ARTICLE TYPE

Non-Blocking Two Phase Commit Using Blockchain

Paul Ezhilchelvan | Amjad Aldweesh | Aad van Moorsel

Newcastle University, Newcastle upon Tyne, UK

Correspondence
*Paul Ezhilchelvan, Amjad Aldweesh
Email: paul.ezhilchelvan@ncl.ac.uk
Email: a.y.a.aldweesh2@ncl.ac.uk

Present Address
School of Computing, Newcastle University, UK

Summary
The Two Phase Commit (2PC) protocol has long been known to have a provably inevitable vulnerability to blocking or non-progress amidst server crashes, even when the distributed database system guarantees the most demanding timing-related or ‘synchrony’ requirements. Our aim here is to eliminate this vulnerability by using a blockchain for coordinating 2PC execution. We present the impossibilities, the possibilities, the cost and the trade-offs in this blockchain-based approach to blocking-free management of distributed transactions. We prove that a non-blocking and blockchain-coordinated 2PC protocol can exist only if both the blockchain and distributed database systems meet synchrony requirements; otherwise, though blocking remains eliminated, transactions can unnecessarily abort. We present a blockchain coordinated 2PC protocol and provide rigorous arguments for its correctness under the synchrony requirements. We then implement this protocol on the Ethereum Testnet and demonstrate, through our experiments, that the monetary cost of executing smart contracts is quite small, the protocol performance slows down when using a public blockchain like Ethereum and that even major violations of synchrony requirements lead only to relatively small increases in unnecessary aborts. We thus identify a trade-off between improving protocol performance and admitting a risk that transactions could occasionally abort unnecessarily.

KEYWORDS:
Two Phase Commit, Atomic Commit, Blocking Protocols, Blockchain, Smart Contract, Delay Bounds, Synchronous Systems

1 | INTRODUCTION

Since the advent of Bitcoin in 2008[1], cryptocurrencies have gained considerable interest. This is then followed by an even larger interest being accorded to Bitcoin’s underlying technology, the blockchain, and to Ethereum’s development of smart contracts that empower users to execute custom-made programs on a blockchain[2]. A variety of applications outside the cryptocurrency domain, such as finance[3], banking and energy trade[4], have been leveraging blockchain and smart contract technologies to enhance accountability, auditability and trust in their core processes.

This paper investigates the use of these technologies in enhancing the availability of distributed database management systems[4,5] and the associated cost. Precisely, we revisit a well-known impossibility result[6,7] related to blocking in atomically committing database transactions and demonstrate that these new technologies, under certain conditions, help accomplish what would otherwise be impossible.
When a database transaction is executed by multiple processes in a distributed system, an atomic commit protocol ensures the essential requirement that all processes either commit the transaction or abort it - a requirement that is commonly known as atomicity or agreement. The two phase commit protocol (2PC, for short) is widely used as an atomic commit protocol due to its conceptual simplicity, ease of implementation and low message cost. It is however vulnerable to periods of non-progress or blocking. This vulnerability is proven to be inevitable even in synchronous distributed systems where bounds on delays (e.g., message transfer delays) can be reliably estimated and the only type of undesirable events that can occur is process crash.

The definition of a ‘synchronous’ distributed system has long been established in the literature. In our earlier work, we extended this definition for a blockchain system and developed a protocol in which the blockchain plays specific roles in the execution of 2PC. This protocol was shown to eliminate blocking when both the distributed system and the blockchain used are synchronous. Its design, however, required that the timestamps of blocks in a blockchain be increasing in value and that they emulate ‘ticks’ of a global clock to database servers. While the Ethereum blockchain meets this requirement, other blockchain systems do not and newly emerging ones may not. So, in this paper, we remove this requirement and present a new protocol together with correctness arguments. This new version also eliminates blocking under synchronous constraints and retains the native structure of 2PC for database processes which makes it easily adoptable in legacy systems.

To the best of our knowledge, our earlier paper is the first in the literature to demonstrate that the impossibility result of Skeen can be circumvented in synchronous distributed systems by using a synchronous blockchain. This revised and extended version not only improves on the earlier protocol but also addresses two significantly pertinent questions: can blocking be eliminated if the blockchain or the distributed system is not synchronous, and, if the answer is no, what are the practical implications if the blockchain and the distributed system can be synchronous most of the times, but not always?

Some blockchain systems, typically the public ones with miners having the freedom of choice in composing their blocks, may cease to be synchronous if it becomes harder to accurately estimate delay bounds. Similarly, a cluster hosting distributed database servers becomes asynchronous if accurate delay bound estimation within the cluster is not guaranteed.

We are thus faced with four possible combinations: (i) the blockchain is synchronous and the database cluster is asynchronous, (ii) blockchain is asynchronous and cluster is synchronous, (iii) both are asynchronous, and (iv) both are synchronous. 2PC blocking is eliminated for case (iv) as our protocol would demonstrate. Still to be addressed, therefore, is the question of whether 2PC blocking can be eliminated for other three cases.

We argued in that elimination of 2PC blocking cannot be guaranteed for (iii). We prove here that the same impossibility holds for more restricted cases of (i) and (ii) as well. Thus, the impossibility results presented here are stronger than that shown in and point to quite a fundamental result: a non-blocking 2PC using a blockchain is possible if and only if both the blockchain and the database cluster are synchronous. That is, many desirable features that a blockchain system has, such as reliability, immutability, etc., are not by themselves sufficient to eliminate 2PC blocking, and synchrony is required additionally.

Finally, when the blockchain and the distributed system are considered to be synchronous, even carefully computed delay-bound estimates are at risk of being violated, e.g., due to bursts in network traffic. We argue that such violations can cause some commit-worthy database transactions to abort unnecessarily, but cannot undermine the core atomicity requirement that all servers either commit or abort. We investigate the relation between the number of unwarranted aborts and the degree of violations in the synchronous assumption, and observe that the former is small even when the latter is large.

In summary, this paper explores and exposes the impossibilities, the possibilities, the cost and the trade-offs involved in using a blockchain to implement non-blocking atomic commit. Its structure and contributions are as follows. The next section presents the atomic commit problem that 2PC solves, the notion of blocking and the distinction between synchronous versus asynchronous distributed systems. Assuming a synchronous system, Section describes the traditional version of 2PC and explains the causes of 2PC blocking. It thus provides the essential background for Section which describes in detail our first contribution that is in the domain of protocol design: a non-blocking 2PC with a synchronous blockchain, together with pseudo-code for smart contracts and correctness arguments. Section presents our second, conceptual contribution: the impossibility results that prove that non-blocking 2PC is not possible when either the blockchain or the distributed system is asynchronous, and the observation that synchrony violations in a blockchain coordinated 2PC have no impact on non-blocking atomic commit except for potential to cause unwarranted aborts. Our practical contributions are detailed in Section which describes an Ethereum Testnet based implementation of the protocol of Section and discusses the results of our experiments. The discussions present the cost of smart contract execution, report both the estimated and observed worst-case 2PC execution latency values, quantify the probability of occurrence of unwarranted aborts caused by synchrony violations and point out the scope for trade-off between improving performance and minimising wasteful aborts. Finally, Section concludes the paper.
THE ATOMIC COMMIT PROBLEM

The problem is specified in the context of a set of distributed processes \(\Pi = \{ P_1, P_2, \ldots, P_n \} \), where \(n > 1 \) is known. A process \(P_i, 1 \leq i \leq n \), can crash at any time and recover after some arbitrary amount of time. Information logged in the disk prior to crash survives the crash. At any given instance, there are two complementary subsets of \(\Pi \), the crashed and the operative. For discussions, we would assume that the former is small and a strict subset of \(\Pi \).

Each operative process autonomously evaluates a vote that can be either yes or no. The problem is to have processes decide either on commit or abort, subject to the following four requirements:\(^{10}\)

- Agreement: No two processes decide differently;
- Termination: All operative processes decide;
- Abort-Validity: Abort is the only possible decision if some process votes no or does not vote at all; and,
- Commit-Validity: Commit is the only possible decision if every process is operative and votes yes.

Agreement requires any two decided processes, currently crashed or operative, to have decided identically. Say, \(P_k \) decides on commit and immediately crashes; then no other process can decide on abort even if all but \(P_k \) are operative and deduce \(P_k \) to have crashed. Termination ensures that the decision be available to all working processes; in particular, if a process crashes undecided, it should be able to decide when it becomes operative again, post-recovery.

Abort-Validity permits a process with no vote, not to exercise its vote at all. Commit-validity rules out trivial solutions such as all processes force decide on abort irrespective of their votes. This last requirement, as we shall see in §5 is impossible to guarantee even in blockchain based solutions when the worst-case delay estimates being used are not guaranteed to hold.

Observe that any non-trivial solution to atomic commit requires operative processes of \(\Pi \) to interact amongst themselves - either directly leading to decentralised protocols or via a protocol coordinator \(C \) leading to centralised versions. The former extract a huge message cost. The widely-used 2-Phase Commit (2PC) protocol is a centralised one and is highly message efficient. It would be our focus here. (In practice, the role of \(C \) is typically played by a designated process in \(\Pi \).)

Definition. An atomic commit protocol is said to be blocking, if there can exist executions in which operative processes cannot decide until some non-empty subset of crashed processes ought to recover.\(^{5,10}\) Blocking is thus undesirable as the progress of operative processes, normally larger in number, is dictated by the recovery times of crashed ones. A protocol is non-blocking if operative processes are guaranteed to decide even if each crashed process is never to recover. Whether one can have a non-blocking atomic commit protocol or not, depends on if the distributed system is synchronous or asynchronous.\(^{5,10}\)

2.1 Synchronous vs Asynchronous Systems

Definition: A distributed system is said to be synchronous, if bounds on processing delays and inter-process communication delays can be reliably estimated; otherwise, it is said to be asynchronous.\(^{5,10}\)

Note that the bound estimates in a synchronous system can be large (typically, worst-case estimates) but must be finite and hold reliably. Typically, distributed systems where delays can fluctuate arbitrarily and therefore reliable bound estimations are not possible, are classed as asynchronous.

It is known that non-blocking atomic commit is not possible when the distributed database system is asynchronous, unless the system obliges every execution by behaving in certain desirable ways.\(^{12}\) It is, however, possible to have a non-blocking atomic commit in a synchronous system by using the message-expensive, decentralised approach.\(^{12,13}\) Intuitively, the design rationale in this approach is as follows. Reliable bound estimates in a synchronous system are used to implement perfect crash detection using timeouts: a crash is always detected and an operative process is never mis-detected (no false positive/negative). In addition, protocol performance is speeded up by assuming a bound on the maximum number of processes that can crash.

Nevertheless, the centralised 2PC is a blocking protocol even in a synchronous system, i.e., even when a cluster hosting \(\Pi \) supports delay bounds to be estimated reliably and can thereby facilitate perfect crash detection!

2.2 Synchronous vs Asynchronous Blockchains

We observe that this synchronous vs asynchronous classification holds for blockchain based 21 systems as much as for traditional distributed systems. (Earlier definitions will be re-stated in §4.2 for completeness.) In public blockchain systems, such
as Ethereum, the time taken for a valid transaction to be confirmed or irreversibly placed in the blockchain is determined by a variety of delay-prone factors - both human as well as system related; for instance, a miner being (un)willing to include a transaction in their block falls under the former category and factors such as the required number of follow-up blocks to assure blockchain linearity and incoming transaction rate fall under the latter.

Ethereum blockchain confirmation time for a transaction can be unbounded with a significant probability, suggesting large variances in end-to-end processing delays within the blockchain infrastructure. On the other hand, permissioned blockchain systems (e.g., HyperLedger), with their hardened modular implementation of consensus protocols (e.g.,) over dedicated machines, appear to promise that the delays for transaction confirmation have small mean (in the order of milliseconds) and also small variance and can, therefore, be reliably bounded, thus making such systems candidates for a synchronous blockchain.

3 | 2PC IN SYNCHRONOUS SYSTEMS

The 2-Phase Commit protocol, 2PC for short, is explained below in the context of database transactions. Shards of a database are distributed over processes in Π. We assume that a crash-prone process, called the coordinator and denoted as C, launches a multi-shard transaction that requires every process in Π to execute a set of serialisable operations on their respective shards. We refer to this launching by C as each process in Π getting_work from C.

Let ω and δ denote upper bound estimates on the time any operative \(P_i \) takes to complete its work and on message transfer delays between any two operative processes, respectively. Since the system is assumed to be synchronous, \(ω \) and \(δ \) always hold.

PHASE 1

Coordinator C:

1. Broadcast cast_vote to all \(P_1 \ldots P_n \)
2. Set Timeout \(Δ = 2δ \); go to Phase 2

P_i:

1. IF (cast_vote not received until \(T_i \) or \(V_i = 0 \)) THEN quit ELSE {Log \(V_i = 1 \); send \(V_i \) to C; Set timer; go to Phase 2}

PHASE 2

C on timeout \(Δ \):

1. IF any absent \(V_i \) THEN verdict = abort ELSE verdict = commit
2. Log verdict; Broadcast verdict to all \(P_1 \ldots P_n \)

P_i:

1. Repeat on timer: IF verdict arrived THEN Log verdict ELSE {request C; reset timer}
2. Until verdict logged

FIGURE 1 Two phase commit protocol

\(C \) disseminates the work and awaits on a timeout of \((ω + δ) \) duration which is sufficient for any operative \(P_i \) to receive and complete the work given to it. At the expiry of the timeout, it initiates an execution of 2PC by broadcasting cast_vote to all processes - as shown in line 1, phase 1 for Coordinator C in Figure 1. This is then followed by setting a timer for \(Δ = 2δ \) and proceeding to phase 2. (Note: C waiting for \((ω + δ) \) time before broadcasting cast_vote is not shown in Fig. 1)

When \(P_i \) receives work from C, it computes \(T_i \) as the local time when a duration \((ω + 2δ) \) would elapse after the receipt of the work. While doing the work, \(P_i \) will either complete it and set its vote \(V_i = 1 \) or decide that work cannot be completed in a serialisable manner and set \(V_i = 0 \). In the latter case, by the Abort-Validity property, \(P_i \) can deduce that the decision or verdict is abort i.e., the transaction would be aborted systemwide; so, \(P_i \) quits executing 2PC as shown in line 1 of Phase 1 for \(P_i \) in Figure 1.
Note that it is possible to have a 2PC implementation that makes \(P_i \) send \(V_i = 0 \) to \(C \); we consider such an implementation only where relevant (Subsection 5.2), but otherwise we will assume the common (and message-optimal) case of \(P_i \) with \(V_i = 0 \) simply halting the execution with "abort" decision.

If \(P_i \) has set \(V_i = 1 \), it waits to receive "cast_vote." If "cast_vote" message is not received until \(T_i \), \(P_i \) assumes that \(C \) has crashed, decides "abort" and quits its execution of 2PC. If, on the other hand, "cast_vote" arrives by \(T_i \), \(P_i \) continues executing 2PC by logging its vote \(V_i = 1 \), sending \(V_i \) to \(C \) and proceeding to Phase 2. That is, the ‘ELSE’ part in line 1 of Phase 1 for \(P_i \) in Figure 1 is executed when ("cast_vote" not received until \(T_i \) or \(V_i = 0 \)) is false which is equivalent to ("cast_vote" received before \(T_i \) and \(V_i = 1 \)) becoming true.

Note that while a given \(P_i \) may or may not enter phase 2, \(C \) always does. When its \(\Delta \)-timeout expires, \(C \) counts an absent vote from any \(P_k \) as \(V_k = 0 \); it decides on "commit verdict," if \(V_i = 1, \forall i : 1 \leq i \leq n \); on "abort verdict," otherwise. The "verdict" decided is logged and broadcast to all \(P_i \). (See Phase 2 of Figure 1).

Any \(P_i \) that executes phase 2, awaits "verdict" from \(C \) and requests \(C \) periodically (as per some timer value), if "verdict" is not forthcoming. This periodic request will prompt a crashed \(C \) to respond after its recovery by referring to the "verdict" it logged prior to the crash. If no "verdict" has been logged, \(C \) must have crashed prior to computing the "verdict"; in that case, \(C \)’s response would be "abort."

Similarly, if \(P_i \) crashes after sending \(V_i = 1 \) to \(C \), it will observe, after recovery, the log entry of \(V_i = 1 \) and request \(C \) to send the "verdict." Thus, all operative processes, including those that crash during execution and recover, decide - ensuring termination. It is easy to see that the other three requirements of atomic commit are also met in 2PC.

FIGURE 2 2PC State Transition Diagram for Process \(P_i \)

Figure 2 depicts the state transition diagram for any \(P_i \) where a circle denotes a state and a double circle a terminal state; a state transition is indicated by an unidirectional arrow with a label \(\frac{I}{O} \) where \(I \) indicates the input received by \(P_i \) which causes the transition and \(O \) any output produced by \(P_i \) after the transition. (’-‘ indicates null output.) \(WG \), \(W_1 \) and \(W_2 \) represent states where \(P_i \) is doing the work given, waiting for "cast_vote" (see line 1, phase 1 in Fig 1) and for "verdict" (line 1, phase 2 in Fig 1) respectively; \(a \) and \(c \) denote the "terminal" states where \(P_i \) "aborts and commits," respectively.

3.1 Inevitability of Blocking in 2PC

While Skeen formally proves this inevitability, we offer here, for completeness, an intuitive understanding of the reasons for it. By the definition of blocking (see Section 2), in every execution of a non-blocking 2PC protocol, operative processes decide despite some processes crashing and staying crashed; i.e., operative processes reach a "verdict" that satisfies the atomic commit requirements without having to wait for any crashed process to recover.

We present three distinct execution **scenarios** of 2PC and show that no mechanism can possibly exist that avoids blocking in all scenarios and all meets all atomic commit requirements.

Scenario 1: In this execution of 2PC, every \(P_i \in \Pi \) votes \(V_i = 1 \) and \(C \) crashes just before it is to broadcast its "verdict." \(C \) remains crashed, i.e., does not recover, for a long time.
Each P_i is blocked until C recovers. Suppose that blocking is avoided by using some repair sub-protocol R that enables operative processes to decide on a verdict (here commit) without waiting for the crashed C to recover. For example, R may require operative processes to interact among themselves on how they voted and to arrive at a verdict that C would have broadcast had it not crashed. Next two scenarios prove that R cannot exist.

Scenario 2: It is identical to scenario 1 except that one $P_k \in \Pi$ could not complete its work, decides on *abort* and then crashes. P_k also remains crashed for a long time.

R must now enable all operative $P_i, i \neq k$, to decide on *abort* without waiting for P_k or C to recover.

Scenario 3: It is also identical to scenario 1, except that C crashes after sending verdict = *commit* only to P_k which crashes soon after logging the received verdict. P_k, as in scenario 2, remains crashed for a long time.

R must now lead all operative $P_i, i \neq k$, to decide on *commit* without waiting for P_k or C to recover.

We observe that the execution environments of scenarios 2 and 3 are identical for all operative $P_i, i \neq k$: both C and P_k remain crashed until all P_i decide on verdict; secondly, there is no interaction between P_k and C in Scenario 2 after C broadcast *cast-vote* and P_k cannot deduce any of the pre-crash interactions between P_k and C in Scenario 3 until one of the crashed ones recovers. Thus, R is expected to make all operative P_i decide differently in identical execution environments. Such an R cannot be designed and hence 2PC blocking is inevitable.

Remarks. As per Skeen,[6] the root causes for the inevitability of 2PC blocking are two-fold: both terminal states, c and a, are one-step reachable from W_2 as can be seen in Fig[2] and (ii) it is possible to have an operative P_i waiting in W_2 and a crashed P_k either in a (see scenario 2) or in c (see scenario 3). In Skeen’s terminology, (ii) is referred to as the terminal states, c and a, being in the concurrency set of W_2. Designing R involves modifying 2PC itself and introducing new pre-terminal ‘buffer’ states so that both terminal states are not in the concurrency set of W_2. This 2PC modification leads to 3 phase commit and details are in[6].

4 | NON-BLOCKING WITH BLOCKCHAIN

4.1 | Approach

We can observe that if C were never to crash during 2PC execution, then blocking cannot happen. We build on this observation by having C initiate a transaction by delegating work to all P_i and then entrust the 2PC coordination responsibilities to a blockchain infrastructure (BC, for short) which, being a replicated state machine, must coordinate 2PC execution in a crash-free manner. To accomplish this, several aspects of BC will be made use of and they are listed below.

Event ordering. Events directed at a BC are also called transactions. BC puts a total order on these events and records them in that order; event recording is immutable and recorded events are permanently visible to all concerned parties. Event ordering in BC can also be used to ensure exactly once execution of an action, say, A when multiple sources, e.g., processes in Π, can request A’s execution: BC can be programmed (see smart contract below) to accept only the first request for A in the total order and ignore the duplicates.

Smart Contract. A smart contract is a computer program stored within, and run by, BC in response to a function call embedded within an ordered transaction. Execution is guaranteed to be correct and is publicly verifiable. A smart contract has a unique address and its code is stored within BC. The latter is structured as a collection of deterministic functions that can only be invoked by transactions admitted into BC. In Ethereum (see next item), contract code is written in languages like Serpent, LLL or Solidity[17]. Irrespective of the language used, the code is compiled into byte-code and interpreted by a BC component, such as, Ethereum Virtual Machine.

Ethereum[18]. Ethereum is a popular platform that supports smart contract technology and is used in our implementation described in Section[5](or §[4] for brevity). A user process, such as C, can deploy a smart contract in BC by launching a transaction whose *data* field contains the byte-code of the smart contract with parameters appropriately initialised. Once this transaction is accepted in BC, any named process, such as P_i, can invoke a contract function by submitting a transaction. The invoking transaction is constructed with (i) the receiver address pointing to the contract address and (ii) the parameter values for the function call. In addition, in Ethereum, a transaction includes two more fields; GAS and GAS PRICE[18]. The miner who adds a block to BC will use the GAS PRICE to convert the amount of GAS consumed into the Ethereum’s native currency called Ether. Thus, the sender of an invoking transaction is charged for executing the contract.
4.2 Synchronous Blockchain

Similar to definitions of ω and δ, let β be the block construction bound on the delay that can elapse between the instant when a user process U launches a valid (blockchain) transaction TX_U and the instant when a block containing TX_U is (irreversibly) added in BC; let α be the awareness bound on the delay that can elapse between the instant when TX_U enters BC irreversibly and the instant when any interested party gets aware of TX_U in BC. A BC infrastructure (together with miner/consensus nodes) is said to be synchronous if it supports reliable estimation of bounds β and α; otherwise, it is said to be asynchronous.

The assumption of a synchronous BC implies that several requirements have been met: a valid transaction submitted to BC is never lost but is always considered for entry into the BC in a timely manner, a party interested in a given TX_U is periodically scanning BC, etc. This is just like the validity of bound requiring that no message be lost but every message be queued, transmitted, received and delivered - all in a timely manner.

4.3 2PC with Synchronous Blockchain

We explain here (i) how C hands over the coordination responsibilities for 2PC execution to the BC infrastructure and, (ii) how P_i interacts with BC to execute 2PC in two phases. Informally, P_i uses Phase 1 to register its vote in BC and Phase 2 to receive the verdict, very similar to the traditional 2PC execution. We also assume that the cluster hosting database processes Π is synchronous as well. We do not however require processes of Π to directly detect each other’s crash (e.g., by operating a failure detector). This is also the case in the traditional 2PC version.

4.3.1 Coordinator C

C disseminates the work to each $P_i \in \Pi$ and, immediately after that dissemination, it enters Phase 1 to hand over the coordination to BC infrastructure. On entering Phase 1, C launches a blockchain transaction TX_C that sets up the 2PC coordination smart contract in BC with initial state = VOTING.

Phase 1 for C ends with the launch of TX_C and there is no Phase 2. Another major difference from the traditional 2PC is that C does not wait on any timeout between disseminating its work to Π and entering Phase 1. Note that C may crash during work dissemination or after dissemination and before launching TX_C.

Though Subsection 4.4 is devoted to explaining the smart contract in detail, the roles of two of its functions are briefly explained here for ease of understanding: function VOTER enables P_i to enter its vote in BC and also computes the verdict once all $P_i \in \Pi$ have voted, and function VOTE allows a P_i to explicitly request for the verdict to be computed. Moreover, once the smart contract computes the verdict, it changes the initial state to display the computed verdict, i.e., to COMMIT or ABORT.

4.3.2 Get-Work by P_i

When P_i receives work from C, it records its current local clock time as T_i and enters the ‘working’ state WG (see Figure 3). If C has indeed launched TX_C, then TX_C must enter BC no later than the local time $T_i + \delta + \beta$ and P_i must observe TX_C in BC no later than its local time $T_i + \delta + \beta + \alpha$.

If P_i cannot complete the work due to serializability constraints, it unilaterally decides on abort and terminates the execution. This is shown by the state transition from WG to a in Figure 3.

If, on the other hand, P_i completes the work from C, it enters Phase 1 by transiting from WG to the first wait state W_1 in Fig 3.

4.3.3 Phase 1 by P_i

P_i starts Phase 1 by looking for TX_C in BC. If it does not observe TX_C in BC until its clock has exceeded $T_i + \alpha + \beta + \delta$, it deduces that C crashed before launching TX_C and subsequently aborts as shown by the transition from W_1 to a in Figure 3. P_i, awaiting TX_C to appear in BC is similar to its waiting for cast vote in Figure 1. Also, the transitions from state WG in Fig 3 are identical to the traditional 2PC execution shown in Fig 2 (Transitions from WG are also called ‘off-chain’ activities).

If P_i gets aware of TX_C by local time $T_i + \alpha + \beta + \delta$, it logs T_i first, followed by logging of $V_i = 1$ (the latter as in Phase 1 of Fig 1). The logging order of T_i and then V_i is important for post-recovery execution by which P_i can decide if it crashed undecided after this point in 2PC execution. (Description in § 4.3.5)

After logging T_i and V_i, P_i launches transaction TX_i with its vote $V_i = 1$. It then enters Phase 2, with its state transiting from W_1 to a second wait state W_2 in Fig 4. Note that P_i launching its TX_i must happen by its clock time $T_i + max(\alpha + \beta + \delta, \omega)$,
where \(\max\{\alpha + \beta + \delta, \omega\} \) is the larger of \((\alpha + \beta + \delta)\) and \(\omega\): \(P_i\) must observe \(TX_C\) in BC by clock time \(T_i + \alpha + \beta + \delta\) and complete its work by \(T_i + \omega\).

4.3.4 Phase 2 by \(P_i\)

When \(TX_i\) is accepted in BC, it invokes \(V O T E R\) function of the smart contract with \(V_i = 1\) as input. Moreover, if all \(P_j \in \Pi\) launch \(TX_i\), i.e., vote \(V_j = 1\), then the \(V O T E R\) function would compute \(verdict = commit\) and display \(state = COMMIT\) when the last \(V = 1\) is counted; otherwise, the \(state\) of BC will remain at the initial \(state = VOTING\). (Details in §4.4)

Let \(\Delta = \max\{\alpha + \beta + \delta, \omega\} + \alpha + \beta + \delta\). \(P_i\) in Phase 2 waits for BC state to change to \(state = COMMIT\) until its clock time \(T_i + \Delta\). If \(P_i\) observes BC \(state = COMMIT\) by then, it decides \(verdict = commit\).

If \(P_i\), on the other hand, still observes \(state = VOTING\) until its clock exceeds \(T_i + \Delta\), this means that some \(P_k, k \neq i\), did not launch \(TX_k\). So, \(verdict\) must be \(abort\). Though \(P_i\) can now safely decide \(abort\), our description here assumes that \(P_i\) decides on \(verdict = abort\) in response to such an indication from BC, just as in the traditional 2PC description where a \(P_i\) that voted \(V_i = 1\) decides on \(abort\) by receiving \(verdict\) from C.

When BC \(state = VOTING\) and clock exceeds \(T_i + \Delta\), \(P_i\) launches \(TX_V\) to invoke \(VERDICT\) function of the smart contract so that \(verdict\) is computed in BC and displayed. In Fig. 3, \(P_i\) does \(W_2 \rightarrow W_3\) after launching \(TX_V\), waits in \(W_3\) until BC indicates \(state = ABORT\) and then decides \(verdict = abort\).

Waiting by \(P_i\) in \(W_3\) must terminate as BC is reliable. It is likely that several other \(P_j\) launch their own \(TX_V\) around about the same time when \(P_i\) launches \(TX_V\). If so, only one will be effective in executing \(VERDICT\) (like \(A\) in §4.1). Once BC indicates \(state = ABORT\), \(P_i\) decides on \(abort\) and terminates the execution (\(W_3\) to \(a\) in Figure 3).

![State Diagram for 2PC with Blockchain](image)

FIGURE 3 State Diagram for 2PC with Blockchain

4.3.5 Post-Recovery Execution

It is possible that some \(P_k \in \Pi\) crashes during the protocol execution. When it recovers, there are two possible cases: log of \(P_k\) has or does not have entry \(V_k = 1\).

Absence of entry \(V_k = 1\) means that \(TX_k\) was never launched and any work done by \(P_k\) has been erased from its (volatile) memory during the crash. So, the recovered \(P_k\) has no knowledge of the database transaction that triggered the 2PC execution. \(P_k\) could, and hence would, do nothing regarding that database transaction; in other words, \(P_k\) indirectly decides on \(abort\). Further, any \(P_i, i \neq k,\) that logged \(V_i = 1\) can also decide only on \(abort\).

Suppose that the log of \(P_k\) has the entry \(V_k = 1\). This means that \(P_k\), prior to its crash, must have observed \(TX_C\) in BC during its pre-crash execution of Phase 1 and also logged the local time \(T_k\) (see §4.3.3). \(P_k\) will resume executing 2PC starting from Phase 2 (with its state in \(W_2\)) and get the \(verdict\) from BC.

Since \(T_k\) is logged prior to logging \(V_k = 1\), the log that contains \(V_k = 1\) must have \(T_k\) as well. If \(P_k\) had crashed after logging \(T_k\) but before \(V_k\) (hence before launching \(TX_k\)), then \(V_k\) would not be found in the post crash execution and the entry \(T_k\) without a matching \(V_k\) is simply deleted.
4.4 | Smart Contract Pseudo Code

Figure [4] presents the pseudo-code of 2PC coordination and the description here assumes that the contract is already deployed on the blockchain with a unique address. The deployed contract is in the initial state \(INIT \) and has two set variables: \(\Sigma \) and \(\Sigma_V \) which are the set of participants eligible to vote and the set of those who actually voted, respectively; both the sets are initially empty (when BC \(state = INIT \)). The smart contract has three functions:

- \(REQUEST() \) invoked by \(TX_C \) to initialise the contract,
- \(VOTE() \) invoked by \(TX_i \) to register the vote of \(P_i \) and to compute \(verdict \) once all \(P_i \in \Pi \) voted, and
- \(VERDICT() \) invoked by \(TX_V \) to request the \(verdict \) to be computed, if not already done.

\(TX_C \) submitted by \(C \) contains \(\Pi \) and invokes \(REQUEST \) function. This invocation succeeds only if \(C \) is \(asserted \) to have ownership rights to invoke this function and the code is in the initial state \(INIT \) - as indicated in the \(Assert \) statement. If this assertion succeeds, \(TX_C \) is accepted and the \(state \) of the contract is changed to \(VOTING \) and \(\Sigma \) to \(\Pi \); otherwise, \(TX_C \) is ignored.

Note that it is the feature of any blockchain that a transaction, such as \(TX_C \), is rejected if any of the pre-invocation assertions fails. Throughout this description here, assertions are assumed to succeed, except for those \(TX_V \) that seek to invoke \(VERDICT \) function not for the first time.

Having observed \(TX_C \) in BC, a \(P_i \in \Pi \) with vote \(V_i = 1 \) launches its \(TX_i \). After asserting that \(state = VOTING, V_i = 1 \) and \(P_i \in \Sigma = \Pi \), the contract records \(P_i \) to have voted by adding it in \(\Sigma_V \). The BC \(state \) is changed to \(COMMIT \) when \(\Sigma_V = \Sigma \).

Any \(P_i \) in \(W_i \) that finds \(state = VOTING \) even after its clock has read \(T_i + \Delta \), invokes \(VERDICT \) function by submitting \(TX_V \). The invocation succeeds only if \(P_i \in \Sigma = \Pi \) and \(state = VOTING \). If it succeeds, it sets \(state = ABORT \). An attempt to redundantly invoke \(VERDICT \) when \(state = ABORT \) will not meet the latter condition and not succeed.

INIT:
Set \(state := INIT; \, \Sigma := [0x000, \ldots, 0x000]; \, \Sigma_V := \Sigma; \)

REQUEST: Upon \(C \) submitting \(TX_C(\Pi) \): Assert (\(state == INIT \) and \(credentials \) of \(C \)) Set \(\Sigma := \Pi; \) Set \(state := VOTING; \)

VOTER: Upon \(P_i \) submitting \(TX_i \) (Vote): Assert (\(state == VOTING \) and \(P_i \in \Sigma \)) Assert (\(\Sigma \notin \Sigma_V \)); Assert (\(Vote == 1; \) Set \(\Sigma_V := \Sigma_V \cup \{P_i\}; \) if \(\Sigma_V == \Sigma \) then Set \(state := COMMIT; \)

VERDICT: Upon \(P_i \) submitting \(TX_Vi \): Assert (\(state == VOTING \) and \(P_i \in \Sigma \)) Set \(state := ABORT; \)

FIGURE 4 Pseudo-code for 2PC coordination smart contract

4.5 | Correctness Arguments

They are based on the assumption that BC and the cluster hosting \(\Pi \) are both synchronous, i.e., the bound estimates \(\alpha, \beta, \delta \) and \(\omega \) - as defined in §3 and §4.2 - are reliable and are never violated at any point during an execution.

Lemma 1: If any \(P_i \) that received work from \(C \) at local clock time \(T_i \), does not observe \(TX_C \) in BC until local clock exceeds \(T_i + \alpha + \beta + \delta \), then \(TX_C \) was never launched and would never enter BC.

Proof: \(C \) is to launch \(TX_C \) immediately after it disseminates work to \(\Pi \). By the definition of \(\delta \), work dissemination by \(C \) must complete within \(\delta \) time and the subsequent launching of \(TX_C \) must occur at or before \(P_i \)'s clock time \(T_i + \delta \) even if the work message had taken near-zero time to reach \(P_i \), i.e., even if \(C \) started its dissemination just before \(P_i \)'s clock read \(T_i \).
By the definitions of bound estimates β and α, P_i must observe TX_C in BC at or before its clock time $T_i + \alpha + \beta + \delta$. If P_i cannot observe TX_C until its clock exceeds that time, then either C did not launch TX_C or C launched TX_C and some bound estimate(s) got violated. When bound estimates are reliable and inviolable, the former ought to be the only underlying cause and hence the lemma be correct.

Lemma 2: If any P_i that launched TX_i, does not observe BC state = COMMIT until its local clock = $T_i + \Delta$, then there must be some P_j that did not launch TX_j, where $\Delta = \max\{\alpha + \beta + \delta, \omega\} + \alpha + \beta + \delta$ as defined in §4.3.4

Proof: Consider P_i that launched TX_i no later than its clock time $T_i + \max\{\alpha + \beta + \delta, \omega\}$, as noted in §4.3.3. Suppose that another $P_j \in \Pi, j \neq i$, launches its TX_j at its clock time $T_j + \max\{\alpha + \beta + \delta, \omega\}$. P_i receives its work from C at local time T_j which can be as late as P_i’s clock time $T_i + \delta$ because it is possible that C’s work message to P_i took near-zero transmission delay while that to P_j suffered a maximum delay of δ. Thus, P_i could expect P_j to launch its TX_j no later than its clock time $T_i + \max\{\alpha + \beta + \delta, \omega\} + \delta$. This means that TX_j must enter BC and its vote $V_j = 1$ be counted no later than P_i’s clock time $T_i + \max\{\alpha + \beta + \delta, \omega\} + \delta + \beta$.

Therefore, if every other $P_j \in \Pi$ had launched its TX_j, BC must have state = COMMIT no later than P_i’s clock time $T_i + \max\{\alpha + \beta + \delta, \omega\} + \delta + \beta$ and P_i must get aware of this new BC state no later than its clock time $T_i + \max\{\alpha + \beta + \delta, \omega\} + \delta + \beta + \alpha$. If P_i observes BC in its initial state = voting when its clock exceeds $T_i + \Delta$, then some P_j did not launch TX_j, So, the lemma is proved.

Corollary: If P_i launches TX_i, when its clock exceeds $T_i + \Delta$, there cannot be any TX_j from some $P_j \in \Pi$ that is yet to enter BC.

Follows from Lemma 2.

4.5.1 Agreement

Lemma 3. In any execution, Agreement requirement is met: no two processes decide differently.

Proof: Consider $P_i, P_j \in \Pi$ and $j \neq i$. Suppose that they both decide. Without loss of generality, we will choose P_i to consider how it could decide on some verdict $\in \{commit, abort\}$ and argue that P_j cannot decide differently. P_i can decide in four ways:

1. P_i decides by observing BC state \neq VOTING: Once BC state changes to COMMIT from VOTING, no TX_{π}, if ever any launched, can reset state = ABORT because the assertion state = VOTING in VERDICT function is not true. Similarly, once BC state changes to ABORT from VOTING, no TX_{π}, if any launched, can reset state = COMMIT because the assertion state = VOTING in VOTER function is not true. Thus, if P_j also decides on a verdict by observing BC state \neq VOTING, it cannot decide differently to P_i.

2. P_i decides by transiting WG to a: P_i decides verdict = abort without ever launching TX_i. Assuming that C launches TX_C, the boolean condition ($\Sigma_{\pi} \Leftrightarrow \Sigma$) in VOTER function will not become true and BC state = COMMIT cannot happen. If P_j does not take the transition WG to a (as P_i) but goes on to launch TX_j, it cannot decide differently as verdict = commit when BC state \neq VOTING.

3. P_i decides by observing $TX_C \notin BC$ when clock $> T_i + \alpha + \beta + \delta$: By lemma 1, TX_C was never launched and hence P_j would also observe $TX_C \notin BC$. Both identically decide on abort.

4. Crashed P_i executes post-recovery: Say, its log has no entry for V_i. So, prior to crash, P_i may have decided on verdict = abort by modes (2) and (3) above; otherwise, it decides indirectly on abort during its post-recovery execution as explained in §4.3.3. From P_i’s perspective, P_i deciding indirectly is the same as P_i deciding by mode (2) in its crash free execution if P_i observes TX_C in BC or by mode (3) otherwise. If the recovered P_i finds a log entry $V_i = 1$, then it decides by mode (1). Thus, P_i cannot decide differently to P_j.

Thus, given that P_i and $P_j, i \neq j$, decide, they cannot decide differently.

4.5.2 Termination & Non-blocking

Termination requires that all operative processes decide. An operative process also refers to the one that recovers after a crash.

This requirement is met for any P_i that executes the protocol without crashing: it decides either (i) at the expiry of timeout $(\alpha + \beta + \delta)$ based on its local clock or (ii) when BC changes from state = VOTING. Since BC is reliable, when P_i launches TX_{π} after its clock time $T_i + \Delta$, BC state is guaranteed to change to state \neq VOTING if it has not already.
Consider a P_x that crashes without deciding. After recovery, it either decides indirectly on *abort* or decide by (ii) above. Thus, every operative process in Π decides.

Further, neither (i) nor (ii) above requires an operative process to wait until another crashed process in Π or crashed C to recover. So, the protocol is non-blocking.

4.5.3 Commit-Validity

Lemma 4. In any execution, commit-validity requirement is met: commit is the only possible decision if every process is operative and votes yes.

Proof: By given, every P_i logs $V_i = 1$ and votes by launching TX_i. So, C must have launched TX_C and the smart contract must have been initialised. The only way BC state can be changed from VOTING to ABORT is to have some TX_j enter BC and execute the VOTER function before some TX_j can enter BC. By the corollary above, this cannot happen. Thus, BC state can change only to COMMIT. Any P_i that launches TX_i, can decide only by observing BC state $\neq VOTING$. So, commit is the only possible decision.

4.5.4 Abort-Validity

Abort-validity requires that abort be the only possible decision if some process votes no or does not vote at all.

We have shown that all operative processes in Π decide in an execution, including those that crash and recover. In our protocol, a process $P_j \in \Pi$ either votes yes by launching TX_j with $V_j = 1$ or does not vote at all by never launching TX_j. When P_j does not launch TX_j, the boolean condition $(\Sigma V == \Sigma)$ in VOTER function cannot become true and BC state $= COMMIT$ cannot happen. Also, in our protocol, decision can be either commit or abort and an operative P_i can decide commit only by observing BC state $= COMMIT$. So, every operative P_i can decide only abort when some P_j does not vote at all.

Putting these arguments together, we can claim: our 2PC protocol with BC meets all four requirements of the atomic commit problem (Section 2) and is also non-blocking.

5 ASYNCHRONY & IMPOSSIBILITIES

When bounds a and β cannot be reliably estimated, BC becomes asynchronous (see Subsection 4.2); similarly, when estimates of bounds δ and ω are not guaranteed to hold, the cluster hosting Π becomes asynchronous (Subsection 2.1).

Note that a public BC can be asynchronous even if the underlying distributed system is synchronous. For example, if miners, at the time of TX_C launch, also encounter several other transactions that are more financially attractive to work on compared to TX_C, then TX_C could take longer to enter BC, if at all, than any β estimated in more favourable environments. Similarly, BC can be synchronous while the underlying distributed system is asynchronous. Thus, from the synchrony requirements perspective, our system is made up of two distinct sub-systems: BC and database cluster. This leads to three pertinent questions: can we have a non-blocking 2PC in which the coordinator C offloads its coordinating responsibilities to a BC, when

1. the BC being used is synchronous and the cluster hosting Π is asynchronous?
2. the BC is asynchronous and the cluster is synchronous?
3. both the BC and the cluster are asynchronous?

Our earlier paper answered question (3) in the negative but left (1) and (2) open. Further, we also hinted in that it may be possible to have a non-blocking 2PC for (2) because processes of Π in (2) are endowed with an advantage of being able to accurately detect their crashed counterparts (i.e., perfect failure detection).

We formally answer these open questions here and show that non-blocking 2PC is not possible in cases (1) and (2) as well. It turns out that the perfect failure detection capability within Π when cluster is synchronous, is not enough to construct a non-blocking 2PC if BC is asynchronous; our optimistic hint expressed in for case (2) is misplaced.

We next present the impossibility proofs. Our approach is to prove by contradiction which involves three steps: we will (i) hypothesize the opposite of the impossibility, i.e., suppose the existence of some correct non-blocking 2PC protocol, say, P that meets all four requirements of atomic commit in every possible execution scenario, (ii) construct two execution scenarios that
are indistinguishable from the perspective of any operative \(P_i \in \Pi \), and (iii) show that if \(P \) is correct in one scenario, it cannot be so in the other. This contradiction will demonstrate that no such \(P \) can exist and thus prove the impossibility.

The two execution scenarios we construct will have the following features in common:

- \(C \) never crashes and the bound estimates used in \(P \) hold for all messages/requests sent by \(C \);
- Every process \(P_i \in \Pi - \{ P_k \} \) is operative and wishes to commit by submitting ‘yes’ vote, \(V_i = 1 \); and,
- \(T_i \) denotes the local clock time when an operative \(P_i \) receives ‘work’ from \(C \).

Note that asynchrony in BC or cluster does not mean that the bound estimates used in \(P \) are always violated; they can be met on many an occasion. Hence, the first feature is a possibility that is assumed to hold in the chosen execution scenarios. It ensures that both executions have \(C \) offloading its coordination responsibilities in a timely manner and every operative \(P_i \) observing \(TX_C \) in BC also in a timely manner. The second feature leads to \(P \) executing \(TX \) with \(V_i = 1 \), when it observes \(TX_C \) in BC.

5.1 Synchronous BC, Asynchronous Cluster

Let us first observe that the cluster is asynchronous, i.e., with \(\delta \) and \(\omega \) being likely to be violated. Crash detection is typically done by periodically querying another process with ‘are you alive’ pings and awaiting responses to be received within a set timeout duration. It cannot therefore be guaranteed to be perfect: an operative process may be seen, at least temporarily, to have crashed and it may take several non-responsive pings, and hence a long time, to affirmatively conclude that a process has indeed crashed.

Impossibility 1. It is not possible to have a non-blocking 2PC protocol where the coordinator \(C \) offloads its coordinating responsibilities to a BC, when that BC is synchronous and the cluster hosting \(\Pi = \{ P_1, P_2, \ldots, P_n \} \) is asynchronous.

Proof (by contradiction). Let us hypothesise that the impossibility 1 is wrong and that there exists a non-blocking 2PC protocol \(P \). Consider two executions of \(P \) which have the common features mentioned earlier:

Execution 1: \(P_k \) does \(WG \rightarrow a \) and then crashes. All other \(P_i \) are operative, wish to commit and launch \(TX \). Since \(P \) is presumed to solve atomic commit, each \(P_i, i \neq k \), must decide eventually, in this case on abort; say, \(P \) decides at its local time \(T_i + D_i \) in this execution, for some (finite) \(D_i \). Further, \(P_k \) does not recover in this execution until after every operative process has decided, i.e., until the local time of every \(P_i \) reads or exceeds \(T_i + D_i \).

Execution 2: Every process of \(\Pi \) and \(C \) start the execution at the same time as in **Execution 1**. Also, every \(P_i, i \neq k \), sends and receives the same set of messages (including ping and ping-response messages) from each other until decision as in **Execution 1** and each such message is sent or received at the same local clock time as well. That is, the behaviour of every undecided \(P_i \) towards every other undecided \(P_j, j \neq k \), is identical in both executions.

\(P_k \) does not crash but observes \(TX_C \) by its clock time \(T_k + \alpha + \beta + \delta \) (due to the first common feature) and also completes its work. However, the bound estimate \(\omega \) is violated so much and launching of its \(TX_k \) (with \(V_k = 1 \)) so delayed that \(TX_k \) does not enter BC until after the clock of every \(P_i, i \neq k \), reads or exceeds \(T_i + D_i \). Moreover, every message sent by \(P_k \) (including \(P_k \)'s response to ping) is delayed arbitrarily such that it does not reach its destination until after the clock of every \(P_i \) reads or exceeds \(T_i + D_i \). This is possible because the cluster, of which \(P_k \) is a part, is asynchronous.

Execution 2 is indistinguishable from **Execution 1** for any \(P_i, i \neq k \), until its clock time \(T_i + D_i \). In the former, \(P_k \) appears non-responsive to any \(P_i \) until \(T_i + D_i \), while it remains crashed until \(T_i + D_i \) in the latter. So, as in **Execution 1**, \(P_i \) must decide on abort at \(T_i + D_i \). This violates the commit-validity requirement: if no process crashes and all vote ‘yes’, decision ought be commit. (See Section 2.) Thus, the hypothesis is contradicted and the impossibility proved.

Remarks: Proof makes no assumption on whether transmission delays of messages exchanged between any \(P_i, P_j \in \Pi - \{ P_k \} \), adhered to or violated the bound estimate \(\delta \). It is only assumed that the delay experienced by a given message is identical in both executions, which is a possibility that cannot be ruled out. Since \(P \) is supposed to work for an asynchronous cluster, there must be a finite \(D_i \) for every \(P_i, i \neq k \) in **Execution 1**. Messages from \(P_k \) taking longer than \(D_i \) to reach \(P_i \) in **Execution 2** is another possibility in an asynchronous cluster which is also assumed. Thus, **Execution 2** is a feasible execution scenario for \(P \).

5.2 Asynchronous BC, Synchronous Cluster

Since the cluster is synchronous, bound estimates \(\delta \) and \(\omega \) remain inviolable. Therefore, a pinging process can affirm that a pinged process is operative or crashed if the latter does or does not respond within \(2\delta \) time respectively; neither false-positives
nor false-negatives are possible. Availability of this perfect failure detection capability is taken into consideration in constructing the impossibility proof below.

Impossibility 2. It is not possible to have a non-blocking 2PC protocol where the coordinator C offloads its coordinating responsibilities to a BC, when that BC is asynchronous and the cluster hosting $\Pi = \{P_1, P_2, \ldots, P_n\}$ is synchronous.

Proof (by contradiction).

Let us hypothesise that the impossibility 2 is wrong and that there exists a non-blocking 2PC protocol P for asynchronous BC and synchronous cluster. Consider two executions of P which have all the common features mentioned earlier.

Execution 1: P_k remains operative, does $WG \rightarrow a$, decides on abort and aborts the execution without ever submitting TX_k to BC. All other P_i also remain operative but wish to commit and launch TX_i. Since P is presumed to solve atomic commit, each P_i, $i \neq k$, must also decide on abort eventually; say, every P_i decides on abort at its local time $T_i + D_i$ in this execution, for some (finite) D_i.

Execution 2: Every process of Π and C starts the execution at the same time as in **Execution 1**. Also, every P_i, $i \neq k$, sends and receives the same set of messages (including ping and ping-response messages) from each other until decision as in **Execution 1** and each such message is sent or received at the same local clock time as well. That is, behaviour of every undecided P_i towards every other undecided P_j, $j \neq k$, is identical in both executions.

P_k does not crash and, like every other operative P_i, $i \neq k$, launches its TX_k. However, while every TX_i enters BC taking the same delay as in **Execution 1**, TX_k enters BC after a delay that is the maximum in $\{D_i : \forall P_i \in \Pi - \{P_k\}\}$. Consequently, TX_k does not enter BC until after the local clock of every P_i reads $T_i + D_i$. Note that TX_k taking longer than β to enter BC is possible since BC is asynchronous.

Execution 2 is indistinguishable for any P_i, $i \neq k$, from **Execution 1** until its clock time $T_i + D_i$. In the former, P_k never submits TX_k, while, in the latter, TX_k does not appear in BC until after every P_i decides. Moreover, in both executions, perfect failure detectors of P_i will report P_k as an operative process. So, as in **Execution 1**, P_i must decide on abort at $T_i + D_i$. This violates the commit-validity requirement: no process crashed and all voted yes. (See Section 2.) Thus, the hypothesis about P is contradicted and the impossibility proved.

Remarks: We noted in Subsection 3.3 that some 2PC implementations force a process with ‘no’ vote to explicitly cast its vote. In such an implementation, P_k would launch a transaction TX_k with ‘no’ in **Execution 1**. In that case, this TX_k should be considered to behave exactly like the TX_k in **Execution 2:** taking a delay that is the maximum in $\{D_i : \forall P_i \in \Pi - \{P_k\}\}$ and not entering BC until after the local clock of every P_i reads $T_i + D_i$. **Executions 1 and 2** are now indistinguishable for any P_i, $i \neq k$, until its clock time $T_i + D_i$. So, the Impossibility 2 holds even in such uncommon implementations.

5.3 Implications of Synchrony Violations

A closer look at the impossibility proofs reveals that asynchrony in BC or in the cluster prevents only commit-validity from being guaranteed i.e., abort could be decided when all processes of Π are operative and vote yes. This is also confirmed by the correctness arguments in Subsection 4.5 which show that our 2PC protocol operating with BC solve the atomic commit problem when both BC and cluster are synchronous. More precisely, these arguments indicate that if (i) C crashes without launching TX_C, (ii) some P_k crashes, or (iii) some P_i votes no, the other three requirements are guaranteed to be met even when the delay bound estimates are violated: arguments for termination (§4.5.2) and abort-validity (§4.5.4) do not refer to synchrony assumptions at all; moreover, in cases (i) - (iii) above, verdict = abort is the correct outcome and verdict = commit cannot ever be reached. So, the agreement is also met. In summary, synchrony is needed only to guarantee commit-validity.

Thus, when a bound estimate $b \in \{a, \beta, \delta, \omega\}$ is violated, the only requirement that risks being compromised is commit-validity, leading to unwaranteed aborts of database transactions. Violations of b can occur due to transient surges in computational loads or network traffic or the traffic and/or loads having increased since the bound estimates were last computed.

At any given time, let b_α be the actual prevailing value for an estimate $b \in \{a, \beta, \delta, \omega\}$. Synchrony is violated if $b < b_\alpha$ for any b. This does not necessarily mean that the two timeouts used in the protocol would be violated. (Recall that $(a + \beta + \delta)$ is the Phase 1 timeout defined in §4.3.3 for deciding whether TX_C would ever appear in BC, and $\Delta = \max\{(a + \beta + \delta, \omega) + (a + \beta + \delta)\}$ is the Phase 2 timeout defined in §4.3.4 before launching TX_{P_k}.)

For example, if only $a < a_\alpha$ and $b > b_\alpha$ for every other b, we can still have: $a + \beta + \delta \geq a_\alpha + \beta_\alpha + \delta_\alpha$ and $\Delta \geq \max\{(a_\alpha + \beta_\alpha + \delta_\alpha, \omega_\alpha) + (a_\alpha + \beta_\alpha + \delta_\alpha)\}$. Denoting $\Delta_\alpha = \max\{(a_\alpha + \beta_\alpha + \delta_\alpha, \omega_\alpha) + (a_\alpha + \beta_\alpha + \delta_\alpha)\}$,
IMPLEMENTATION AND EVALUATION

The median of the block awareness delays depicted in Fig 5 are 30.461 and 13.455 seconds, respectively. The result of 118.800 seconds in experiment 28 is an outlier. For information, the average and the minimum observed delay was 2.355 seconds. The maximum value is 118.800 seconds. Note that for some experiments, the maximum of all data points collected is taken as one data point for estimating the maximum of the 30 data points obtained is taken as a.

The block entry delay (bounded by α) is calculated as the difference between the time stamp given to TX_C at the coordinator node when TX_C is sent, and the confirmation time of the block that contains TX_C within the blockchain. Similar to α we take the maximum of all data points obtained as β.

To obtain α and β, each individual experiment consists of C submitting one single transaction TX_C and ends once we have collected all the data points. Each experiment takes several minutes, as we will see, and is repeated 30 times.

To measure data points for transmission delays (bounded by δ), no P_i needs to interact with the blockchain. We measure these data points by letting C send a 1KB Ethernet packet to each processor P_i which then sends it back to C. We take the round trip time and halve it to get one-way delays. The maximum of all data points collected is taken as δ: we collected 30 round trip times for each P_i, so δ is the maximum over 90 one-way delay estimates.

The results for α, β and δ are shown in Figures 5 and 6. In all three figures, the x-axis gives the experiment number (from 1 to 30), and the y-axis gives the point estimate of α, β and δ (the max of the results in the three nodes, as explained above).

In estimating α, all experiments return values within the two-minute range. The highest observed value is for experiment 4, at 115.734 seconds. Figure 5 shows only the maximum of the values for the three P_i, and we note that the difference between the three obtained values in each of the 30 experiments is minimal, less than one second. For information, the average and the median of the block awareness delays depicted in Fig 5 are 30.461 and 13.455 seconds, respectively.

In the experiments for β, the maximum is found in experiment 28, at a value of 118.800 seconds. Note that for some experiments, the maximum is found in experiment 28, at a value of 118.800 seconds. Note that for some experiments the transaction finds its way into a block in a matter of seconds, the minimum observed delay was 2.355 seconds. The block entry delay is influenced by factors such as the transaction’s gas price which in turn influences miners’ decisions of which transactions to include into the blocks they work on.

Figure 7 shows the results of our experiments for estimating δ. They range from 1.590 seconds to 5.790 seconds.

6 | IMPLEMENTATION AND EVALUATION

We implemented the 2PC-Blockchain contract from Figure 4 in Solidity 0.40.11 and tested its operation on the Ethereum Testnet network. Four different machines are used: (a) a MacBook Pro with a 2.8 GHz Intel i5 CPU and 8 GB RAM, (b) three desktop PCs with a 3.20 GHz Intel i7 CPU and 8 GB RAM running on Windows 10. The MacBook is the coordinator C and the three desktop PCs constitute the ‘cluster’ hosting P_1, P_2 and P_3. Each PC is connected to the Ethereum Testnet as a full node, thus having a full copy of the blockchain stored within it. The PCs do not play the role of miners themselves and operate as non-mining database hosts connected to the blockchain. They are also connected to each other and to switches by a standard switched Ethernet local area network, which connects through standard TCP/IP with the Ethereum Testnet.

6.1 | Delay Bound Estimation

In all our experiments, the database transaction is kept null because our main objective is to assess the cost and performance of coordination activities within and around the blockchain. Consequently, a ‘get-work’ message from C contains no work for P_i but simply initiates the latter to execute 2PC which votes yes or no as per the purpose of a given experiment; so, the bound estimate $\omega = 0$. Other bounds α, β and δ are established as follows.

The awareness delay (bounded by α) is calculated by taking the difference between the confirmation time of a given transaction of interest (such as TX_C or TX_i) entering a block in BC and the time of receiving this block by each P_i. The confirmation time is obtained from the Ethereum wallet, which shows the time that the block was added. The time stamps at the three P_i nodes give us three data points and the maximum of these three results is taken as one datapoint for estimating α. At the end of 30 experiments in which only C launched TX_C, the maximum of the 30 data points obtained is taken as α.

The block entry delay (bounded by β) is calculated as the difference between the time stamp given to TX_C at the coordinator node when TX_C is sent, and the confirmation time of the block that contains TX_C within the blockchain. Similar to α we take the maximum of all data points obtained as β.

To obtain α and β, each individual experiment consists of C submitting one single transaction TX_C and ends once we have collected all the data points. Each experiment takes several minutes, as we will see, and is repeated 30 times.

To measure data points for transmission delays (bounded by δ), no P_i needs to interact with the blockchain. We measure these data points by letting C send a 1KB Ethernet packet to each processor P_i which then sends it back to C. We take the round trip time and halve it to get one-way delays. The maximum of all data points collected is taken as δ: we collected 30 round trip times for each P_i, so δ is the maximum over 90 one-way delay estimates.

The results for α, β and δ are shown in Figures 5, 6 and 7. In all three figures, the x-axis gives the point estimate of α, β and δ (the max of the results in the three nodes, as explained above).

In estimating α, all experiments return values within the two-minute range. The highest observed value is for experiment 4, at 115.734 seconds. Figure 5 shows only the maximum of the values for the three P_i, and we note that the difference between the three obtained values in each of the 30 experiments is minimal, less than one second. For information, the average and the median of the block awareness delays depicted in Fig 5 are 30.461 and 13.455 seconds, respectively.

In the experiments for β, the maximum is found in experiment 28, at a value of 118.800 seconds. Note that for some experiments the maximum is found in experiment 28, at a value of 118.800 seconds. Note that for some experiments the transaction finds its way into a block in a matter of seconds, the minimum observed delay was 2.355 seconds. The block entry delay is influenced by factors such as the transaction’s gas price which in turn influences miners’ decisions of which transactions to include into the blocks they work on.

Figure 7 shows the results of our experiments for estimating δ. They range from 1.590 seconds to 5.790 seconds.
6.2 | Cost of 2PC Coordination

As noted in Subsection 4.1, the initiator of a blockchain transaction that involves executing one or more functions of a smart contract ought to pay the miner in the cryptocurrency *ether* that is commonly abbreviated as ETH. The payment is in proportion to the amount of ‘gas’ (often written as GAS) consumed by the executions of functions a transaction invokes.

Furthermore, a transaction initiator can quote in the transaction the gas price they are willing to pay for executing the smart contract functions. A higher gas price quoted can act as an incentive to miners in giving preferential treatment over those that quote a lower gas price. In our experiments, the gas price quoted was the lowest possible; e.g., the Coordinator quotes the gas
price of 0.001 ETH/million for executing the REQUEST function. By quoting only the lowest gas price, the cost in ETH we report here would indicate the lower bound.

When a smart contract function involves repetitive executions conditional on Boolean statements (e.g., a while loop), the gas cost can vary with the inputs supplied at invocations. As we can see from Figure 4, the 2PC coordination code does not involve aspects that lead to input-dependent execution cost variations, except when the last \(P_i \in \Pi \) casts its vote, the boolean \(\Sigma \) (which is checked on every invocation of \(\text{VOTER()} \)) comes true and ‘Set state = COMMIT’ is additionally executed. This additional execution of a simple ‘Set’ statement does not incur any extra gas and it is confirmed in all our experiments.

The amount of gas that a miner uses when executing a given contract function is calculated by the Ethereum virtual machine itself and is displayed in the Ethereum wallet at the initiator end. So, it is safer to assume that the reports on the amount of gas expended for executing a given contract function are quite reliable. Table 1 provides the cost of executing each of three smart contract functions: REQUEST(), VOTER() and VERDICT(). As per the prevailing exchange rates for ETH, the cost is in the order of few US cents or British pence.

<table>
<thead>
<tr>
<th>Transaction</th>
<th>Reason</th>
<th>GAS Used</th>
<th>Cost in ETH</th>
</tr>
</thead>
<tbody>
<tr>
<td>(TX_c)</td>
<td>By C to request voting</td>
<td>232736</td>
<td>0.000232736</td>
</tr>
<tr>
<td>(TX_i)</td>
<td>By (P_i) to vote</td>
<td>84625</td>
<td>0.000084625</td>
</tr>
<tr>
<td>(TX_v)</td>
<td>By (P_i) to seek verdict</td>
<td>55102</td>
<td>0.000055102</td>
</tr>
</tbody>
</table>

TABLE 1 Cost of executing 2PC-Blockchain contracts.

Table 2 presents the total cost for 2PC coordination in four possible voting scenarios when the number of \(P_i \) in \(\Pi \) is three.

<table>
<thead>
<tr>
<th>Scenarios</th>
<th>GAS Used</th>
<th>Cost in ETH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three vote no</td>
<td>232736</td>
<td>0.000232736</td>
</tr>
<tr>
<td>Two vote no</td>
<td>372463</td>
<td>0.000372463</td>
</tr>
<tr>
<td>One votes no</td>
<td>457088</td>
<td>0.000457088</td>
</tr>
<tr>
<td>All vote yes</td>
<td>486611</td>
<td>0.000486611</td>
</tr>
</tbody>
</table>

TABLE 2 Total Cost in Various Voting Scenarios

When a \(P_i \) votes no, it knows that the verdict = abort and terminates. Thus, when all three \(P_i \) vote no, none will launch \(TX_i \) or \(TX_v \). So, only REQUEST() function is executed and its gas price the total cost as shown in the row 1 of Table 2.

In considering the remaining rows of Table 2 let us assume that neither a process crash nor any violation of the bound estimates occurs during 2PC execution. If \(n' \) processes, \(n' = 1 \) or 2, vote no, \((3 - n') \) processes launch \(TX_i \) and, at the expiry of \(\Delta \) timeout, also \(TX_v \) of which only one will end up invoking \(\text{VERDICT()} \) function. Thus the total cost incurred is: the cost of row 1 + \((3 - n') \times \) the cost of executing \(\text{VOTER()} \) function once + the gas cost of executing \(\text{VERDICT()} \) function once.

When all three processes vote yes, none will launch \(TX_v \) and the total cost is: the cost of row 1 + \(3 \times \) the cost of executing \(\text{VOTER()} \) function once. Generalising, when \(y \) processes, \(0 \leq y \leq |\Pi| \), vote yes, the total gas cost for 2PC coordination is: gas cost of executing \(\text{REQUEST()} \) function once + \(y \times \) the gas cost of executing \(\text{VOTER()} \) function once + \(c \times \) the gas cost of executing \(\text{VERDICT()} \) function once, where \(c = 0 \) if \(y = 0 \lor y = |\Pi| \), and \(c = 1 \) otherwise (i.e., \(0 < y < |\Pi| \)).

6.3 2PC Execution Latencies

2PC execution latency for an operative \(P_i \) can be defined as the duration that can elapse from the moment when \(P_i \) receives ‘work’ from coordinator \(C \) until the moment when \(P_i \) decides either to commit or abort the transaction. Let the moments of \(P_i \) receiving work and deciding be denoted as \(T_i \) and \(T_i + E_i \) respectively and be observed as per \(P_i \)’s local clock. Thus, \(E_i \) is the 2PC execution latency for \(P_i \). We will discuss \(E_i \) by first estimating the maximum value it can (theoretically) take and then
6.3.1 Estimated Latency Bound

All possible execution scenarios need to be considered before arriving at the upper bound for E_i. To start with, let us consider the simplest case where P_i takes the transition $WG \rightarrow a$ (see Fig. 3), here, E_i cannot exceed ω.

Alternatively, P_i can vote yes instead of doing $WG \rightarrow a$. In this execution scenario, two cases need to be considered: TX_C does not or does enter BC. When TX_C does not enter BC due to C crashing subsequent to disseminating the ‘work’, P_i will affirm the absence of TX_C at the expiry of Phase 1 timeout and decide abort; so, $E_i = \text{Phase 1 timeout} = \alpha + \beta + \delta$. In the second case where C does not crash and TX_C does enter BC, E_i will depend on the number, y, of processes in Π that vote yes.

Let $y = |\Pi|$. Measuring time as per P_i’s clock, we note that P_i would commence two parallel activities at T_i: doing the work given to it and looking for TX_C to appear in BC. The former must complete by $T_i + \omega$ and TX_C in BC would be known to P_i by T_i + Phase 1 timeout = $T_i + \delta + \beta + \alpha$, at the latest. Thus, at or before $T_i + \max\{\omega, (\alpha + \beta + \delta)\}$, P_i must launch its TX_C and all other P_j must do so by P_i’s clock time $T_i + \max\{\omega, (\alpha + \beta + \delta)\} + \delta$. Thus, the verdict computed at BC would be known to P_i no later than its clock time $T_i + \max\{\omega, (\alpha + \beta + \delta)\} + (\alpha + \beta + \delta)$. So, $E_i \leq \max\{\omega, (\alpha + \beta + \delta)\} + (\alpha + \beta + \delta)$. Typically, ω is very small compared to $(\alpha + \beta + \delta)$ and thus $E_i \leq 2(\alpha + \beta + \delta)$ when $y = |\Pi|$.

Let $y < |\Pi|$. (Since P_i votes yes, $y > 0$), P_i would launch TX_Y at its clock time $T_i + \Delta$ and would observe BC state=ABORT no later than its clock time $T_i + \Delta + \beta + \alpha$. Thus, $E_i \leq \Delta + (\alpha + \beta)$. Given that $\Delta = \max\{\alpha + \beta + \delta\}, \omega + (\alpha + \beta + \delta)$ (defined in §4.3.4), $E_i \leq 2(\alpha + \beta + \delta) + (\alpha + \beta)$ when ω is considered small compared to $(\alpha + \beta + \delta)$.

Summarizing, E_i cannot exceed $\Delta + (\alpha + \beta) = 2(\alpha + \beta + \delta) + (\alpha + \beta)$ for an operative P_i in any possible combination of crashing and voting scenarios. Substituting the delay bound estimates, the (upper) bound for E_i is $2(115.734 + 118.800 + 5.790) + (115.734 + 118.800) = 715.182$ seconds, i.e., 11 minutes and 55.182 seconds.

Finally, let us also estimate, for the sake of comparison, the bound for E_i when 2PC is executed without BC (as described in §3). If P_i suffers blocking due to crash of C, E_i can be arbitrarily long as P_i cannot decide until C recovers. When C does not crash, it turns out that $E_i \leq \omega + 4\delta$: having received ‘work’ from C at its clock time T_i, P_i can receive the broadcast cast_vote at or before $T_i + \omega + \delta$; C broadcasts the verdict after 2\delta timeout expires following its broadcasting of cast_vote; P_i must decide by $T_i + \omega + \delta + 2\delta + \delta$ if it voted yes. Thus, using BC to eliminate 2PC blocking results in a performance slow down when C does not crash and the slowdown is bounded by $3(\alpha + \beta) - (\omega + 2\delta) \approx 3(\alpha + \beta) = 703.611$ seconds. Such a large slowdown should be expected, given the features of public blockchains as discussed in Subsection 2.2 and also in [13] and the need to use safe delay bound estimates so that both BC and the cluster remain synchronous, i.e., synchrony violations do not occur.

6.3.2 Observed Latencies

We carried out 200 2PC executions using our implementation involving the Ethereum blockchain. We disallowed crashes and ensured that the ‘work’ given by C is trivial to execute and all $P_i, 1 \leq i \leq 3$, always vote yes, i.e. $y = |\Pi|$. Note that each execution must result in all three processes deciding commit; otherwise, it would mean that Phase 1 or Phase 2 timeout became ‘too small’ in the prevailing execution environment and expired prematurely. In all 200 experiments, commit was indeed the decision.

In each experiment, P_i recorded the local clock times when it received the work, observed TX_C in BC and decided as T_i, $T_i + D_i$ and $T_i + E_i$ respectively. D_i and $(E_i - D_i)$ represent the latency for P_i to execute only Phase 1 and Phase 2, respectively.

<table>
<thead>
<tr>
<th></th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>E1</th>
<th>E2</th>
<th>E3</th>
<th>E1-D1</th>
<th>E2-D2</th>
<th>E3-D3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>00:09:421</td>
<td>00:42:872</td>
<td>00:20:412</td>
<td>00:08:332</td>
<td>00:42:335</td>
<td>00:20:203</td>
<td>00:07:964</td>
<td>00:41:904</td>
<td>00:20:328</td>
</tr>
<tr>
<td>Avg</td>
<td>00:30:336</td>
<td>01:19:295</td>
<td>00:48:959</td>
<td>00:36:843</td>
<td>01:26:309</td>
<td>00:49:466</td>
<td>00:36:728</td>
<td>01:26:217</td>
<td>00:49:489</td>
</tr>
</tbody>
</table>

TABLE 3 Minimum (Min), Maximum (Max) and Average (Avg) Latency in Minutes (Mn) and Seconds (Ss) expressed as Mn:Ss.
Table 3 summarises the minimum, maximum and average of the 200 latency values experienced by individual processes. We observe that the largest \(E_i \) is experienced by \(P_2 \) and stands at 4 minutes and 36.880 seconds. The corresponding upper bound estimate (when \(y = |\Pi| \) is \(2(\alpha + \beta + \delta) = 2 \times 240.324 = 480.648 \) seconds or 8 minutes 0.648 seconds, which is about twice the maximum observed. In addition to this large discrepancy between the estimated and observed bounds for \(E_i \) (when \(y = |\Pi| \)), we also observe large differences between the maximum and the average (or minimum) latency in each column. The explanation for this lies in the shape of graphs in Figures 5, 6 and 7: the largest data point ends up deciding the estimate \((\text{when } y = |\Pi|) \) and is substantially larger than most frequently occurring data points. For example, as noted earlier, the largest awareness delay observed in Fig 5 is 118.800 seconds which determines \(\alpha \); 0.2\(\alpha \) = 23.147 is still larger than the average awareness delay observed (13.455 seconds) and 0.4\(\alpha \) = 46.294 > 30.461, the median. Similarly, in the experiments for \(\beta \) in Fig 6, the peak value of 118.800 seconds was observed in experiment 28 and was adopted as \(\beta \). Only in two other experiments, the block entry delay came close to \(\beta \) and in the rest it was below 50% of \(\beta \), with the minimum observed delay being 2.355 seconds.

6.4 Impact of Synchrony Violations on Commit-Validity

We observed in §4.3.1 that \(E_i \) is the largest when \(C \) does not crash and \(y < |\Pi| \): \(E_i = \Delta + \alpha + \beta \). This is because all \(P_i \) that vote yes are forced to wait until \(T_j + \Delta \) before they could launch \(TX_i \), which then causes BC to compute and display the verdict. Any attempt to reduce \(E_i \) in this worst case and also in other cases, and thus to speed up 2PC execution in general, requires using smaller values for \(\Delta, \alpha \) and \(\beta \); this calls for less conservative estimation of \(\alpha, \beta \) and \(\delta \) as \(\Delta \) is a function of these delay bound estimates. Deliberately under-estimating delay bounds, however, tends to increase the scope for synchrony violations. We also noted in §4.3.3 that synchrony violations risk only the commit-validity requirement not being met, leading to unwarranted aborts.

We will here evaluate the probability of commit-validity being met as synchrony violations are permitted to occur due to delay bounds being deliberately under-estimated.

Recall that when \(\omega \) is considered small compared to \((\alpha + \beta + \delta) \), the Phase 2 timeout \(\Delta = \max\{(\alpha + \beta + \delta), \omega\} + (\alpha + \beta + \delta) \) (defined in §4.3.4) simply becomes \(2(\alpha + \beta + \delta) \); Phase 1 timeout (see §4.3.3), \((\alpha + \beta + \delta) \), becomes \(\Delta/2 \).

Suppose that each bound estimate \(b \in \{\alpha, \beta, \delta\} \) is chosen not as the largest data point observed (as in conservative estimations) but as \(m \) times the largest data point, where \(m \) is a small positive real number. When \(0 < m < 1 \), Phase 1 and Phase 2 timeouts drop to \(m\Delta/2 \) and \(m\Delta \) respectively and execution latency is reduced; in our experiments, commit-validity is upheld in an execution only if \(D_i < m\Delta/2 \) and \(E_i < m\Delta \) for all \(P_i \in \Pi \). For any given \(X = m\Delta \), the probability of commit-validity being upheld is the fraction of 200 experiments in which \(D_i < X/2 \) and \(E_i < X \) for all \(P_i \in \Pi \).

Figure 8 depicts the cumulative distributive function for commit-validity for \(X = m\Delta \) with \(m \) ranging from 0.03 to 1.12. (Absolute values of \(X \) are in the first row of x-axis as Minutes:Seconds.) We observe that when \(X \) is as small as 0.25\(\Delta \), commit-validity is upheld with a probability as high as 82%. What this means here is that choosing \(b \in \{\alpha, \beta, \delta\} \) to be 25% of the largest data point observed leads only to 18% of runs suffering unwarranted aborts while it can reduce 2PC execution latency by 75%. Further, the commit-validity probability rises quickly to 98% for \(m \) as small as 0.44 and it becomes 100% for \(m \geq 0.75 \). The latter indicates that 2PC execution latency can be reduced by 25% without suffering any unwarranted aborts. All these observations
suggest that (i) small under-estimations of delay bounds may not lead to unwarranted aborts at all, and (ii) there is much room for reducing execution latency considerably at the expense of a modest increase in unwarranted aborts.

7 | CONCLUDING REMARKS

Common choices to avoid 2PC blocking are to use a decentralised protocol12,13 or the (centralised) 3 phase commit. These alternatives extract a larger message cost even in the absence of crashes and do not have the structural simplicity of 2PC. We have shown here that the message cost and implementation difficulties of existing 2PC alternatives can be avoided if the 2PC coordinator C simply offloads coordination responsibilities to a blockchain after disseminating database work to servers. Our proposed protocol maintains the low message overhead and the elegant structure of 2PC: those servers that want to commit look up to the crash-free blockchain for progress (instead of crash-prone C) and launch at most two blockchain transactions (instead of periodically pinging the crashed C until it recovers). The extra cost arises in two forms: miners’ fees and latency sacrifice when a public blockchain is used; the former are very small in fiat currencies but the latter can be substantial, in the order of hundreds of seconds as shown by our experiments involving the Ethereum blockchain. We believe that the performance slowdown will not be so serious, if permissioned blockchains had been used and our future work would focus on such an investigation.

Though the blockchain infrastructure maintains the abstraction of a reliable state machine with an immutable audit trail display, such features are not sufficient to guarantee non-blocking atomic commit, unless it meets synchrony requirements. This is another important contribution of this paper which should be borne in mind when building applications similar to atomic commit using blockchain. For example, eVoting, like atomic commit, can be guaranteed to be correct only if the blockchain is synchronous; this aspect is not emphasised but is simply assumed in some blockchain based eVoting systems22. Informally, the total number of ‘yes’ votes cast is counted in both applications and the count is displayed in eVoting whereas it is used to decide between commit and abort in atomic commit. Since a dishonest participant can seek to undermine the result of eVoting, it is important for an eVoting system to specify timing requirements to distinguish between a ‘timely’ vote that gets counted and the one that arrives ‘too late’ and gets ignored. This naturally leads to synchrony requirements for correctness.

We have applied the traditional ‘best effort, worst-case’ method to reliably estimate delay bounds. We then emulated synchrony violations by deliberately choosing to use smaller values as bound estimates and thereby examined the extent of commit-validity violations resulting in unwarranted aborts. We observe the number of unwarranted aborts occurred to be small even when bound under-estimations are considerable. For example, a uniform reduction of 81% across all bound estimates still upholds commit-validity (i.e., zero aborts) in more than 50% of runs ($X = 0.19\Delta$ in Fig8). This is because the peak delays observed during bound estimation are much larger than the average or median delays. So, the ‘worst-case’ bound estimation offers built-in tolerance for synchrony violations. Its down-side, however, is that the protocol takes much longer to terminate. Thus, there is a trade-off between reducing protocol latency and using smaller than ‘worst-case’ bound estimates which risks violating commit-validity.

References

19. Xiwei Xu, et. al. The Blockchain as a Software Connector. In proceedings of the 13th Working IEEE/IFIP Conference on Software Architecture (WICSA), April 2016. DOI: 10.1109/WICSA.2016.21

