E1)← getWasGeneratedBy(A1)
(E2)← getWasGeneratedBy(A2)
(MN,UEQ,UM1,UM2)←
append((MN,UEQ,UM1,UM2),

Compare(E1,E2));
if E1 6= Empty&&E2 = Empty then

addExtraNodes1(E1);
end
if E1 = Empty&&E2 6= Empty then

addExtraNodes2(E2);
end

while E1 6= Empty && E2 6= Empty;
(E1)← findOutputs(PG1);
(E2)← findOutputsPG2);
(MN,UEQ,UM1,UM2)←
append((MN,UEQ,UM1,UM2),Compare(E1,E2));

Function addExtraNodes(E1)
do

UM1← append(E1,UM1);
(A1)← getUsed(E1);
UM1← append(A1,UM1);
(E1)← getWasGeneratedBy(A1)

while E1 6= Empty;
Function addExtraNodes(E2)

do
UM2← append(E2,UM2);
(A2)← getUsed(E2);
UM2← append(A2,UM2);
(E2)← getWasGeneratedBy(A2)

while E2 6= Empty;

by used() method. The found activities from two graphs are
compared against each other using the equal(.) and match(.)
functions. The pairs of matched / equal activities are formed.
Then the entity are found by wasGeneratedBy() method and
pairs of matched / equal entities are formed. In this case
we have MN = {〈e10, e20〉 〈e11, e21〉 〈a10, a20〉} which are
also identical entities and activities.All the unmatched enti-
ties/activities from first graph are added to the list UM1 and
unmatched entities/activities from second graph are added to
the list UM2.
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FIGURE 8. Why-diff operation example.

Algorithm 3 Construct 1Graph
Input: PG1, PG2, MN ′, UEQ′, UM ′1, UM

′

2
Output: 1 Graph
Begin

1Graph← (PG1 ∪ PG2);
foreach (N1,N2) ∈ MN ′ do

(N1 ≈ N2)← Edit(N1);
(N1 ≈ N2)← Edit(N2);

end
foreach (N1,N2) ∈ UEQ′ do

1Graph← Highlight(N1 ≈ N2);
end
foreach N1 ∈ UM ′1 do

SubGraph1← Add(N1);
SubGraph1← AddLabel(‘‘Nodes_Deleted’’);

end
foreach N2 ∈ UM ′2 do

SubGraph2← Add(N2);
SubGraph2← AddLabel(‘‘Nodes_Inserted’’);

end

The traversal proceeds until the algorithm reaches the
outputs in each of the graphs. While this synchronized
traversal is efficient, it may miss some of the matches,

when these occur ‘‘out of order’’ in the graphs. Node a22,
e24, a23 and e25 for example, are not matched and end
up in UM2. Similarly, at the end of this phase we have
UM1 = {a12, e14, a13, e15}.
The entities that represent the workflow outputs are treated

as a special case, because on the assumption that the number
of outputs is the same in both versions, outputs are all paired
up. In the example, we constrain e15, e25 to be a match.
The Resync() function takes the cartesian product of all

unmatched nodesUM1,UM2 that have been ‘‘leftover’’ from
the previous phase, and tests each pair for a match. For
example, Resync() is able to match up a13 from UM1 to a23
from UM2. This last matching step relaxes the condition that
matching nodes must be ‘‘in sync’’ relative to the parallel
traversal of the two graphs. This result in updates to the sets
of matched, unmatched, and equal nodes. The setsMN ,UEQ
are updated accordingly.

We have already described the essential elements
of delta graph generation. Alg. 3 takes the final sets
MN ,EQA,EQE ,UEQ,UM1,UM2. For each 〈x, y〉 ∈ MN ,
a node with label ‘‘x ≈ y’’ is generated. The nodes that
are present in 〈x, y〉 ∈ UEQ are highlighted with double-
red-borders. Finally, nodes in UM1 are highlighted as a
subgraph labelled ‘‘Nodes_Deleted’’, and nodes in UM2 are
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TABLE 3. Notations.

highlighted as subgraph labelled ‘‘Nodes_Inserted’’. This is
to convey that these nodes could not find anymatch and hence
these are either deleted or inserted in the other workflow.

The more complete example in Fig. 8 shows why-diff’s
behaviour when dealing with a combination of activity inser-
tion (a22), deletion (a12), and changes (a11 → a21). The
delta graph on the right in the figure highlights each of
these changes separately and forms the basis to provide an
explanation system, which is the focus of our current efforts.

We measure the complexity of why-diff in terms of number
of match operations performed on any pair of nodes in the
two graphs. The two phases of the algorithm, namely the a
pair-wise traversal of both graphs, and theResync() operation,
are interconnected but initially we can consider them sepa-
rately. We can think of each provenance graph as consisting
of a layer of entity nodes, alternating with a layer of activity
nodes. These layers are connected through directed edges
and matches are performed only within each layer. In reality,
some edges may ‘‘jump’’ layers as for instance in Fig. 8,
however this will reduce rather than increase the number
of node comparisons, so we consider a layer-wise sequence
of iterations as the worst case. In this scenario, the number of

matches is a simple function of the number of nodes in each
layer and in each graph, and the number of layers.

Let kl denote the number of layers in graph l (for ‘‘left’’),
and let ali with i : 1 . . . kl denote the number of activities that
occur in layer i of l. We use the same notation for graph r (for
‘‘right’’), as well as for entity layers j in both graphs: elj, e

r
j .

Let Al , El denote the total number of actitivies and entities in
l (similarly for r).

Each activity layer i and entity layer j will entail alia
r
i , e

l
ie
r
i

match operations, respectively. Since the traversal stops when
the initial input layer is reached on one graph, themax number
of iterations is dm = min(kl, kr ). Thus the total number of
match operations is

M =
dm/2∑
i:1

alia
r
i +

dm/2∑
j:1

elje
r
j (7)

This total depends on how the Al,Ar ,El,Er nodes are dis-
tributed along the graph. To illustrate, consider the two
extreme cases where (1) the graph is linear, i.e., the workflow
is a pipeline, and (2) the graph consists of a single layer
with all activities connected to the inputs, and immediately
producing outputs, i.e., a ‘‘one-step parallel task allocation’’
workflow. When both l and r are of type (1), we have ali =
ari = eli = eri = 1, dm = min(Al + El,Ar + Er ), and (7)
becomes

M = dm (8)

which is linear in the number of nodes in each of the graphs.
Conversely, when both graphs are of type (2), we have

dm = 2, al1 = Al , el1 = El , ari = Ar , and er1 = Er . In
this case, (7) becomes

M = AlAr + ElEr (9)

which isO(nm) in the number of nodes n,m in the two graphs,
and is the worst case.

Regarding Resync(), this is simply a cartesian product
between UM1 and UM2 at the end of the match phase that
we just analysed. The worst case here is when the activities
all differ from each other in the two graphs, resulting in
UM1 = Al , UM2 = Ar . Effectively, all matches from the
previous phase are now performed again to try and match
individual activities with each other, regardless of their place
in the graphs. This entails an additional AlAr matches in the
worst case. On average we may consider each list to contain
only half of the activities, but complexity due to pairwise
comparison remains quadratic.

In summary, why-diff will perform O(nm) comparisons
over two graphs with n,m nodes, respectively.

IV. IMPLEMENTATION AND EVALUATION
The why-diff algorithm is agnostic to the specific workflow
runtime environment, as long as the generated provenance
is PROV-compliant and includes the basic usage/generation
relationships we have used in the paper. However, our ref-
erence implementation is based upon the eScience Central
Workflow Manager (WFM) [8], which is native to our lab.
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A. IMPLICATIONS OF USING eScience CENTRAL
The choice of using this particular WFM determines specific
implementations for the equal(.) and match(.) functions to
compare entities and activities. When comparing entities,
same(.) compares input datasets using their file names, while
all other intermediate or final datasets are compared using
their hash values, which is generated by the workflow upon
file creation.

Regarding activities, match(.) looks at the unique ID
assigned by the WFM to each block, which carries over as
a property of the corresponding activity in the provenance
trace. Block properties considered by equal(.) include con-
figuration elements such as the block version, activity label,
name, source, and operational configuration settings such as
the Invocation Timeout and the number of retries on time-
out. Note that equal(.) fails when any of these properties
differ, and these differences are highlighted in the delta graph.
Other properties must be explicitly ignored, for instance
prov:startTime and proiv:endTime because they
will be different for each invocation, but they are not indica-
tive of actual changes in the workflows. Figure 8 shows 1

Graph which aims to answer if there is any activity insertion,
deletion and/or update. While currently these settings are all
considered at the same level for the purpose of defining equal-
ity, in the future these may be differentiated, i.e., a difference
in block version may be considered more important than a
difference in any of the configuration settings.

B. Neo4j
We represent the workflow provenances traces in the
form of Neo4j nodes and relationship as it is convenient
to traverse large graphs. eScience Central Workflow
Management system logs all the execution in the form of
provenance statement, using a Prolog-based serialisation.
These statements are stored according to the ProvONE data
model (http://vcvcomputing.com/provone/provone.html),
an extension of the PROV model designed to capture
structural properties of workflows as a special kind of
provenance-generating processes. Using PROVONE,
a typical entity is represented as document, activity is
represented as execution. The ‘‘used’’ relationship is
rendered as ‘‘used(Usage Id, Activity Id, Entity Id)’’ as
shown in Fig. 9. Similarly, the ‘‘wasGeneratedBy’’ is
represented as ‘‘wasGeneratedBy(Generation Id, Entity
Id, Activity Id)’’ in Fig. 10. Table 4 shows the mapping
of PROV-DM to Neo4j nodes and relationships. We have
converted the provenance facts to Neo4j ‘‘activity’’ and
‘‘entity’’ nodes (with respective Id’s and properties) and
relationships ‘‘used’’ and ‘‘wasGEneratedBy’’ as mentioned
in 11a, 11b, 12a and 12b respectively.

C. EVALUATION
We have used this implementation to evaluate why-diff with
respect to the number of matching operations performed as
a function of the input provenance graphs.We have tested

FIGURE 9. A typical ‘‘used’’ relationship captured by eScience WfMS.

FIGURE 10. A typical ‘‘wasGeneratedBy’’ relationship captured by
eScience WfMS.

TABLE 4. Mapping of Prov-DM to Neo4j.

the why-diff in wide range of scenarios both in synthetic
workflows as well as real-world workflows.

D. EVALUATION ON SYNTHETIC WORKFLOWS
In our experiments, we have generated a family of synthetic
graphs. We created a collection of derived graphs by editing
an initial ‘‘parent graph’’ PG1, making sure the edits cover
Activity Insertion (AI), Activity Deletion (AD), Activity
Update (AU) and their combinations: (AI+AD), (AI+AU),
(AU+AD) and (AI+AD+AU).

We have tested ‘Why-Diff’ with different sets of origi-
nal and reproduced computational workflows. The workflow
provenance graphs that we compare to evaluate our algorithm
‘‘Why-Diff’’ are constructed in such a way that it includes
multiple variations as pointed above and could handle multi-
ple input and output nodes of the workflow graph, as a work-
flow can take in any number of input entities and output any
number of output entities, which is also tested and evaluated.

It is also possible to add and remove nodes that have
>2 edges which, particularly in the case of removal, brings in
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FIGURE 11. Creation of Neo4j nodes. (a) Creating activity and (b) creating entity.

FIGURE 12. Creation of Neo4j relationships. (a) Creating used and (b) creating WasGeneratedBy.

FIGURE 13. A selection of ten comparisons amongst provenance graphs variations obtained by selectively editing a master workflow ten times.

additional complexity when rearranging the graph. As men-
tioned before, ‘‘why-diff’’ looks for matching nodes during
traversal. If there is no matching nodes they are added to
Unmatched nodes lists. In the case of removal (i.e. with more
than 3 edges), it adds the unmatched nodes from first work-
flow to UnMatched Node List (i.e. UM1 in our case). When
rearranging the graph (please refer Algorithm 3: Construct

1 Graph), whichever nodes that are in UM1 are added to
the cluster as SubGraph and the label ‘‘Nodes_Deleted’’ will
be added to the subgraph. A working example for more than
2 edges is shown in fig.15.

Fig. 13 shows how many nodes are in the provenance
graph PG1 and PG2, how many nodes are inserted, deleted
and updated. We have tried all possible combinations listed
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FIGURE 14. Highlights of differences between the master trace and nine other traces.

FIGURE 15. More than two edges.

above. Further, it also shows how many number of nodes
are displayed in the 1 Graph and also how many number of
pair-wise comparisons made during the traversal.

For each workflow invocation, the eScience Workflow
Manager assigns a invocation id (For example. 140104).
Fig. 14 shows comparisons among 10 similar workflows

FIGURE 16. Dependency change: GeneMap.

taking multiple variations into consideration taking invoca-
tion 140104 as base graph, trying out all possible combina-
tions changing artefacts W , C , D to W ′, C ′, D′ as well as
testing non-isomorphic cases listed above. We have executed
90 comparisons, 45 normal comparisons, and 45 comparisons
by swapping (For example 140104 vs 140102 as well as
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FIGURE 17. Dependency change: ClinVar.

140102 vs 140104) among the 10 topologically dissimilar
workflows.

Fig. 14 represents workflow comparisons of 140104 with
9 similar workflows. The number of matched, unmatched,

unequal nodes in 1 Graph in each comparison are shown in
the bar chart, to illustrate how the nodes in the 1 Graph vary
when inserting, deleting and/or updating an activity while
reproducing a workflow.

E. EVALUATION ON REAL-WORLD WORKFLOWS - ‘‘SVI’’
We have tested our algorithm on SVI workflow as described
in Sec. I-C. Wide range of scenarios are tested with 502 suc-
cessful SVI invocations (249 MB of data) changing the exter-
nal databases OMIM GeneMap (d1) and NCBI ClinVar (d2)
and also with different patient inputs. There were 7 different
versions of GeneMap and 10 different ClinVar databases
used. As pointed in Table 1, we have introduced different
variations of Clinvar dependency. A single invocation of
SVI consists of 23 ‘‘Entity’’ nodes, 18 ‘‘Activity’’ nodes,
22 ‘‘used’’, 20 ‘‘wasGeneratedBy’’ relationships.

Figure 16 shows the part of the 1 Graph which highlights
that there is an activity update (i.e. a10 -> a20) because of
the change in the version of the external database dependency
GeneMap (i.e. genemap2-161026-esc.txt in the 1st invocation
and genemap2-160428-esc.txt in the 2nd invocation). Because
of this input dependency change, the change is reflected in
further entities e11 ≈ e21, e12 ≈ e22. The node a11 ≈ a21 is
not highlighted, as the properties of the activities a11 and a21
are same.

Figure 17 shows the part of the 1 Graph which highlights
that there is an activity update (i.e. a18 -> a28) because of
the change in the version of the external database dependency
ClinVar (i.e. variant_summary-1605.txt in the 1st invocation

FIGURE 18. Twitter sentiment analysis-activity insertion. (a) Activity insertion and (b) explanation of difference.
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FIGURE 19. Twitter sentiment analysis-activity deletion. (a) Activity deletion and (b) explanation of difference.

and variant_summary-1604.txt in the 2nd invocation). The
entity nodes that are in downstream of the graph, are changed
because of the change in the ClinVar version.

F. EVALUATION ON REAL-WORLD WORKFLOWS -
‘‘TWITTER SENTIMENT ANALYSIS’’ USECASE
As explained in the Sec. I-D, two workflow invocations are
compared using why-diff. The first comparison (Fig. 18a
and 18b) and second comparison (Fig. 19a and 19b) tests
Activity Insertion and Deletion functionality of ‘‘why-diff’’
respectively.

Figure 18a shows the comparison of invocations 627072
and 627065 (627072 and 627065 are invocation ids) with
respect to the first workflow (i.e. 627072). Delta Graph of
Fig 18a shows that 3 nodes have been updated and 2 nodes
have been inserted. The node a22 is the workflow block added
to count the number of sentiments, e23 is the entity outputted
by a22. Fig 18b explains the difference with an activity
update (change in data Produced. i.e. 9 in first workflow
using TextBlob as dependency and 660 in second workflow
usingNLTK as dependency) and entity update (note that there
is a change in hashvalue, as intermediate entity nodes are
compared against hash-value). Unlike intermediate entities,
the initial input and the final output (i.e. ‘‘sentiments.csv’’
in this example) files of first and second invocation are com-
pared against each other based on their content. Fig 18b high-
lights the contents of the these two files (Note that the first
workflow outputted 38.0%, 12.0% and 50.0% while second

outputted 18.0%, 17.0% and 65.0% for the same input). Sim-
ilarly the comparison 19a shows the comparison of 627065
and 627072 with respect to the 627065. Figure 19a shows
the visual representation with Delta Graph and figure 19b
explains why there is a difference between result of first
and second workflow.

V. CONCLUSION AND FUTURE WORK
We have presented why-diff, an algorithm to compare pairs of
provenance graphs that represent executions from e-science
real-world workflows that differ from each other accord-
ing to a well-defined set of possible edits. As comparing
multiple graphs at a time will be unclear, the algorithm is
designed to compare only two graphs at the same time.
In the context of reproducible e-science, why-diff is designed
to help experimenters understand what causes the observed
differences in the outputs from workflows that are variations
of one another. The set of edits are chosen to reflect realistic
variations that may be part of an investigator’s exploration
of an experimental space, or that may result from accidental
variations during the porting of the workflow across differ-
ent environments. The algorithm is agnostic to the specific
realisation of the workflows, and only relies on two essential
properties, namely (1) for each run, the workflow runtime
generates a provenance trace that is compliant with a minimal
core of the PROV provenance model (i.e., only the used
and genBy relationships), and (2) appropriate functions are
available to compare two data items (provenance entities)
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and two activities. The algorithm produces a delta graph
that encoded the changes at the end of a pairwise matching
process that accounts for the topological differences in the
two provenance graphs, which result from the edits. So far
we have evaluated why-diff with respect to efficiency of the
matching process. Also part of ongoing work is relaxing the
comparison between activities to include quantitative simi-
larity, as the current boolean response is too rigid when a
variety of heterogeneous block properties are considered, and
to allow semantic elements of the blocks to be considered.
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