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Abstract—Many systems require optimisation over multiple
objectives, where objectives are characteristics of the system
such as energy consumed or increase in time to perform the
work. Optimisation is performed by selecting the ‘best’ set of
input parameters to elicit the desired objectives. However, the
parameter search space can often be far larger than can be
searched in a reasonable time. Additionally, the objectives are
often mutually exclusive – leading to a decision being made
as to which objective is more important or optimising over a
combination of the objectives. This work is an application of
a Genetic Algorithm to identify the Pareto frontier for finding
the optimal parameter sets for all combinations of objectives.
A Pareto frontier can be used to identify the sets of optimal
parameters for which each is the ‘best’ for a given combination
of objectives – thus allowing decisions to be made with full
knowledge. We demonstrate this approach for the HTC-Sim
simulation system in the case where a Reinforcement Learning
scheduler is tuned for the two objectives of energy consumption
and task overhead. Demonstrating that this approach can
reduce the energy consumed by ∼36 % over previously
published work without significantly increasing the overhead.

Keywords-simulation; performance; energy; genetic algo-
rithms; optimisation

I. INTRODUCTION

There is a strong desire to model real-world systems
through computer simulation – a software system which
replicates the salient features of the real-world system.
This permits ‘what if’ analysis, where one desires to know
how the real-world system will be affected by changes in
environment or policy. This is especially important when the
proposed changes to the real system would be unpalatable
to perform – such as costing too much, having significant
impact or potentially causing a degradation of service.

In recent years the concept of the ‘digital twin’, a simu-
lation of a specific instance rather than a generic type of
system, has emerged. Allowing ‘what if’ analysis of the
digital twin which can then be applied to the real system.
For example, optimising the parameters controlling how the
system performs. Traditionally this would be very difficult
to perform on the real system due to fears that changes could
have unforeseen detrimental impacts. However, by making
the changes to the digital twin we remove this risk and can
perform many simulations faster-than-real-time in order to
identify the ‘optimal’ set of parameters.

One may assume that to find the optimal set of parameters,
where we are optimising over a single output metric –
referred to as an objective – is just the process of running
the simulation many times until we find the ‘best’ set.
Unfortunately, far too often, this is not the case. The search
space over which parameters can vary and the number of
possible parameters can be far larger than what can be
feasibly (or economically) searched. One may conclude that
each individual parameter may be optimised in isolation.
However, if the relationship between parameters and the ob-
jective is complex, then the optimal value for one parameter
may not be part of the global optimal.

This complexity can be compounded when one wishes to
optimise for multiple objectives, for example the energy used
by a system and the increase in time to perform the work –
overhead. If one is fortunate, these objectives are mutually
constructive and this degrades to a single optimisation case.
However, in most cases multiple objectives are mutually
destructive. In our example using only the lowest energy
consuming computers could minimise energy consumption,
though at the expense of delaying work completion when the
number of available low-energy computers is insufficient.

In order to deal with optimising over multiple objectives
one may choose to optimise for one objective over the
other(s) or to optimise for a combination of them. However,
this removes full transparency of the interplay between
optimising for the different objectives – diminishing the
ability for decisions to be made from full knowledge.

We overcome the search space and multiple objectives
problems by applying a Genetic Algorithm (GA) [1] to
generate a Pareto frontier [2], [3] using the Non-Dominated
Sorting Genetic Algorithm II (NSGA-II) [4]. Using a GA
allows us to quickly identify those parameters which lead
to optimal output by selecting parameter sets which are
mutations of the best sets identified in previous generations.
Using NSGA-II allows us to identify those parameters which
lead to objectives which lie along the Pareto frontier – a
curve which identifies those points for which there is no (yet
identified1) combination of parameters which would improve
one of the objectives without diminishing the others.

We exemplify this for the digital twin tailored from

1Note that as we do not try every combination of parameters it may be
possible to improve these points.
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the HTC-Sim [5] simulation system of a high-throughput
computing (HTC) setup – specifically HTCondor [6] at
Newcastle University. Our scheduler, which chooses which
resources should run which tasks2, employs a Reinforcement
Learning [7] (RL) approach based on the work by McGough
et al. [8]. We identify twenty parameters from this work
which can be used to configure the RL scheduler and
consider the two objectives of energy consumed by the
system and average task overhead – difference between
execution time and time in the system.

The rest of this paper is set out as follows. In Section II
we motivate the need for a GA along with Pareto frontier
for the HTCondor RL scheduler. Related work is presented
in Section III followed by a discussion of the optimisation
method in Section IV. Section V presents the simulation
environment. Results are presented in Section VI. We offer
conclusions and identify future directions in Section VII.

II. MOTIVATION

Parameter spaces for simulations rapidly become large as
the number of parameters and valid values increase. This is
perhaps why in their work McGough et al. [8] only ever
vary two input parameters at a time and even then only
consider a maximum of eleven different values for each of
these parameters – leading to 121 different simulations.

Continuous value parameters are the hardest to deal with
as selecting the size of discretisation is vitally important –
too small will lead to excessively large numbers of simula-
tions, whilst too large means one is more likely to miss the
optimal value. Integer values are similar in complexity but
there is a minimum level of discretisation – the unit value.

Let us assume here that we wish to perform a parameter
sweep over just six continuous values for a simulation which
takes just five minutes per run. If we discretise each of
the continuous parameters to one hundred values then we
would require 1012 simulation runs, which is just over 9.5
million years of execution time. If we were to restrict the
discretisation to just ten values per parameter this would
reduce our parameter space to one million simulation runs
and 9.5 years of execution time. Either case is far in excess
of what can be performed – and would be a significant
energy drain in its own right. Thus the use of a machine
learning optimisation approach is highly desirable here.

We use Figure 1, adapted from [8], to illustrate the motiva-
tion for identifying a Pareto frontier. The variation in colours
represents the different learning rates (ε) of the RL approach
whilst the spread of each colour represents variations in
how much importance is placed on the computers selected.
It can be seen from this figure that there is no global
optimal – minimising energy and average overhead. This
figure demonstrates that a Pareto frontier is present, though,

2Here a task, sometimes referred to as a job, is a single executable which
is run on one computer within the HTCondor system.
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Figure 1. Overhead vs Energy, adapted from [8], along with Pareto frontier

due to the small number of sample points this is most likely
not the actual Pareto frontier. For illustrative purposes we
add here (black points) the identified Pareto frontier from
our work. Demonstrating the savings which can be made by
identifying more optimal parameter sets.

III. RELATED WORK

Multi-objective optimisation problems are commonplace,
with applications as diverse as electoral zone design [9] to
generation expansion planning [10]. Here we review various
applications that have utilized multi-objective optimization.

Multi-objective optimization has been used in many dif-
ferent fields, and many multi-objective problems have been
solved with Non-Dominated Sorting Genetic Algorithm II
(NSGA-II) [4]. There are, however, other algorithms which
are used such as Multi-Objective Genetic Algorithm [11].

Ponsich et al. apply NSGA-II to electoral zone design [9].
The criteria in which the geographical units must be ag-
gregated are population equality, compactness and conti-
guity. They found that NSGA-II obtains promising results
when compared with simulated annealing, producing better-
distributed solutions over a wider-spread front.

Kannan et al. used NSGA-II for the generation expansion
planning problem [10]. Seeking to identify which generating
units should be commissioned and when they should become
available over the long-term planning horizon. Optimising
for two trade-off solutions: minimize cost, and minimize
sum of normalized constraint violations; and to minimize
investment cost and minimize outage cost. They were able
to find a Pareto-front with high computational efficiency.

Wei et al. used NSGA-II to optimize energy consumption
and indoor environment thermal performance [12]. Using
simulation data containing energy consumption and indoor
thermal comfort. They used a fitness function for NSGA-II
comprising of a back propagation network optimised by a
genetic algorithm to characterize building behaviour.



Guha et al. used multi-objective optimization to design
a ship hull [13]. As their objective functions were not
smooth, they found evolutionary techniques the most practi-
cal. They tested a number of different algorithms, and found
that Sequential Quadratic Programming, Pattern Search and
Interior-Point were very sensitive to the initial guess and
prone to getting stuck in local minima. The genetic algorithm
and particle swarm optimisation proved to be more robust
and able to determine the global minima in most trials.

IV. OPTIMIZATION METHODS

Classical optimization methods, such as non-linear pro-
gramming, find single solutions per simulation run. How-
ever, many real-world problems naturally have multiple
objectives to optimise. Traditionally, optimization methods
are used by converting them into a single-objective problem.
However, this does not take into account the various trade-
offs between equally optimal (Pareto-optimal) solutions. It
is therefore important to find multiple Pareto-optimal solu-
tions. A Pareto frontier is made up of many Pareto-optimal
solutions. These can be displayed graphically, allowing a
user to choose between various solutions and trade-offs.

Classical methods require multiple applications of an op-
timization algorithm, with various scalings between rewards
to achieve a single reward. The population approach of
genetic algorithms, however, enable the Pareto frontier to
be found in relatively few simulation runs. NSGA-II is a
multi-objective genetic algorithm and is used here.

A. Genetic Algorithms

GAs [14] are a class of evolutionary algorithms. We detail
the workings of genetic algorithms in this section.

An initial population of structures P0, for generation 0,
is generated and each individual is evaluated for fitness. A
subset of individuals, Ct+1 ⊂ Pt, are chosen for mating,
selected proportional to their fitness. ‘Fitter’ individuals have
a higher chance of reproducing to create the offspring group
C ′t+1. C ′t+1 have characteristics dependent on the genetic
operators: crossover and mutation. The genetic operators are
an implementation decision [15].

Once the new population has been created, the new
population Pt+1 is created by merging individuals from
C ′t+1 and Pt. See Algorithm 1 for detailed pseudocode.

B. NSGA-II

NSGA-II is efficient for multi-objective optimization
on a number of benchmark problems and finds a better
spread of solutions than Pareto Archived Evolution Strategy
(PAES) [16] and Strength Pareto EA (SPEA) [17] when
approximating the true Pareto-optimal front [4].

The majority of multi-objective optimization algorithms
use the concept of domination during population selection
[18]. A non-dominated genetic algorithm seeks to achieve

Algorithm 1 Genetic algorithm [15]
1: t = 0
2: initialize Pt

3: evaluate structures in Pt

4: while termination condition not satisfied do
5: t = t+ 1
6: select reproduction Ct from Pt−1
7: recombine and mutate structures in Ct

forming C ′t
8: evaluate structures in C ′t
9: select each individual for Pt from C ′t

or Pt−1
10: end while
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Figure 2. a) Schematic of non-dominated sorting with solution layering
b) Schematic of the NSGA-II procedure

the Pareto-optimal solution, so no single optimization so-
lution should dominate another. An individual solution x1

is said to dominate another x2, if and only if there is no
objective of x1 that is worse than objective of x2 and at
least one objective of x1 is better than the same objective
of x2 [19]. Non-domination sorting is the process of finding
a set of solutions which do not dominate each other and
make up the Pareto front. A Pareto front contains solutions
that have dominated all inferior solutions, and have at least
one objective which is better than the other solutions of the
Pareto front. See Figure 2a for a visual representation, where
f1 and f2 are two objectives to minimise.

We define a process to determine which solutions to keep:
1) Non-dominated sorting: We assume that there are M

objective functions to minimise, and that x1 = x1j and x2

are two solutions. x1j < x2j implies solution x1 is better than
solution x2 on objective j. A solution x1 is said to dominate
the solution x2 if the following conditions are true:

1) The solution x1 is no worse than x2 in every objective.
I.e. x1j ≤ x2j ∀j ∈ {1, 2, . . . ,M}.

2) The solution x1 is better than x2 in at least one
objective. I.e. ∃ j ∈ {1, 2, . . . ,M} s.t. x1j < x2j .

Once the solutions are calculated for the M objective
functions, the solutions are sorted according to their level of
non-domination. An example of layering of levels is shown
in Figure 2a. Here, f1 and f2 are the objective functions to be
minimized. The Pareto front is the first front which contains
solutions that are not dominated by any other solution. The
solutions in layer 1 are dominated only by those in the Pareto



front, and are non-dominated by layer 2 and layer 3.
The solutions are then ranked according to their layer.

Solutions in the Pareto front are given a fitness rank (irank)
of 1, solutions in layer 1 have irank of 2, etc.

2) Density Estimation: (idistance) is computed for each
solution as the average distance between the two closest
points to the solution in question, and is an estimate of the
largest cuboid which contains only i and no other points.

3) Crowded comparison operator: (≺n) is used to en-
sure that the final frontier is an evenly spread out Pareto-
optimal front. Each solution has two attributes: (irank)
and(idistance). We can then define a partial order:
i ≺n j if (irank < jrank) or ((irank = jrank) and
(idistance > jdistance)) [4].

This concludes that a point with a lower rank is preferred,
and if two points have the same rank the point which is
located in a less dense area is preferred.

4) Main loop: As with standard GA a random popula-
tion P0 is created. This is then sorted according to non-
domination. Binary tournament selection, recombination and
mutation operators are used to create a child population
C ′1 of size N . Where tournament selection is a process of
evaluating and comparing the fitness of various individuals
in a population. Binary tournament selection begins by
selecting two individuals at random, evaluating the fitnesses,
and selecting the individual with the better solution [20].

After the first population the procedure changes (see
Algorithm 2). Initially, a combined population is formed
Rt = Pt ∪ C ′t of size 2N . Rt is sorted according to
non-domination. A new population is now formed (Pt+1),
adding solutions from each front level until the size of Pt+1

exceeds N . The solutions of the last accepted level are
then sorted according to ≺n, and a total of N solutions
are chosen, rejecting those from the last layer that have a
smaller crowding distance [4].

The entire process is shown in Figure 2b, and is repeated
until the termination condition is met. Termination condi-

Algorithm 2 NSGA-II main loop [4]
1: Rt = Pt ∪ C ′t combine parent and child population
2: F = fast-non-dominated-sort (Rt)

where F = (F1,F2, . . .)
3: Pt+1 = ∅
4: while do |Pt+1 < N |
5: Calculate the crowding distance of (Fi))
6: Pt+1 = Pt+1 ∪ Fi

7: end while
8: Sort(Pt+1,≺n) sort in descending order using ≺n

9: Pt+1 = Pt+1[0 : N ] select the first N elements of Pt+1

10: Qt+1 = make-new-population(Pt+1) using
selection, crossover and mutation to create
the new population Qt+1

11: t = t+ 1

tions could be: no significant improvement over X iterations
or a specified number of iterations have been performed.

V. SIMULATION ENVIRONMENT

A. HTC-Sim

HTC-Sim is a trace-driven simulation framework for
energy consumption in High Throughput Computing sys-
tems [5]. The simulation handles two types of users –
interactive users who can sit down in-front of a computer
and use it along with high-throughput users who submit
multiple tasks through a batch submission system which use
the computers when idle. Interactive users will evict HTC
tasks requiring the task to be rerun. The computers in the
system are considered at three logical levels – the whole
system, a cluster of computers (a number of computers in a
distinct location) and individual computers.

The model characterises each computer through a set of
parameters. These describe the resource in terms of oper-
ating system, architecture type, memory size, performance
metrics (such as number of cores, CPU speed, MIPS), along
with an energy profile. The model is extensible, allowing
practitioners to define their own custom parameters.

The workload of the HTC system is comprised of a set
of high throughput tasks, submitted either independently or
together as part of a batch. A task submitted to the system
is initially placed into a queue. If an appropriate computer
is available the task is allocated to that resource – the task
is now in the running state. If no appropriate computer is
available the task will remain queued until an appropriate
computer is available. If an interactive user logs into the
computer whilst a high throughput task is running, the task
will relinquish the resource either by entering a suspended
state (if possible) or re-entering the queue to be re-run later.
Tasks that remain in a suspended state for longer than a
pre-determined threshold are evicted and re-enter the queue.

An ordered set of all interactive sessions is used to replay
the interactive user activity across the computers within an
organisation. The data used to exemplify the system is trace
data obtained from December 2009 through December 2010.
These traces are indicative of current system usage and
analysis that has been ongoing since 2010.

We are primarily concerned with two objectives (metrics):
Average task overhead – the time difference between

the task entering (qt) and departing (ft) the system, and the
actual task execution time (dt) for a set of tasks T :

1/|T |
∑

t∈T
(ft − qt − dt).

Energy consumption – the total energy consumed by
the HTC workload. Fine-grained energy consumption is
recorded per- computer, cluster and system, for each state,
e.g. sleep, idle, active (HTC and/or interactive user). The
total energy consumption is then calculated as follows:∑n

c=0

∑m

p=0
tc,pEc,p,



where n is the number of computers, m is the number of
power states, tc,p is the time spent by computer c in state
p and Ec,p is the power consumption rate of computer c in
state p. For non-HTC states, Ec,p = 0.

B. Reinforcement Learning Scheduler

Reinforcement Learning [7] (RL) is a machine learning
technique used to learn how to react to an environment. An
agent observes an environment which is often represented
by a state space. For each state in the state space there
is a corresponding action vector representing every action
which can be taken in that state. Initially each action has
the same probability of being selected. When the agent
observes a specific state it chooses an action from the
action vector based on either an explorative or exploitative
policy – selected between at random with probability ε. If
an explorative policy is chosen then the action is selected
at random from the action vector whilst if an exploitative
policy is in force then the action which has seen the ‘best’
historical reward is selected. Once the action is completed
and it is known if the action was good or bad then the
reward value for the action is updated – rewarding good
actions (increasing the reward) and punishing bad actions
(decreasing the reward).

The RL scheduler by McGough et al. [8] has a state space
which is a combination of whether computers within the
HTC system are free for use and the hour of the day when
the request to schedule a task is made. The granularity of
the action space can be varied in size from representing
each computer individually through to only selecting the
cluster on which to place a task or placing in the queue,
to only selecting between allocating the tasks to a computer
or queueing the task. Likewise the hour of the day could
be for any day (24 actions) or for each hour within a week
(168 actions).

C. Parameters for RL

We present here the parameters that the GA will search
over in order to identify the optimal policies. Further details
can be found in [8].

The exploration versus exploitation of a RL approach
is potentially the most significant factor in optimising the
approach. Too small a value of ε will lead to the system not
searching the possible outcome space and hence performing
little better than randomly choosing actions. Likewise, too
large a value of ε will mean the RL is spending more time
searching for optimal solutions than actually using the ones
that it has found already. However, having a single value
of ε for the whole RL process can be too restrictive. We
therefore allow ε to decrease as the simulation progresses.
Below we present parameters which control the action space,
the reward computation and how the value of ε is varied:
• Week: is the state space for the RL – day or week
{boolean}. As weekends have a different usage patten

to week days this could allow the RL to adapt to this.
• Entity level: is the component of action space in terms

of computer granularity – {(computer, cluster, whole)}.
Fine grained actions could be better, but at the expense
of needing far more examples to train on.

• ε-policy: What is ε changed on? {(days, previous, ratio,
hit)}. Note that this has an impact on the meaning of
many of the parameters below.

• ranges: The date range on which to change ε.
{[0,999999], ...}3,4.

• reward boundaries: reward values over which the ε
value will be changed. {(0,1], ...}3,4

• σ: The amount of influence the computer energy effi-
ciency has on RL reward {[0,1]}.

• days: Change ε based on the number of days of RL
which have been performed {[0, 365]}, 0 = don’t use.

• δ: Increase ε by δ if current day into RL≤ days {[0,1]}.
• history: The number of previous tasks to consider when

computing the action {[-1,999999]}, -1 = all tasks.
• gaussian: Do we apply a gaussian decay over the task

history when computing the action? {boolean}.
• prior: If all prior actions gave a negative reward then

increase ε by 0.1 {boolean}.
• threshold: If the ratio of best reward to average reward

is less than threshold, use the previous ε value{[0,1]}.
• defer: Defer running a task during the same hour that

the computer is due to be rebooted {boolean}.
If we assume here, conservatively, that each continuous

parameter is discretised into one hundred values then this
creates a search space of some 2.81×1037. Again, assuming
that the simulation takes five minutes to run for each
parameter combination this is 2.67 × 1032 years for a full
parameter space search.

VI. RESULTS

We first evaluate if the NSGA-II approach will lead to
a Pareto frontier for total energy consumed and average
overhead. Figure 3 illustrates progressive iterations of the
NSGA-II algorithm with successive iterations in different
colours. The initial (red) colours are scattered widely whilst
the final iteration (magenta) indicates a sharp edge closest
to the two axis. It is interesting to note that although there is
no global optimal for both energy and overhead the Pareto
front is ‘sharp’ in the bottom left corner indicating that there
is a good compromise for both objectives. There is also a
separate region of points with lower energy consumption
but substantially higher overheads. This appears to be cases
where tasks are only allowed to run when the task is almost
definitely going to finish – at the expense of significantly
increasing overhead. For all parameter sets along the Pareto

3Although this can be an arbitrarily long list we limit this to three values
for this work.

4Note valuei ≤ valuei+1
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PARAMETERS FOR OPTIMAL OBJECTIVES
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Figure 3. Progress towards the Pareto Frontier

front defer was true, demonstrating that not running tasks
during the hour when a computer will be rebooted was the
best policy. We therefore consider defer no further.

Table I presents the parameter sets and objective values for
minimum overhead, minimum energy and ‘optimal’ combi-
nation of overhead and energy. The optimal combination was
attained by first scaling average overhead and total power
consumed between 0 and 100 using min-max scaling. Next,
we summed the scaled overhead and total power consumed
and chose the combination with the minimum value. This
enabled us to choose the minimum combination of both
objectives with equal weighting. The scaling, however, could
be changed to suit individual preferences of power consump-
tion or average overhead. As the following parameters were
identical for all cases, we present them here rather than in
the table: ε-policy was previous, gaussian was false, ranges1
was 0, ratio was 0.9375 and R1 was -0.5842.

The energy consumption here is far better than those
presented in the paper by McGough et al. [8], reducing the
energy consumption by ∼39MWh for effectively the same
average overhead whilst also being able to beat their best
energy case by ∼8MWh again for no appreciative change
in average overhead. We can save over 16MWh of energy
over their lowest energy case, however, this is at the cost of
massively increasing the overhead. It should be noted that
this was achieved solely through the tuning of the simulation
parameters with the use of NSGA-II, as both sets of results
run the same underlying code.

To better understand the parameters which effect the
Pareto Front we fit a Lasso regression [21] to distinct clusters
of the Pareto Front (optimisation dominant (-1), central (1)
and energy dominant (0) – Figure 4a). Lasso regression is
a linear regression technique which steers the coefficients
for insignificant parameters to zero allowing for the identifi-
cation of important parameters and their significance. The

parameters were all scaled between 1 and 100 allowing
direct comparison between parameters.

We clustered the data using the unsupervised learning
technique DBSCAN [22]. This technique was chosen due
to its effectiveness at clustering data points which are close
together. This yields better results for our dataset than a
method such as k-means clustering which partitions the
data into Voronoi cells. The results, Figure 4b, show a
large negative coefficient for σ, ε3 and R1 when predicting
average overhead, though only for the significant overhead
case (cluster 0). This would somewhat suggest that looking
at the energy efficiency of computers in these cases is
detrimental – potentially as this cluster favours queueing
tasks rather than running them.

The coefficients for total energy, Figure 5, show that lower
values of σ and history have the best impact on reducing
energy for cluster -1 – low overhead cases. This is against the
naive assumption that taking energy efficiency into account
would reduce overall energy consumption – potentially as
this could reduce clarity for which computer to use. Shorter
history would suggest that the system changes over time and
hence only recent history should be considered.

Figure 6 displays the distribution of parameters for ε, R,
σ, change and threshold for the final population. It can be
seen that for ε, the parameters converge to a high value for
ε1, low value for ε3 with ε2 between these two values. This
is to be expected as the reward boundaries should decrease.
σ and change are both bimodal, whereas threshold is
trimodal. R converges to an increasing relationship with
successive R, however, it is less defined than ε, with a
bimodal relationship for R1 and R2.

Figure 7 demonstrates the impact of adding δ to ε if the
RL trainer has been running for less than the prescribed
number of days. Here the GA has learnt to use large values
of δ when energy consumption is more important, suggesting
a more explorative approach favours energy efficiency –
perhaps due to the fact that over the simulation period the
state varies significantly. By contrast, the number of days
shows no clear pattern. Though as the δ value is often very
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Figure 5. Parameters which impact energy consumption

Figure 6. Violin distribution of parameters

small this may have little if any impact.
The granularity of the RL action space with respect to

computers is presented in Figure 8a. In almost all cases
cluster level is the best choice. This is most likely a
consequence of the fact that it is a compromise between
fine-grained computer level and course-grained whole sys-
tem level. Interestingly for minimum energy whole system
becomes more optimal. Perhaps a consequence of most tasks
being held in a queue rather than executed, hence more fine-
grained knowledge no longer helps.

The other aspect of action/state space – day or week –
is presented in Figure 8b. Here all but the most extreme
overhead cases are optimal with the day case. This would
suggest that, although there is a difference based on the day
of the week, this can only be exploited in the case where
energy reduction is key.

The ε policy is compared in Figure 9a. In almost all cases
the ‘Previous’ policy is optimal apart from a small number of
cases. This indicates that basing ε on the average reward of
the previous day is the best policy. The ratio of best reward
to average reward makes up most of the remaining points
indicating that for both of these cases an adaptive policy
which can move between explorative and exploitative modes
over time is the best approach – a consequence of the state
of the system changing as time progresses. Only one ‘static’
policy is seen as optimal - where the value of ε changes by
the number of days the RL has been running.

Reward history and applying gaussian decay over the
history is presented in Figures 9b and 9c. History size
seems to be bimodal with the extremes of overhead and
energy having a value around 840,000 whilst most of the low
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Figure 8. a) Granularity of RL action space with respect to computer-
and cluster-level. b) Day / Week granularity for action/state space.

overhead values are in the region of 500,000. This suggests
that forgetting history more quickly favours lower overheads
– but at the expense of higher energy consumption. By
contrast, the choice of when to use a gaussian decay is less
obvious suggesting that other factors are at play.

Increasing ε by 0.1 when prior rewards are negative is
a mixed case for central points – Figure 10a – though for
lowest overhead and lowest energy the best approach appears
to be disabled and enabled respectively, again suggesting
that a more explorative approach favours lower energy. The
impact of taking computer energy efficiency into account
when computing the reward is presented in Figure 10b. One
would assume that taking energy efficiency into account
would be important for low overall energy usage, however,
the opposite seems to be the case. This would suggest that
for extremely low energy cases whether the task is launched
or not is most important. The ratio of best reward to average
reward is presented in Figure 10c. Results are variable, but
lower thresholds tend to be better.

VII. CONCLUSIONS

In this paper we have demonstrated the potential of
genetic algorithms, specifically NSGA-II, for efficient design
space exploration of the operating policies of digital twin
simulations. We apply the approach to parameterise the op-
erating policies of a target system, a digital twin simulation
of a high-throughput computing infrastructure. We evalu-
ate the performance of the system with respect to energy
consumption and performance. Through this approach we
are able to reduce energy consumed by an HTC system by
optimising the parameters of a RL scheduler by ∼36% with
only negligible increase to the overheads. This allows us to
more efficiently tune the parameter sets in situations where
there are more parameter combinations than can feasibly be
searched, and multiple objectives over which to optimise.

In future work we plan to optimise over an increased
number of objectives such as turnaround time for individual
users and maximum waiting time per task. We also hope to
implement our findings in a real HTCondor system.
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Figure 9. a) ε-policy, b) Reward history window size and c) Using a gaussian decay over the reward history window

45

50

55

60

65
70
75
80

10 20 50 100 200 500 1000 2000 5000
Average overhead (minutes) (log10)

H
TC

 E
ne

rg
y 

(M
W

h)
 (l

og
10

)

Prior
FALSE
TRUE

σ

45

50

55

60

65
70
75
80

10 20 50 100 200 500 1000 2000 5000
Average overhead (minutes) (log10)

H
TC

 E
ne

rg
y 

(M
W

h)
 (l

og
10

)

0.00
0.25
0.50
0.75
1.00

Threshold

Figure 10. a) Impact of negative prior results, b) Impact of energy efficiency of computer and c) Threshold impact

REFERENCES

[1] M. Mitchell, “Genetic algorithms: An overview,” Complexity,
vol. 1, no. 1, pp. 31–39, 1995.

[2] V. Pareto and A. S. T. Schwier, Manual of political economy
Tr. by Ann S. Schwier. Macmillan, London, 1927.

[3] W. Stadler, “A survey of multicriteria optimization or the
vector maximum problem, part I: 1776-1960,” Journal of
Optimization Theory and Applications, vol. 29, no. 1, pp. 1–
52, 1979.

[4] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast
elitist non-dominated sorting genetic algorithm for multi-
objective optimisation: NSGA-II,” CEUR Workshop Proceed-
ings, vol. 1133, pp. 850–857, 2000.

[5] M. Forshaw, A. McGough, and N. Thomas, “Htc-sim: a
trace-driven simulation framework for energy consumption
in high-throughput computing systems,” Concurrency and
Computation: Practice and Experience, vol. 28, no. 12, pp.
3260–3290, 2016, cpe.3804.

[6] M. Litzkow, M. Livney, and M. W. Mutka, “Condor-a hunter
of idle workstations,” in ICDCS, 1988.

[7] R. Sutton and A. Barto, Reinforcement Learning: An Intro-
duction, ser. A Bradford book. Bradford Book, 1998.

[8] A. S. McGough and M. Forshaw, “Reduction of wasted en-
ergy in a volunteer computing system through reinforcement
learning,” Sustainable Computing: Informatics and Systems,
vol. 4, no. 4, pp. 262 – 275, 2014.

[9] A. Ponsich, E. A. R. Garcı́a, R. A. M. Gutiérrez, S. G. de-
los Cobos Silva, M. A. G. Andrade, and P. L. Velázquez,
“Solving electoral zone design problems with NSGA-II,” pp.
159–160, 2017.

[10] S. Kannan, S. Baskar, J. D. McCalley, and P. Murugan,
“Application of NSGA-II algorithm to generation expansion
planning,” IEEE Transactions on Power Systems, vol. 24,
no. 1, pp. 454–461, 2009.

[11] T. Murata and H. Ishibuchi, “MOGA: Multi-objective genetic
algorithms,” no. November, pp. 289–294, 1995.

[12] W. Yu, B. Li, H. Jia, M. Zhang, and D. Wang, “Application

of multi-objective genetic algorithm to optimize energy effi-
ciency and thermal comfort in building design,” Energy and
Buildings, vol. 88, pp. 135–143, 2015.

[13] A. Guha and J. Falzaranoa, “Application of multi objective
genetic algorithm in ship hull optimization,” Ocean Systems
Engineering, vol. 5, no. 2, pp. 91–107, 2015.

[14] J. H. Holland, Search methodologies: Introductory tutorials in
optimization and decision support techniques, 2nd ed, 1975.

[15] T. Back, D. B. Fogel, and Z. Michalewicz, “Evolutionary
Computation 1 Basic Algorithms and Operators,” Compre-
hensive Chemometrics, pp. ix – x, 2009.

[16] J. Knowles and D. Corne, “The Pareto archived evolution
strategy: A new baseline algorithm for Pareto multiobjective
optimisation,” Proceedings of the 1999 Congress on Evolu-
tionary Computation, CEC 1999, vol. 1, pp. 98–105, 1999.

[17] E. Zitzler and L. Thiele, “Multiobjective optimization using
evolutionary algorithms — A comparative case study,” pp.
292–301, 2006.

[18] E. K. Burke and K. Graham, Search methodologies: Introduc-
tory tutorials in optimization and decision support techniques,
second edition, 2014.

[19] C. Bao, L. Xu, E. D. Goodman, and L. Cao, “A novel non-
dominated sorting algorithm for evolutionary multi-objective
optimization,” Journal of Computational Science, vol. 23, pp.
31–43, 2017.

[20] R. Abd Rahman, R. Ramli, Z. Jamari, and K. R.
Ku-Mahamud, “Evolutionary Algorithm with Roulette-
Tournament Selection for Solving Aquaculture Diet Formula-
tion,” Mathematical Problems in Engineering, vol. 2016, pp.
1–10, 2016.

[21] R. Tibshirani, “Regression Shrinkage and Selection Via the
Lasso,” Journal of the Royal Statistical Society: Series B
(Methodological), vol. 58, no. 1, pp. 267–288, 1996.

[22] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A tdensity-
based algorithm for discovering clusters in large spatial
databases with noise,” in Proceedings of the Second Interna-
tional Conference on Knowledge Discovery and Data Mining,
ser. KDD’96. AAAI Press, 1996, pp. 226–231.


