

1

Time to enter the era of

2

Earth-Observation based landslide warning system

3

Keren Dai^{1,2,5}, Zhenhong Li^{3, 4, 5 *}, Qiang Xu¹, Roland Bürgmann^{6, 7}, David G
4 Milledge⁴, Roberto Tomás⁸, Xuanmei Fan¹, Chaoying Zhao⁵, Xiaojie Liu⁵, Jianbing
5 Peng⁵, Qin Zhang⁵, Zheng Wang^{3, 4}, Tengteng Qu^{4, 9}, Chaoyang He¹, Deren Li¹⁰,
6 Jingnan Liu¹¹

7

¹State Key Laboratory of Geohazard Prevention and Geoenviroment Protection,
Chengdu University of Technology, Chengdu 610059, China.

9

²College of Earth Sciences, Chengdu University of Technology, Chengdu 610059,
10 China.

11

³COMET, School of Engineering, Newcastle University, Newcastle upon Tyne NE1
12 7RU, UK.

13

⁴School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.

14

⁵College of Geological Engineering and Geomatics, Chang'an University, Xi'an
15 710054, China

16

⁶Berkeley Seismological Laboratory, University of California, Berkeley, CA 94720,
17 USA.

18

⁷Department of Earth and Planetary Science, University of California, Berkeley, CA
19 94720, USA.

20

⁸Departamento de Ingeniería Civil, Escuela Politécnica Superior, Universidad de
Alicante, P.O. Box 99, E-03080 Alicante, Spain.

22

⁹College of Engineering, Peking University, Beijing, 100871, China.

23

¹⁰State Key Laboratory of Information Engineering in Surveying, Mapping and Remote
Sensing, Wuhan University, Wuhan 430079, China.

25

¹¹GNSS Research Center, Wuhan University, Wuhan 430079, China.

26

* Corresponding author. Email: zhenhong.li@newcastle.ac.uk

27

28

Abstract. Landslide early warning factors. There have been only a very
29 remains a grand challenge due to the high limited number of success stories to date.
30 human cost of catastrophic landslides However, recent advances in earth
31 globally and the difficulty of identifying observation (EO) from ground, aircraft
32 a diverse range of landslide triggering and space have dramatically improved
33 and our ability to detect and monitor active

1 landslides and a growing body of
2 geotechnical theory suggests that pre-
3 failure behavior can provide clues to the
4 location and timing of impending
5 catastrophic failures. In this paper, we
6 use two recent landslides in China as case
7 studies, to demonstrate that (i) satellite
8 radar observations can be used to detect
9 deformation precursors to catastrophic
10 landslide occurrence, and (ii) early
11 warning can be achieved with real-time
12 in-situ observations. A novel and exciting
13 framework is then proposed to employ
14 EO technologies to build an operational
15 landslide early warning system.

16

17 INTRODUCTION

18 Landslides (where soil or rock moves
19 down a slope) have been shaping
20 mountainous regions for millennia, but
21 today they pose a destructive hazard to
22 people and infrastructure resulting in
23 hundreds of deaths and billions of dollars
24 of damage every year [1]. The
25 combination of a rapidly increasing
26 global population and intensifying
27 weather extremes associated with recent
28 climate change suggests that landslide
29 risk will dramatically increase over the
30 next decade. Landslide deformation can
31 be extremely slow (few mm per year) or
32 involve sudden extremely rapid failure
33 [2], and thus their hazards include both
34 enduring damage to manmade structures
35 and catastrophic destructive events.
36 While small landslides make up the vast

37 majority of landslide ‘events’ in any
38 given year, it is large landslides that tend
39 to be responsible for most of the damage
40 and loss of life [3]. Current landslide risk
41 mitigation strategies tend to reduce
42 exposure - the likelihood that someone or
43 something is impacted by a landslide -
44 primarily by moving to, or locating
45 infrastructure in, less hazardous
46 locations; but for many people and assets
47 relocation is not feasible. In these
48 situations, short-term evacuation is often
49 the most attractive or only option.
50 Therefore, improved landslide
51 forecasting and the development of early
52 warning capabilities are expected to play
53 crucial roles in managing landslide risk
54 for many individuals and communities.

55 The major landslide triggering factors
56 (e.g., rainfall and seismic shaking) and
57 the basic physics governing landslide
58 initiation are well known. Yet predicting
59 where and when landslides will occur
60 remains a grand challenge primarily due
61 to the difficulty in forecasting the
62 triggering factors themselves, and the
63 spatial variations in earth materials and
64 slope conditions. Existing forecasting
65 methods generally involve functional
66 relationships between trigger-factor
67 intensity (e.g. precipitation history and
68 peak seismic ground acceleration) and
69 landslide probability. However, the
70 connection between triggers and
71 landslides is complex, with some
72 landslides occurring in the absence of an
73 identifiable trigger and others occurring

1 with significant delay. For example, the 38 conditions, at metre-resolution and offers
2 2006 Leyte landslide that killed over 39 the capability to remotely monitor
3 1100 people in the Philippines, occurred 40 unstable slopes, e.g. [18-21]. Recent
4 five days after a large rainstorm, so that 41 studies have demonstrated that
5 although the population were initially 42 conventional InSAR and related time
6 evacuated they had returned to their 43 series techniques (e.g. Persistent
7 homes [4]. Displacements recorded over 44 Scatterer InSAR and small baseline
8 time could provide critical additional 45 InSAR) can identify, map and monitor
9 information for predicting the possible 46 active landslides [22-26] and even to
10 timing of impending slope failure [5]. 47 detect precursory deformation signals

11 Based on conventional in-situ survey 48 prior to their eventual failure, e.g. [27-
12 methods, the concept of 'landslide early 49 29]. Note that spaceborne InSAR
13 warning systems' has been proposed for 50 currently has a minimum repeat cycle of
14 several years, e.g. [6-12]. The outcomes 51 6 days for Sentinel-1, 1 day for COSMO-
15 of these works are often suggested 52 SkyMed [30], 11 days for TerraSAR-X
16 warning criteria for specific locations. 53 and longer for other satellites, which
17 Successful early warning cases, where a 54 represents a major limitation of
18 clear warning was given prior to 55 spaceborne InSAR for early warning
19 catastrophic slope failure, have been very 56 systems.

20 limited due to the inadequate temporal 57 In-situ global navigation satellite
21 and spatial precision of ground 58 system (GNSS) monitoring is capable of
22 observations [13]. Building trustworthy 59 measuring three-dimensional landslide
23 real-time early warning systems (capable 60 motion at very high temporal frequency
24 of identifying the 'very high-risk time' to 61 (e.g. 20 Hz) and spatial accuracy (2-4 mm
25 prompt short-term evacuation) with 62 in plan and 4-8 mm in vertical) [31].
26 suitable spatial and temporal precision is 63 Other in-situ monitoring methods include
27 an important but difficult challenge. 64 extensometers, inclinometers, and pore

28 Spaceborne Synthetic Aperture 65 water pressure sensors. However, these
29 Radar (SAR) sensors emit radar signals 66 methods only provide point-based
30 and record the amplitude of the 67 measurements at sensors that are costly to
31 backscattered signal as well as the phase 68 install and maintain. Thus in-situ
32 (from which the changes in range 69 observations are limited by the number of
33 between satellite and Earth's surface can 70 sensors that can be deployed at the key
34 be inferred) [14]. Interferometric SAR 71 locations and may not capture the spatial
35 (InSAR) is a powerful tool for measuring 72 variations in landslide motion prior to
36 the Earth's surface motion over large 73 failure. There are two obvious hurdles to
37 regions (e.g. [15-17]) in all weather 74 the deployment of ground-based

1 monitoring techniques: (i) the sites with 37 observation (EO) is now within our
2 potential landslides should be detected 38 grasp. We believe that this is a message
3 prior to their failure; and (ii) the key 39 that is both important and timely. It is
4 monitoring locations in the landslide 40 important because landslides kill
5 bodies should be identified. 41 thousands of people every year,

6 Spaceborne InSAR and in-situ 42 predominantly in those parts of the world
7 sensors are complementary tools to 43 that are poorest and thus least able to
8 monitor surface displacements given 44 protect themselves. It is timely because,
9 InSAR's high spatial resolution (metres 45 though early warning has long been
10 to 10s metres) over a wide region (e.g. 46 touted as a 'golden bullet' in landslide
11 250 km x 250 km for Sentinel-1) but 47 risk mitigation, it requires accurate
12 limited temporal resolution (constrained 48 predictions that have generally been out
13 by the frequency of satellite overpasses) 49 of reach until now.

14 and in-situ sensors' fine temporal 50

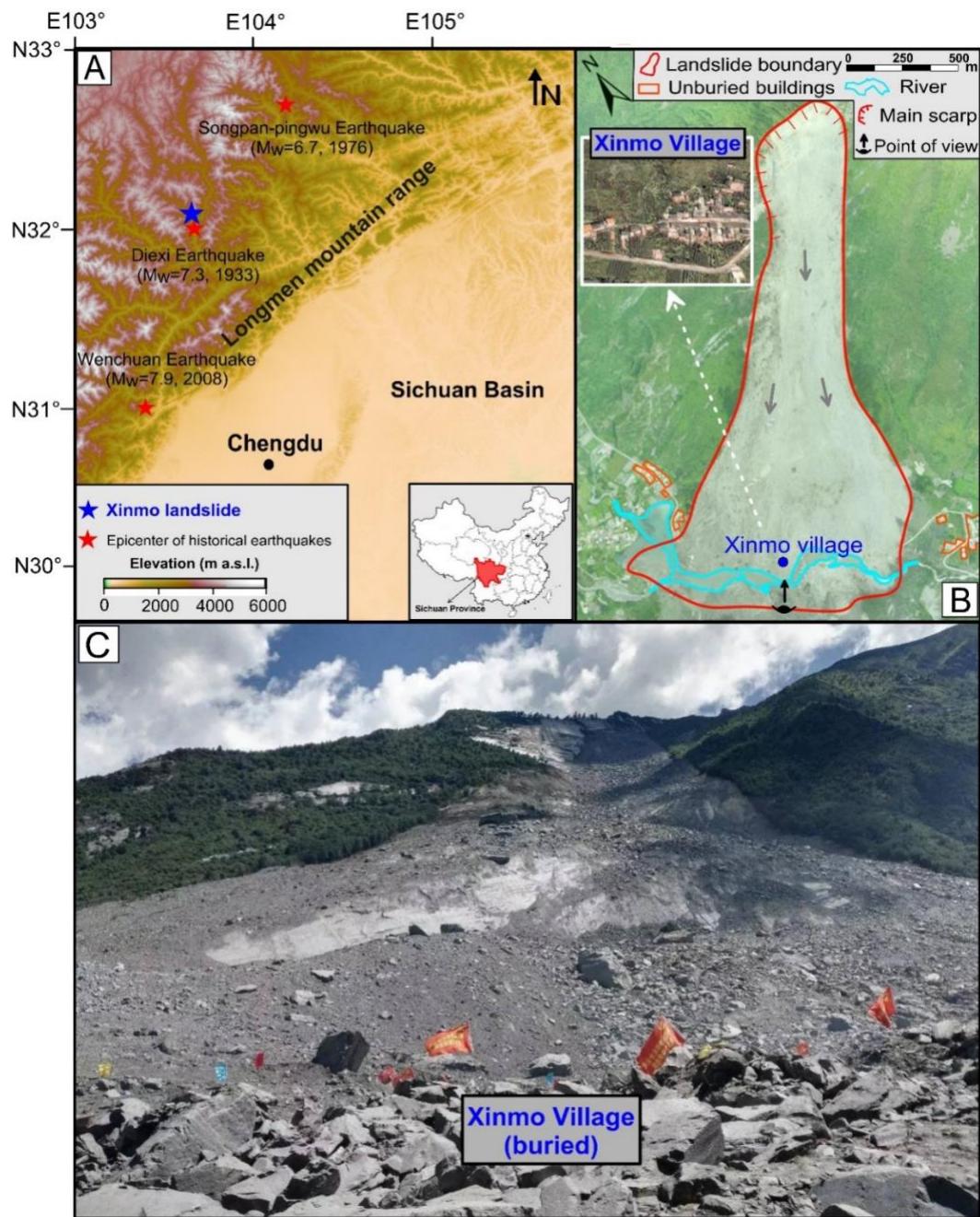
15 resolution at their locations. We suggest 51 **METHODOLOGY**

16 that it is now both feasible and timely to 52 The InSAR dataset for the time series
17 combine these EO technologies to build 53 displacement extraction of Xinmo
18 an integrated landslide early warning 54 landslides includes 29 descending SAR
19 system. In this paper, the 2017 Xinmo 55 images acquired by Sentinel-1A/1B
20 (Sichuan, China) landslide is used to 56 satellites from 09 November 2015 to 19
21 demonstrate the ability of spaceborne 57 June 2017 SAR on every 6-24 days.
22 InSAR to identify precursory landslide 58 ESA's Sentinel-1A/1B satellites operate
23 deformation, while the 2017 Dangchuan 59 day and night performing C-band
24 #4 landslide in Heifangtai (Gansu, China) 60 microwave SAR imaging, providing
25 is used to demonstrate the successful 61 radar imagery with a wide coverage (e.g.
26 application of timely early warning for 62 250 × 250 km) and a short repeat cycle
27 landslides by in-situ measurements [32]. 63 (6-24 days). The SAR data in this study

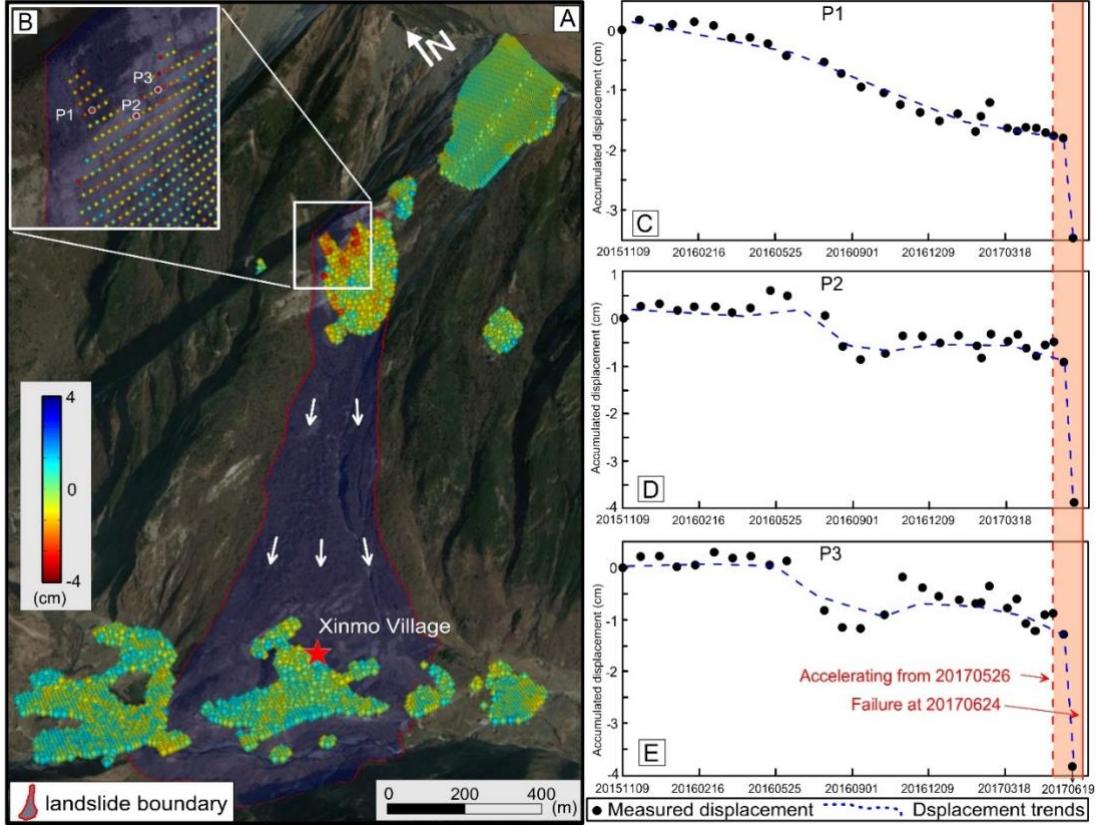
28 Based on the advantages, limitations and 64 were interferometrically processed with
29 complementarity of different EO 65 GAMMA software. Shuttle Radar
30 methods, a landslide early warning 66 Topography Mission (SRTM) with 30 m
31 framework is proposed to increase the 67 horizontal resolution was used to
32 resilience of local communities to 68 simulate and eliminate the topographic
33 landslide hazards by informing short- 69 phase. Interferograms were filtered by
34 term evacuations. 70 the adaptive filtering method to reduce

35 Our paper makes the case that 71 the noise. Coherent pixels were detected
36 landslide early warning from earth 72 using the full-rank matrix approach

1 demonstrated in [33] and their time series 37 causing 10 deaths, with 73 persons still
2 analysis was performed following the 38 missing. Xinmo village is located on the
3 InSAR time series integrated 39 left bank of the Songping River, a first-
4 atmospheric estimation model (InSAR 40 order tributary of the upper reaches of
5 TS+AEM) described in [34]. Both the 41 Minjiang River [36]. The surrounding
6 coherent pixel detection approach and the 42 steep slopes are prone to rock falls,
7 InSAR TS+AEM method have been 43 landslides, and debris flows [37]. The
8 successfully used in previous InSAR 44 region is tectonically active with several
9 studies. The mean velocity map and time 45 active faults nearby that have generated
10 series displacements results were finally 46 three $M_w >= 6.7$ earthquakes since the
11 geocoded into WGS84 coordinate 47 1930s (Fig. 1A). Xinmo village itself was
12 system. 48 built on the deposits of an old landslide

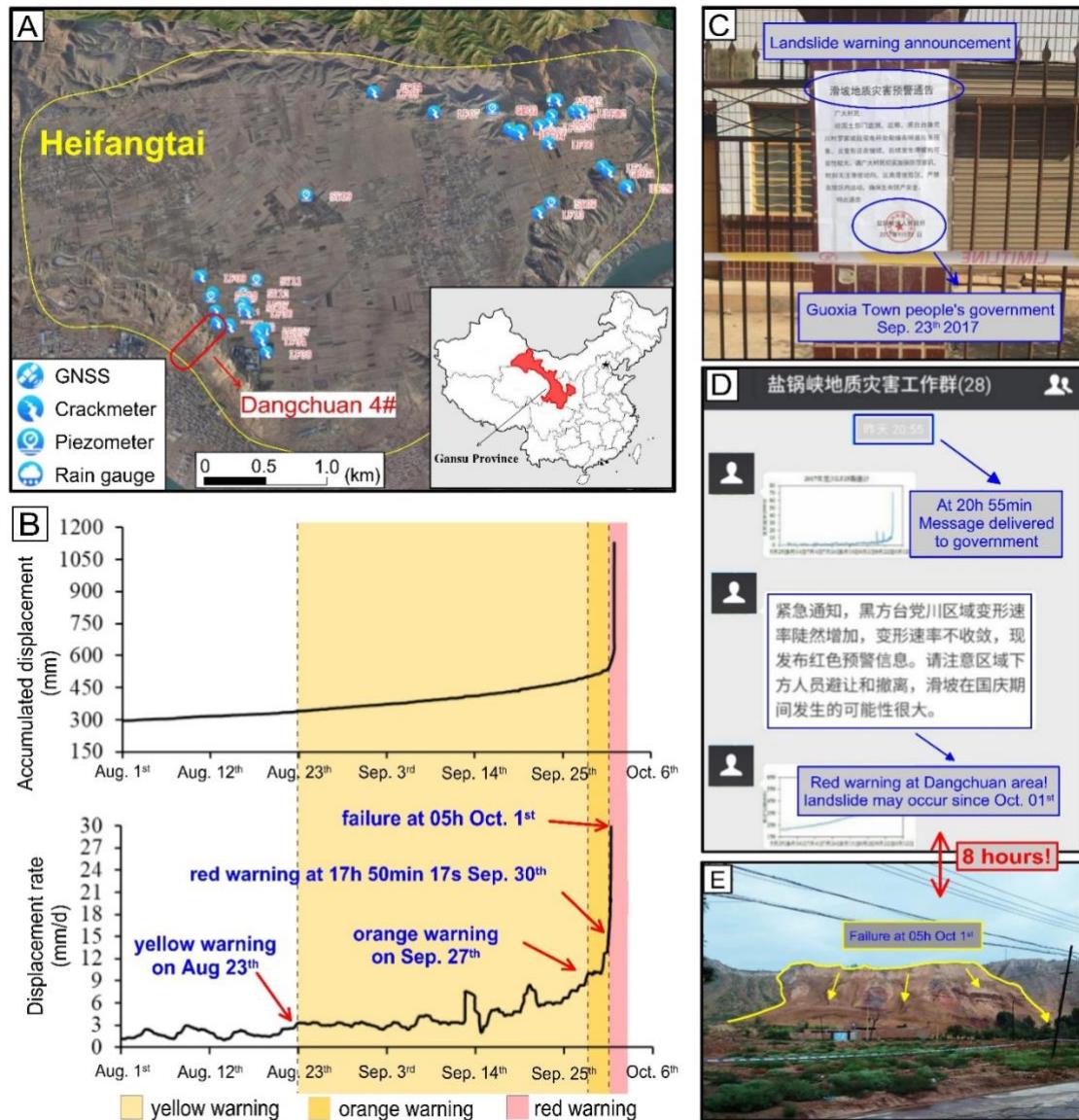

13 The Heifangtai area has been monitored 49 triggered by the 1933 $M_w 7.3$ Diexi
14 with a range of in-situ sensors including 50 earthquake [36, 38] (Fig. 1A).

15 7 GNSS receivers, 34 crackmeters, 2 51 To explore the pre-failure
16 range gauges and 13 piezometers since 52 displacement history of the Xinmo
17 2017 by researchers from the State Key 53 landslide, InSAR analysis was performed
18 Laboratory of Geohazard Prevention and 54 on Sentinel-1 data to determine a mean
19 Geoenviroment Protection (SKLGP) at 55 velocity map and a time series of
20 Chengdu University of Technology. The 56 landslide motion for a ~1.5-year period
21 data collected by all the sensors was 57 prior to failure (Fig. 2). The accumulative
22 transmitted to SKLGP in real time with 58 displacement map during the period from
23 GPRS (General Packet Radio Service). 59 November 2015 to June 2017 (Fig. 2A)
24 Note that the crackmeter was a real-time 60 shows that the area near the head scarp of
25 adaptive one developed by SKLGP [35], 61 the landslide exhibited clearly detectable
26 which acquired one sampling per hour in 62 displacements with a maximum of 3 cm
27 normal conditions but automatically 63 preceding failure. Figs 2C, 2D and 2E,
28 increased its samples when a 64 show the displacement times series
29 displacement acceleration was detected. 65 results for three selected points P1, P2
30 66 and P3 whose locations are shown in Fig.
31 **RESULTS** 67 2B. The last three acquisition dates are 26
32 **Pre-failure movement signals revealed 68 May 2017, 07 June 2017 and 19 June**
33 **with spaceborne InSAR 69 2017 (5 days before the failure),**


34 On 24 June 2017, a landslide of 13 70 respectively. A dramatic acceleration can
35 million cubed meters suddenly buried 71 be observed during the period from 07
36 Xinmo village, Sichuan province, China, 72 June 2017 to 19 June 2017 (from 17 days
73 before the failure). It should also be noted

1 that all the interferograms were carefully
2 checked to avoid phase unwrapping
3 errors and the InSAR time series was
4 performed pixel by pixel. We did NOT
5 apply strong spatial filtering, and hence
6 our InSAR mean velocity map is not as
7 smooth as those in previous studies.
8 However, the overall pattern of our
9 InSAR mean velocity map is consistent
10 with those in previous results (e.g. [28],
11 [29]).

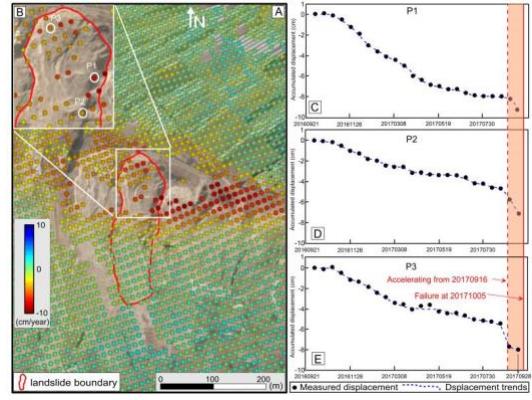
This clearly demonstrates that
13 quantitative time series analysis from
14 satellite radar observations can detect
15 accelerated movements prior to
16 catastrophic failure, occurring 5-17 days
17 before the landslide. It should be noted
18 that the source area of the Xinmo
19 landslide is located on a steep slope at an
20 altitude of ~3400 m a.s.l. where in-situ
21 sensors would be difficult to install. This
22 highlights one notable advantage of
23 InSAR over in-situ monitoring sensors.



1 **Fig. 1. The location, pre-event and post-event photos of the 24 June 2017 Xinmo**
2 **landslide.** (A) Location of the Xinmo landslide and the epicenters of three large
3 historical earthquakes. (B) Unmanned aerial vehicle (UAV) aerial photo of the Xinmo
4 landslide with an inset photo of Xinmo village taken before the event. (C) Post-failure
5 photo of the Xinmo landslide (the whole village was buried under the accumulated
6 debris).

Fig. 2. Pre-failure movement signals and source area revealed by InSAR. (A) Cumulative displacements for coherent pixels from time series InSAR analysis. (B) Enlarged active displacement area and the location of points P1, P2 and P3; (C)(D)(E) Displacement time series for points P1, P2 and P3, respectively.

1 **Early warning for the Dangchuan 4# 11 terrace margins. The Dangchuan 4#**
 2 **landslide using in-situ sensors** 12 landslide lies in southwest-central
 3 The Heifangtai loess terrace, located 13 Heifangtai near Guoxia town, Yongjing
 4 in Yongjing County, Gansu Province, 14 County. Among all the in-situ sensors, a
 5 China (Fig. 3B) with an area of 13.7 15 crackmeter installed across the trailing
 6 squared km, is formed from a terrace of 16 head scarp edge of Dangchuan 4# (Fig.
 7 Quaternary aeolian loess deposits [39]. 17 3A) provided critical displacement
 8 Since the Yellow River pumping 18 measurements in real time which were
 9 irrigation project was kicked-off in 1966, 19 used in a successful 8-hour early warning
 10 frequent landslides have occurred on the 20 in 2017.


Fig. 3. landslide warning at Dangchuan 4# landslide in Heifangtai. (A) The location of Dangchuan 4# landslide with various in-situ sensors; (B) cumulative displacement and displacement rates from a crackmeter installed across the trailing head scarp edge during the period from 1 August 2017 to 1 October 2017; (C) On 23 September 2017 a photo of Heifangtai landslide warning announcement which was posted on a pillar in Guoxia town by the local government; (D) At 20:55 on 30 September 2017, a red warning message was delivered to the local government through WeChat app; (E) The post-failure photo of the Heifangtai landslide (Dangchuan 4# slope) which failed at 05:00 on 1 October 2017.

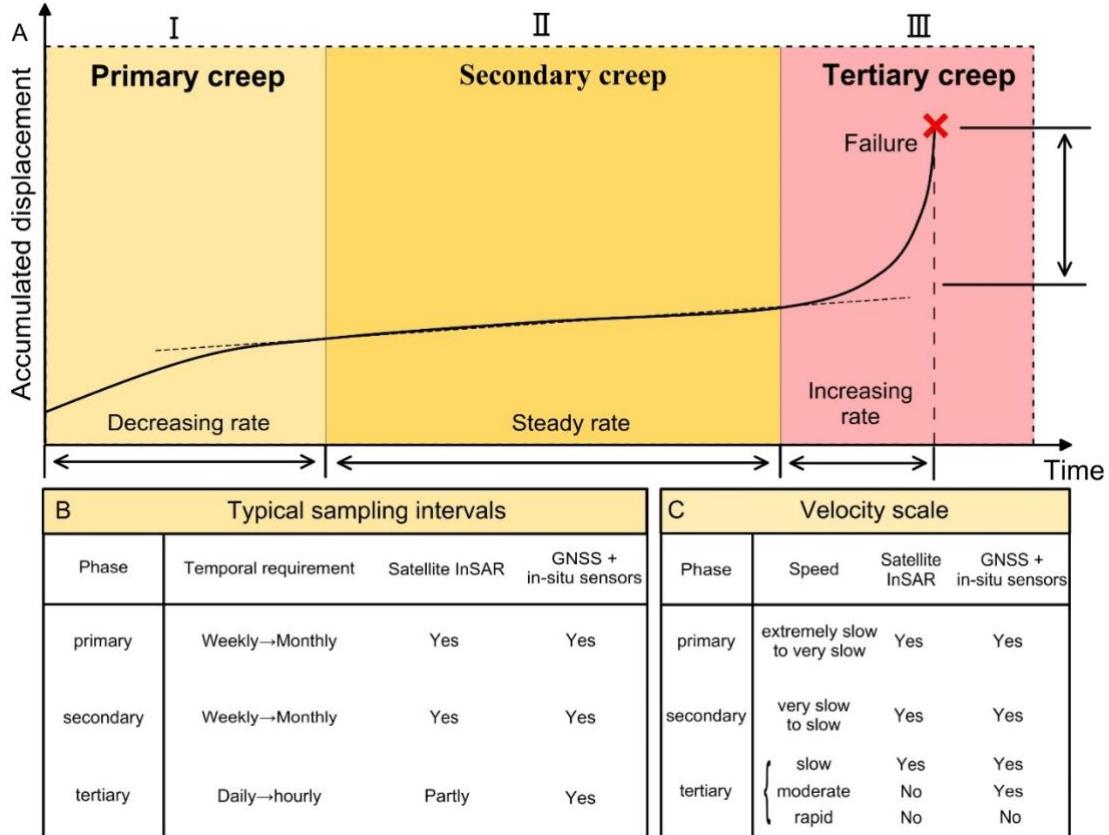
The crackmeter observations showed a clear acceleration in the displacement rate at Dangchuan 4# on 23 August 2017 (Fig. 3B), and hence a yellow warning was issued to the village head and local government by text message, informing them to: 'pay close attention to this slope and prepare for disaster prevention'.

9 After a detailed field investigation, the 46 local government confirmed the warning 47 and released an official landslide warning 48 (Fig. 3C). On 27 September 2017 the 12 announcement to local communities on 13 23 September 2017 with several alert 14 boards posted around the landslide area 15 (Fig. 3C). On 27 September 2017 the 16 yellow warning was upgraded to an 17 orange warning due to the accelerating 18 displacement rate measured at the 19 crackmeter. At 17:50 on 30 September 49 2017, a red warning was released 20 automatically by the system (Geohazard 21 Real-time Monitoring and Early Warning 22 System [40]) developed by SKLGP, 23 which was confirmed by a panel of 24 experts. Three hours later (at 20:55 on 30 25 September 2017), an official red warning 26 was issued to the local government (Fig. 27 3D), prompting a government led 28 emergency response and evacuation. The 29 local government immediately started 59 30 their emergency response, and more than 60 31 20 villagers in the landslide hazard zone 61 32 were evacuated. At 05:00 on 1 October 62 33 2017, a landslide occurred (Fig. 3E), 63 34 damaging several buildings but with no 64 35 casualties thanks to the early warning 65 36 [32].

38 This successful case clearly 67 demonstrates the potential importance of 68 real-time displacement measurements 69 and the role that in-situ sensors could 70 play in early warning systems. A 71 preliminary retrospective InSAR study 72 showed that InSAR with L-band ALOS- 73 2 images was able to capture the 74

accelerated movements prior to failure, occurring 15 days before the landslide (Fig. 4).

50 **Fig. 4. Pre-event displacements of the**
 51 **Dangchuan 4# landslide revealed by L-**
 52 **band observations.** (A) The mean
 53 velocity map from time series InSAR
 54 analysis. (B) Enlarged active
 55 displacement area and the location of
 56 points P1, P2 and P3; (C)(D)(E)
 57 Displacement time series for points P1,
 58 P2 and P3, respectively.


DISCUSSION

The feasibility and complementarity of EO for landslide early warning

63 A range of laboratory, field and 64 theoretical studies have identified pre- 65 failure creep acceleration of landslides 66 and suggest that it can be divided into 67 three phases [41-44]: (i) Primary creep, 68 (ii) Secondary creep, and (iii) Tertiary 69 creep (Fig.A). Primary creep is 70 characterised by a decreasing strain rate 71 over time, which often lasts for a short 72 period or can be even absent in some 73 cases [42]. Secondary creep is 74 characterised by slow movement at near

75 constant rate (but with fluctuations in real 104 primary and secondary phases, weekly to
76 slopes due to the influence of external 105 monthly observations would be sufficient
77 factors, such as rainfall). The duration of 106 to distinguish areas undergoing more
78 the secondary creep is difficult to 107 rapid creep. In the tertiary creep phase,
79 estimate and can last for months, years or 108 sub-daily sampling intervals are needed
80 even decades [42, 45], despite continuous 109 to capture the acceleration in creep (Fig.
81 displacement during this phase. Tertiary 110 5B). InSAR currently has a shortest
82 creep is characterized by a rapid 111 repeat cycle of 1-11 days while GNSS
83 acceleration of displacement until final 112 and some other in-situ sensors can
84 failure [46]. Although such speed-ups 113 provide high-rate (e.g. 1-20 Hz)
85 may be common prior to catastrophic 114 measurements. Only slow tertiary creep
86 failure events [45], the number of actual 115 displacements (e.g. <0.012 m/day over a
87 observations of such speed-up behavior 116 distance of 100 m for Sentinel-1 [47])
88 remains limited due to the absence of the 117 could potentially be captured by InSAR
89 right EO technologies in the right 118 because its measuring capability is
90 locations at the right times. Therefore, 119 limited by the spatial displacement
91 there are two primary challenges for 20 gradients. This limitation can be
92 landslide early warning: (i) monitoring 21 overcome by SAR pixel offset tracking
93 surface displacements over a wide region 22 (e.g. [19]) and/or Range Split Spectrum
94 with sufficient resolution and accuracy to 23 Interferometry assisted Phase
95 identify areas undergoing secondary 24 Unwrapping (R-SSIaPU) method [47];
96 creep; and (ii) identifying when or under 25 in-situ sensors generally do not have such
97 what circumstances a slow-moving 26 limitations (Fig. 5C). On the other hand,
98 landslide (i.e. in secondary creep phase) 27 InSAR offers extensive spatial coverage
99 enters the accelerated displacement 28 enabling detection of potential landslides
100 tertiary creep phase leading to rapid 29 in the primary and secondary creep
101 failure. 130 phases. To monitor a single slope in its

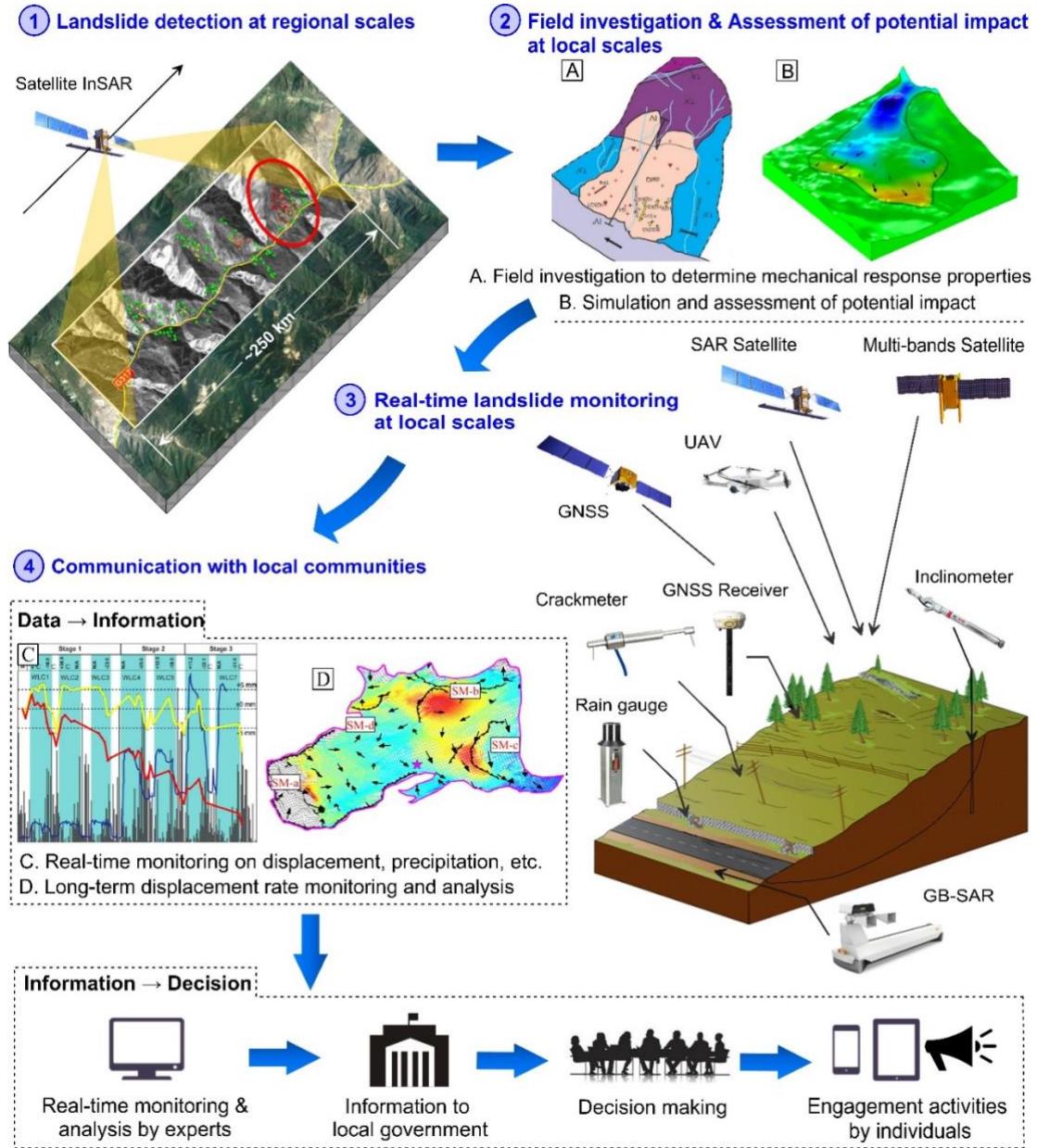

102 Advances in EO offer the potential to 31 tertiary phase InSAR and in-situ sensors
103 address these two challenges. In the 32 can provide complementary coverage in
133 space and time.

Fig. 5. EO feasibility analysis on the three stages of landslide. (A) Idealized displacement-time curves for the three stages of creep [6, 41, 42]. (B)-(C) Typical sampling intervals and velocity scale analysis for satellite InSAR and in-situ sensors in three creep phases. The landslide speeds in (c) are defined according to [48, 49], i.e. extremely slow (<16 mm/year), very slow (1.6 m/year), slow (13 m/month) and moderate (1.8 m/h).

1 Xinmo and Dangchuan case studies. A
 2 single EO method is insufficient to
 3 capture all the signals in the different
 4 creep stages, and hence multiple EO
 5 technologies should be combined to
 6 develop landslide EWS. Fig. 6 shows
 7 the framework of an operational
 8 landslide early warning system relying
 9 on an optimal combination of these EO
 10 technologies.

1
 2 **EO based landslide early warning**
 3 **system**
 4 Fig. 5 illustrates that EO can provide us
 5 with unprecedented and encouraging
 6 opportunities for pre-failure creep
 7 monitoring. However, the different
 8 technologies have their own advantages
 9 and limitations as illustrated by the
 10 Xinmo and Dangchuan case studies. A
 11 single EO method is insufficient to
 12 capture all the signals in the different
 13 creep stages, and hence multiple EO
 14 technologies should be combined to
 15 develop landslide EWS. Fig. 6 shows
 16 the framework of an operational
 17 landslide early warning system relying
 18 on an optimal combination of these EO
 19 technologies.

Fig. 6. EO based landslide early warning system. (A) Field investigation to determine geomechanical response properties. (B) Simulation and assessment of potential impact. (C) Real-time monitoring on displacement, precipitation etc. (D) Long-term displacement rate monitoring and analysis.

1 Step 1. Spaceborne InSAR is 8 Sentinel-1) are interferometrically
 2 employed to comprehensively detect 9 processed and then analysed in time
 3 active slopes (i.e. clusters of points that 10 series. An automatic feature detection
 4 exhibit certain deformational activity 11 algorithm (possibly relying on machine
 5 [50]) to find potential landslides at a 12 learning approaches, e.g. [51, 52]) should
 6 regional scale. The archived and newly 13 be developed to detect potential
 7 acquired SAR images (e.g. ESA's 14 landslides based on the regional

1 deformation rate maps and displacement 38 community participation. These will
2 time series. Time series analysis can be 39 support the impact assessment as well as
3 used to determine the sensitivity of 40 early warning communication with the
4 landslide motion to external factors such 41 local community. This step also identifies
5 as seasonal precipitation and seismic 42 the sites for which real-time landslide
6 shaking (e.g. [23, 53]). First-order 43 monitoring (RTLM) is required.

7 geomechanical modeling of landslide 44 Step 3. A multi-sensor integrated
8 behavior based on critical-state soil 45 system is installed combining remote
9 mechanics or rate-and-state friction can 46 sensing methods and in-situ sensors for
10 provide important insights on the 47 the specific sites where the RTLM is
11 stability conditions of landslides (e.g. 48 needed. In-situ sensors can be carefully
12 [54-56]). Eventually, such 49 located according to the landslide motion
13 geomechanical analysis may allow us to 50 information provided by InSAR so that
14 anticipate failure conditions prior to the 51 an accurate continuous monitoring in
15 pronounced accelerations of the tertiary 52 time and space for all hazardous
16 phase (e.g. [57]). 53 landslides in a region can be achieved by

17 Step 2. Assessment of potential 54 integrating these two systems whilst
18 impacts of the active landslides at a local 55 minimizing the associated costs by
19 scale. After the potential landslide 56 limiting the number of in-situ sensors.
20 initiation hazard is identified for specific 57 High-rate (e.g. 1 Hz) raw in-situ
21 locations, field investigations help assess 58 observations (e.g. GNSS and
22 the geological setting of the landslide. A 59 crackmeters) can be transmitted to a data
23 landslide dynamics model (e.g. [58, 59]) 60 centre via wireless communication
24 can be applied to predict the speed and 61 infrastructure, and real-time processed
25 run-out extent of potential landslide 62 with short baselines in a kinematic mode.
26 events. Potential landslide sites identified 63 Recent experiments with GNSS suggest
27 in Step 1 can be simulated to determine 64 ~2-4 mm horizontal and 4-8 mm vertical
28 the likely impact on human settlements 65 accuracy are possible at 1 Hz [60, 61].
29 for each landslide. Topographic and 66 Real-time monitoring is particularly
30 socio-spatial data can be collated for 67 important since existing observations on
31 landslide modelling and impact 68 tertiary creep suggest that the timescale
32 assessment. A detailed local land 69 for this phase ranges from minutes to
33 property map, including key 70 months [44, 62, 63]. Thus the data should
34 infrastructures such as buildings, roads, 71 be transmitted back to the data centre in
35 power lines, and a population- 72 real time and processed automatically.
36 distribution map could be generated 73 However, these in-situ observations are
37 based on existing open source data and 74 not only useful for identifying the onset

1 of tertiary creep but can be used in the 7 introduced at stage 1 can be refined and
 2 secondary phase to determine the 8 calibrated through monitoring of
 3 sensitivity of landslide motion to external 9 environmental factors and geological-
 4 factors at a higher resolution and 10 geotechnical parameters such as the pore
 5 precision than was possible in stage 11 pressure in soils (Table 1) [13, 64].
 6 [23, 53]. The mechanical models

Table 1. Commonly used technologies for landslides monitoring. Note that UAV and TDR represent unmanned aerial vehicle and time domain reflectometry, respectively.

Observation Types	Technology	Precision	Examples
Displacement	Spaceborne InSAR	mm-cm [65]	[21, 66, 67]
	Airborne InSAR	mm-cm [68]	[68, 69]
	Ground-based InSAR	mm-cm [70]	[63, 70, 71]
	UAV photogrammetry	~ 6cm [72]	[72, 73]
	GNSS	mm-cm [74]	[80, 81]
	Optical image matching	cm-m [75]	[75, 76]
	Crackmeter	mm-cm [77]	[78, 79]
	Extensometer	~3 mm [80]	[81, 82]
	In-place inclinometer	~8 mm [65]	[10, 83, 84]
	Tiltmeter	~0.1°[13]	[13, 79, 87]
	Total station	~±1 ppm [77]	[77, 85]
	Terrestrial Lidar	~0.2-0.5 m [80]	[80, 86]
Pore pressure	Shape acceleration array	±1.5 mm/30 m [87]	[13, 81, 87]
	Active waveguides	Mm [88]	[13, 88]
Precipitation	Seismometer	\	[89, 90]
	Piezometer	\	[13, 91, 92]
	TDR	\	[93, 94]
Step 4. Communication with local communities. Providing timely and	Tensiometer (Soil hygrometer)	\	[54, 94]
	Rain gauge	\	[79, 95]

1 useful warnings to people exposed to
 2 Step 4. Communication with local 5 landslide hazard is the ultimate objective
 3 communities. Providing timely and 6 of an early warning system. Thus

1 engagement and communication with 37 are as follows: (Big Question 1) where
2 local communities should be a key 38 are potential landslides, (Big Question 2)
3 feature of an effective landslide EWS. A 39 when will landslides occur, and (Big
4 large body of work already exists on the 40 Question 3) how to best reduce landslide
5 social science of early warning, 41 disaster risk.

6 providing useful insights, explanations 42 Big Question 1 - where are potential
7 for unexpected EWS failure, potential 43 landslides: We are entering an exciting
8 secondary disasters and examples of 44 new era of Earth Observation data, and
9 good practice. Experience from past 45 recent advances in satellite radar and in-
10 disasters worldwide suggests that 46 situ sensors (e.g. GNSS) have allowed us
11 emergency preparedness, planning and 47 to collect high-quality measurements to
12 response are some of the weakest 48 quantify the Earth's surface
13 elements in many existing EWSs [96]. In 49 displacements and then address Big
14 particular, the link between the technical 50 Question 1 over entire mountain ranges at
15 capacity to issue a warning and the 51 space and time scales that are finer than
16 public's capacity and commitment to 52 ever before and at relatively low cost. In
17 respond effectively to the warning is 53 the EO based landslide early warning
18 often weak, limiting the capacity of the 54 system, the relatively short repeat cycles
19 warning to trigger an appropriate and 55 of current SAR missions still represent a
20 effective response from the community. 56 limitation of InSAR to detect potential
21 Warning systems that mainly focus on 57 landslides, but the Geosynchronous -
22 technical aspects and ignore social 58 Continental Land-Atmosphere Sensing
23 factors generally do not work effectively 59 System (G-CLASS), one of the three
24 because the warnings do not prompt 60 Earth Explorer ideas that have been
25 effective action due to lack of community 61 accepted by ESA's Programme Board for
26 buy-in, which results in poor engagement 62 Earth Observation to compete as the tenth
27 and operation. There appears to be fairly 63 Earth Explorer mission, might provide a
28 widespread consensus among both 64 solution. Considerable work has been
29 academics and practitioners that EWSs 65 done to interferometrically process
30 are most effective when they are built in 66 massive SAR data sets in an automatic
31 collaboration with those at risk rather 67 way (e.g. [97]), but more should be done
32 than imposed from outside. 68 to investigate how to detect potential
33
34 **OUTLOOK** 69 landslides from big SAR data in a
35 The remaining three Big Questions for 70 consistent, reliable and smart manner.
36 landslide forecasting and early warning 71 Machine learning technologies have been
72 widely implemented in the field of
73 computer science and remote sensing

1 [98-99], where statistical techniques are 38 to which this signature is unique, defines
2 employed to learn specific and complex 39 the confidence with which a warning can
3 tasks from given data. Recent studies 40 be issued, which represents a much
4 report that machine learning has the 41 stricter definition of 'precursor'. Further
5 capability to identify signals associated 42 research is required to constrain the
6 with geohazards from large data sets (e.g. 43 relationship between accelerated
7 [100]), suggesting that the integration of 44 displacement and landslide failure and
8 machine learning with EO technologies 45 thus to establish these diagnostic
9 might be one encouraging solution to 46 signatures with more confidence. We
10 automatic landslide detection. To address 47 suggest that widespread and long-term
11 Big Question 1, there is an urgent need to 48 deformation monitoring combined with
12 answer the following: (i) at what 49 landslide observations will enable
13 percentage are the detected landslides 50 considerable progress on this problem.

14 true positives? (ii) what is the percentage 51 Big Question 3 - how to best reduce
15 of the missing landslides (false 52 landslide disaster risk: The experience of
16 negatives)? and (iii) in which scenarios 53 the cooperation between experts and
17 are the landslides more likely be 54 local communities in Dangchuan 4#
18 successfully detected? 55 landslide has improved our

19 Big Question 2 - when will landslides 56 understanding of best practices for
20 occur: A range of state-of-the-art 57 Community-Based Disaster Risk
21 landslide initiation and runout models 58 Management (CBDRM). How to best
22 have enabled us not only to estimate the 59 coproduce a site specific warning system
23 location and geometry of potential 60 with both local experts and with members
24 landslides, but also to assess their 61 of at-risk communities to reduce
25 potential impacts. 62 landslide disaster risk remains an open

26 It remains a grand challenge to 63 challenge for the whole community.

27 predict when landslides will occur. There 64

28 have been a limited number of successful 65 **Acknowledgments - Funding:** This
29 case studies including the 2017 66 work was supported by National Natural
30 Heifangtai landslide. In these cases, 67 Science Foundation of China (NO.
31 deformation anomalies (acceleration 68 41801391), the National Science Fund
32 and/or change in pattern) observed prior 69 for Outstanding Young Scholars of China
33 to failure have been recognised as 70 (Grant No. 41622206), the Fund for
34 'precursors'. However, accurate EWSs 71 International Cooperation (NSFC-
35 require the identification of a diagnostic 72 RCUK_NERC), Resilience to
36 signature that can be somewhat uniquely 73 Earthquake-induced landslide risk in
37 related to impending failure. The degree

1 China (Grant No. 41661134010), the 38 crackmeter data for landslide warning in
2 open fund of State Key Laboratory of 39 Heifangtai loess landslide. Zhenhong Li,
3 Geodesy and Earth's Dynamics 40 Qiang Xu, Keren Dai, and Jianbing Peng
4 (SKLGED2018-5-3-E), the Spanish 41 came up with the concept of the EO-
5 Ministry of Economy and 42 based landslide EWS proposed in this
6 Competitiveness (MINECO), the State 43 paper with contributions from David
7 Agency of Research (AEI) and the 44 Milledge, Roland Bürgmann, Qin Zhang,
8 European Funds for Regional 45 Deren Li and Jingnan Liu.
9 Development (FEDER) under projects 46 **Data and materials availability:** All
10 TEC2017-85244-C2-1-P and TIN2014- 47 relevant data are available from the
11 55413-C2-2-P, and the Spanish Ministry 48 authors upon reasonable request.
12 of Education, Culture and Sport under 49
13 project PRX17/00439. This work was 50 **REFERENCE**
14 also partially supported by the UK NERC 51 [1] CRED. Natural Disasters 2017. Brussels:
15 through the Centre for the Observation 52 CRED; 2018 EM-DAT file dated 02/07/2018.
16 and Modelling of Earthquakes, 53 (available
17 Volcanoes and Tectonics (COMET, ref.: 54 at:
18 come30001) and the LICS and 55 https://cred.be/sites/default/files/adsr_2017.pdf)
19 CEDRRIC projects (ref. NE/K010794/1 56 [2] D. Cruden, and D. Varnes, "Landslides
20 and NE/N012151/1, respectively), and by 57 Types and Processes in Turner, AK and Schuster,
21 European Space Agency through the 58 RL, 1996, Landslides Investigation and
22 ESA-MOST DRAGON-4 project (ref. 59 Mitigation, Special Report 247," *Transportation
60 Washington, DC.*
23 32244). RB acknowledges support by the 61 [3] M. J. Froude, and D. Petley, "Global fatal
24 NASA Earth Surface and Interior focus 62 landslide occurrence from 2004 to 2016," *Natural
25 area (ESI). 63 Hazards and Earth System Sciences*, vol. 18, pp.
26 **Author Contributions:** Keren Dai, 64 2161-2181, 2018.
27 Zhenhong Li, Roland Bürgmann, David 65 [4] S. Evans, R. Guthrie, N. Roberts, and N.
28 Milledge and Roberto Tomás contributed 66 Bishop, "The disastrous 17 February 2006
29 to the writing of the paper. Keren Dai, 67 rockslide-debris avalanche on Leyte Island,
30 Zhenhong Li, Zheng Wang, Tengteng 68 Philippines: a catastrophic landslide in tropical
31 Qu, Chaoying Zhao and Xiaojie Liu 70 mountain terrain," *Natural Hazards and Earth
System Science*, vol. 7, no. 1, pp. 89-101, 2007.
32 carried out the SAR data processing, 71 [5] J. Corominas, and J. Mavrouli, "Living with
33 related experiment and analysis. Qiang 72 landslide risk in Europe: Assessment, effects of
34 Xu, Xuanmei Fan and Roberto Tomás 73 global change, and risk management strategies,"
35 contributed to the geological analysis and 74 *Documento técnico, SafeLand. 7th Framework
36 result interpretation. Chaoyang He and 75 Programme Cooperation Theme*, vol. 6, 2011.
37 Qiang Xu collected and analysed the 76 [6] M. Stähli, M. Sättle, C. Huggel, B.

1 McArdell, P. Lehmann, A. Van Herwijnen, A. 43 6-43, 2013.

2 Berne, M. Schleiss, A. Ferrari, and A. Kos, 44 [15] J. Elliott, R. Walters, and T. Wright, "The
3 "Monitoring and prediction in early warning 45 role of space-based observation in understanding
4 systems for rapid mass movements," *Natural 46* and responding to active tectonics and
5 *Hazards and Earth System Sciences*, vol. 15, no. 47 earthquakes," *Nature communications*, vol. 7, pp.
6 4, pp. 905-917, 2015. 48 13844, 2016.

7 [7] E. Intrieri, G. Gigli, F. Mugnai, R. Fanti, and 49 [16] M. Shirzaei, and R. Bürgmann, "Global
8 N. Casagli, "Design and implementation of a 50 climate change and local land subsidence
9 landslide early warning system," *Engineering 51* exacerbate inundation risk to the San Francisco
10 *Geology*, vol. 147, pp. 124-136, 2012. 52 Bay Area," *Science advances*, vol. 4, no. 3, pp.
11 [8] M. Barla, and F. Antolini, "An integrated 53 eaap9234, 2018.

12 methodology for landslides' early warning 54 [17] T. J. Wright, B. Parsons, P. C. England, and
13 systems," *Landslides*, vol. 13, no. 2, pp. 215-228, 55 E. J. Fielding, "InSAR observations of low slip
14 2016. 56 rates on the major faults of western Tibet,"
15 [9] M. Calvello, "Early warning strategies to 57 *Science*, vol. 305, no. 5681, pp. 236-239, 2004.
16 cope with landslide risk," *Rivista Italiana di 58 [18] C. Colesanti, and J. Wasowski,
17 Geotecnica*, 2017. 59 "Investigating landslides with space-borne
18 [10] G. Lollino, M. Arattano, and M. Cuccureddu, 60 Synthetic Aperture Radar (SAR) interferometry,"
19 "The use of the automatic inclinometric system 61 *Engineering Geology*, vol. 88, no. 3-4, pp. 173-
20 for landslide early warning: the case of Cabella 62 199, 2006.

21 Ligure (North-Western Italy)," *Physics and 63 [19] A. Singleton, Z. Li, T. Hoey, and J. P. Muller,
22 Chemistry of the Earth, Parts A/B/C*, vol. 27, no. 64 "Evaluating sub-pixel offset techniques as an
23 36, pp. 1545-1550, 2002. 65 alternative to D-InSAR for monitoring episodic
24 [11] A. Manconi, and D. Giordan, "Landslide 66 landslide movements in vegetated terrain,"
25 early warning based on failure forecast models: 67 *Remote Sensing of Environment*, vol. 147, pp.
26 the example of the Mt. de La Saxe rockslide, 68 133-144, 2014.
27 northern Italy," *Nat. Hazards Earth Syst. Sci.*, vol. 69 [20] G. E. Hilley, R. Burgmann, A. Ferretti, F.
28 15, no. 7, pp. 1639-1644, 2015. 70 Novali, and F. Rocca, "Dynamics of slow-moving
29 [12] R. L. Baum, and J. W. Godt, "Early warning 71 landslides from permanent scatterer analysis,"
30 of rainfall-induced shallow landslides and debris 72 *Science*, vol. 304, no. 5679, pp. 1952-5, Jun 25,
31 flows in the USA," *Landslides*, vol. 7, no. 3, pp. 73 2004.
32 259-272, 2010. 74 [21] R. Tomas, Z. Li, P. Liu, A. Singleton, T.
33 [13] S. Uhlemann, A. Smith, J. Chambers, N. 75 Hoey, and X. Cheng, "Spatiotemporal
34 Dixon, T. Dijkstra, E. Haslam, P. Meldrum, A. 76 characteristics of the Huangtupo landslide in the
35 Merritt, D. Gunn, and J. Mackay, "Assessment of 77 Three Gorges region (China) constrained by radar
36 ground-based monitoring techniques applied to 78 interferometry," *Geophysical Journal
37 landslide investigations," *Geomorphology*, vol. 79 International*, vol. 197, no. 1, pp. 213-232, 2014.
38 253, pp. 438-451, 2016. 80 [22] J. Wasowski, and F. Bovenga, "Investigating
39 [14] A. Moreira, P. Prats-Iraola, M. Younis, G. 81 landslides and unstable slopes with satellite Multi
40 Krieger, I. Hajnsek, & K. Papathanassiou, "A 82 Temporal Interferometry: Current issues and
41 tutorial on synthetic aperture radar," *IEEE 83 future perspectives," *Engineering Geology*, vol.
42 *Geoscience and remote sensing magazine*, 1(1), 84 174, pp. 103-138, 2014.*

1 [23] J. Cohen-Waeber, R. Bürgmann, E. 43 *Journal of Selected Topics in Applied Earth*
2 Chaussard, C. Giannico, and A. Ferretti, 44 *Observations and Remote Sensing*, 7(7), 2919-
3 "Spatiotemporal Patterns of Precipitation- 45 2926, 2014.

4 Modulated Landslide Deformation From 46 [31] R. Odolinski, P. J. Teunissen, and D. Odijk,
5 Independent Component Analysis of InSAR Time 47 "Combined bds, galileo, qzss and gps single-
6 Series," *Geophysical Research Letters*, vol. 45, 48 frequency rtk," *GPS solutions*, vol. 19, no. 1, pp.
7 no. 4, pp. 1878-1887, 2018. 49 151-163, 2015.

8 [24] F. Bovenga, J. Wasowski, D. O. Nitti, R. 50 [32] SKLGP. " State Key Laboratory of
9 Nutricato, and M. T. Chiaradia, "Using 51 Geohazard Prevention and Geoenvironment
10 COSMO/SkyMed X-band and ENVISAT C-band 52 Protection successfully early warned Heifangtai
11 SAR interferometry for landslides analysis," 53 loess landslide, Gansu Province again,"
12 *Remote Sensing of Environment*, vol. 119, pp. 54 <http://www.sklgp.cdut.edu.cn/info/1018/2345.htm>
13 272-285, 2012. 55 m.

14 [25] K. Dai, Z. Li, R. Tomás, G. Liu, B. Yu, X. 56 [33] Z. Wang, Z. Li, and J. Mills, "A new
15 Wang, H. Cheng, J. Chen, and J. Stockamp, 57 approach to selecting coherent pixels for ground-
16 "Monitoring activity at the Daguangbao mega- 58 based SAR deformation monitoring," *ISPRS*
17 landslide (China) using Sentinel-1 TOPS time 59 *Journal of Photogrammetry and Remote Sensing*,
18 series interferometry," *Remote Sensing of 60 vol. 144, pp. 412-422, 2018.*
19 *Environment*, vol. 186, pp. 501-513, 12/1/, 2016.

20 [26] V. Tofani, F. Raspini, F. Catani, and N. 61 [34] Z. Li, E. Fielding, and P. Cross, "Integration
21 Casagli, "Persistent Scatterer Interferometry (PSI) 62 of InSAR time-series analysis and water-vapor
22 Technique for Landslide Characterization and 63 correction for mapping postseismic motion after
23 Monitoring," *Remote Sensing*, vol. 5, no. 3, pp. 64 the 2003 Bam (Iran) earthquake," *Geoscience and*
24 1045-1065, 2013. 65 *Remote Sensing, IEEE Transactions on*, vol. 47,
66 no. 9, pp. 3220-3230, 2009.

25 [27] UNISDR. "Can satellites be used as an early 67 [35] X. Zhu, Q. Xu, X. Qi, H. Liu, "A self-
26 warning system for landslides?," 68 adaptive data acquisition technique and its
27 <https://www.preventionweb.net/news/view/5420> 69 application in landslide monitoring," In
28 9. 70 Workshop on World Landslide Forum (pp. 71-
29 [28] E. Intrieri, F. Raspini, A. Fumagalli, P. Lu, S. 71 78), 2017.

30 Del Conte, P. Farina, J. Allievi, A. Ferretti, and N. 72 [36] X. Fan, Q. Xu, G. Scaringi, L. Dai, W. Li, X.
31 Casagli, "The Maoxian landslide as seen from 73 Dong, X. Zhu, X. Pei, K. Dai, and H.-B. Harenith,
32 space: detecting precursors of failure with 74 "Failure mechanism and kinematics of the deadly
33 Sentinel-1 data," *Landslides*, November 09, 2017. 75 June 24th 2017 Xinmo landslide, Maoxian,
34 [29] J. Dong, L. Zhang, M. Li, Y. Yu, M. Liao, J. 76 Sichuan, China," *Landslides*, pp. 1-18, 2017.

35 Gong, and H. Luo, "Measuring precursory 77 [37] P. Wang, B. Zhang, W. Qiu, and J. Wang,
36 movements of the recent Xinmo landslide in Mao 78 "Soft-sediment deformation structures from the
37 County, China with Sentinel-1 and ALOS-2 79 Diexi paleo-dammed lakes in the upper reaches of
38 PALSAR-2 datasets," *Landslides*, pp. 1-10, 2017. 80 the Minjiang River, east Tibet," *Journal of Asian
39 [30] P. Milillo, E. Fielding, W. Shulz, B. 81 *Earth Sciences*, vol. 40, no. 4, pp. 865-872, 2011.*
40 Delbridge, & R. Burgmann, "COSMO-SkyMed 82 [38] H. Jiang, X. Mao, H. Xu, H. Yang, X. Ma, N.
41 spotlight interferometry over rural areas: The 83 Zhong, and Y. Li, "Provenance and earthquake
42 Slumgullion landslide in Colorado, USA," *IEEE 84 signature of the last deglacial Xinmocun*

1 lacustrine sediments at Diexi, East Tibet," 43 *Earth Observation and Geoinformation*, vol. 74,
2 *Geomorphology*, vol. 204, pp. 518-531, 2014. 44 pp. 130-137, 2019/02/01/, 2019.

3 [39] W. Liu, and T. Li, "Forming Mechanism of 45 [48] IUGS/WGL, "A suggested method for
4 the Loess Landslides Triggered by Irrigation and 46 describing the rate of movement of a landslide,"
5 Seasonal Freezing," 2015. 47 *Bulletin of the International Association of
6 [40] C. He, N. Ju, and J. Huang, "Automatic 48 Engineering Geology*, vol. 52, pp. 75-78, 1995.
7 integration and analysis of multi-source 49 [49] G. Metternicht, L. Hurni, and R. Gogu,
8 monitoring data for geo-hazard warning," 50 "Remote sensing of landslides: An analysis of the
9 *Journal of Engineering Geology*, vol. 22(3), pp. 51 potential contribution to geo-spatial systems for
10 405-411, 2014. 52 hazard assessment in mountainous environments,"
11 [41] M. Saito, "Evidential study on forecasting 53 *Remote sensing of Environment*, vol. 98, no. 2, pp.
12 occurrence of slope failure," *Trans. of the Dept. 54 284-303, 2005.*

13 of Geomech.—Armenian Academy of Sciences, 55 [50] A. Barra, L. Solari, M. Béjar-Pizarro, O.
14 Yerevan, URSS, 1979. 56 Monserrat, S. Bianchini, G. Herrera, M. Crosetto,
15 [42] Q. Xu, Y. Yuan, Y. Zeng, and R. Hack, 57 R. Sarro, E. González-Alonso, and R. M. Mateos,
16 "Some new pre-warning criteria for creep slope 58 "A Methodology to Detect and Update Active
17 failure," *Science China Technological Sciences*, 59 Deformation Areas Based on Sentinel-1 SAR
18 vol. 54, pp. 210-220, 2011. 60 Images," *Remote Sensing*, vol. 9, no. 10, pp. 1002,
19 [43] T. Okamoto, J. O. Larsen, S. Matsuura, S. 61 2017.
20 Asano, Y. Takeuchi, and L. Grande, 62 [51] B. Pradhan, and S. Lee, "Delineation of
21 "Displacement properties of landslide masses at 63 landslide hazard areas on Penang Island,
22 the initiation of failure in quick clay deposits and 64 Malaysia, by using frequency ratio, logistic
23 the effects of meteorological and hydrological 65 regression, and artificial neural network models,"
24 factors," *Engineering Geology*, vol. 72, no. 3-4, 66 *Environmental Earth Sciences*, vol. 60, no. 5, pp.
25 pp. 233-251, 2004. 67 1037-1054, 2010.

26 [44] D. Petley, T. Higuchi, S. Dunning, N. Rosser, 68 [52] B. Pradhan, "A comparative study on the
27 D. Petley, M. Bulmer, J. Carey, O. Hungr, R. Fell, 69 predictive ability of the decision tree, support
28 and R. Couture, "A new model for the 70 vector machine and neuro-fuzzy models in
29 development of movement in progressive 71 landslide susceptibility mapping using GIS,"
30 landslides." pp. 350-358. 72 *Computers & Geosciences*, vol. 51, pp. 350-365,
31 [45] J. Palmer, "creeping earth could hold secret 73 2013.

32 to deadly landslides," *Nature*, vol. 548, no. 7668, 74 [53] X. Hu, Z. Lu, T. C. Pierson, R. Kramer, and
33 pp. 384-386, 2017. 75 D. L. George, "Combining InSAR and GPS to
34 [46] B. Thiebes, *Landslide Analysis and Early 76 Determine Transient Movement and Thickness of
35 Warning Systems: Local and Regional Case Study* 77 a Seasonally Active Low-Gradient Translational
36 *in the Swabian Alb, Germany*: Springer Science 78 Landslide," *Geophysical Research Letters*, vol.
37 & Business Media, 2012. 79 45, no. 3, pp. 1453-1462, 2018.

38 [47] H. Luo, Z. Li, J. Chen, C. Pearson, M. Wang, 80 [54] W. H. Schulz, J. P. McKenna, J. D. Kibler,
39 W. Lv, and H. Ding, "Integration of Range Split 81 and G. Biavati, "Relations between hydrology
40 Spectrum Interferometry and conventional 82 and velocity of a continuously moving
41 InSAR to monitor large gradient surface 83 landslide—Evidence of pore-pressure feedback
42 displacements," *International Journal of Applied 84 regulating landslide motion?," *Landslides*, vol. 6,*

1 no. 3, pp. 181-190, 2009.

2 [55] R. M. Iverson, "Regulation of landslide 44 motion by dilatancy and pore pressure feedback," 45 46 *Journal of Geophysical Research: Earth Surface*, 47 vol. 110, no. F2, 2005.

6 [56] A. L. Handwerger, A. W. Rempel, R. M. 48 Skarbek, J. J. Roering, and G. E. Hilley, "Rate- 49 50 weakening friction characterizes both slow 51 sliding and catastrophic failure of landslides," 52 53 *Proceedings of the National Academy of Sciences*, 54 vol. 113, no. 37, pp. 10281-10286, 2016.

12 [57] A. L. Handwerger, M.-H. Huang, E. J. 55 Fielding, A. M. Booth, and R. Bürgmann, "A shift 56 from drought to extreme rainfall drives a stable 57 58 landslides to catastrophic failure," *Scientific Reports*, vol. 9, no. 1, pp. 1569, 2019/02/07, 2019.

17 [58] R. M. Iverson, D. L. George, K. Allstadt, M. 59 E. Reid, B. D. Collins, J. W. Vallance, S. P. 60 Schilling, J. W. Godt, C. Cannon, and C. S. Magirl, 61 62 "Landslide mobility and hazards: implications of 63 the 2014 Oso disaster," *Earth and Planetary Science Letters*, vol. 412, pp. 197-208, 2015.

23 [59] X. Xia, and Q. Liang, "A new depth- 65 averaged model for flow-like landslides over 66 67 complex terrains with curvatures and steep 68 slopes," *Engineering Geology*, vol. 234, pp. 174- 69 191, 2018.

28 [60] X. Li, M. Ge, X. Dai, X. Ren, M. Fritsche, J. 70 Wickert, and H. Schuh, "Accuracy and reliability 71 72 of multi-GNSS real-time precise positioning: 73 GPS, GLONASS, BeiDou, and Galileo," *Journal of Geodesy*, vol. 89, no. 6, pp. 607-635, 2015.

33 [61] P. Xu, C. Shi, R. Fang, J. Liu, X. Niu, Q. 75 Zhang, and T. Yanagidani, "High-rate precise 76 77 point positioning (PPP) to measure seismic wave 78 motions: an experimental comparison of GPS 79 PPP with inertial measurement units," *Journal of geodesy*, vol. 87, no. 4, pp. 361-372, 2013.

39 [62] A. Mufundirwa, Y. Fujii, and J. Kodama, "A 81 82 new practical method for prediction of 83 geomechanical failure-time," *International Journal of Rock Mechanics and Mining Sciences*, 84

43 vol. 47, no. 7, pp. 1079-1090, 2010.

[63] T. Carlà, E. Intrieri, F. Di Traglia, T. Nolesini, G. Gigli, and N. Casagli, "Guidelines on the use of inverse velocity method as a tool for setting alarm thresholds and forecasting landslides and structure collapses," *Landslides*, vol. 14, no. 2, pp. 517-534, April 01, 2017.

[64] B.-G. Chae, H.-J. Park, F. Catani, A. Simoni, and M. Berti, "Landslide prediction, monitoring and early warning: a concise review of state-of-the-art," *Geosciences Journal*, vol. 21, no. 6, pp. 1033-1070, 2017.

[65] J. Dunniciff, *Geotechnical instrumentation for monitoring field performance*: John Wiley & Sons, 1993.

[66] L. L. Marco Scaioni, Valentina Melillo, Monica Papini, "Remote Sensing for Landslide Investigations: An Overview of Recent Achievements and Perspectives," *Remote Sensing*, 2014.

[67] L. Benoit, P. Briole, O. Martin, C. Thom, J.-P. Malet, and P. Ulrich, "Monitoring landslide displacements with the Geocube wireless network of low-cost GPS," *Engineering Geology*, vol. 195, pp. 111-121, 2015.

[68] B. Delbridge, R. Bürgmann, E. Fielding, S. Hensley, and W. H. Schulz, "Three-dimensional surface deformation derived from airborne interferometric UAVSAR: Application to the Slumgullion Landslide," *Journal of Geophysical Research: Solid Earth*, vol. 121, no. 5, pp. 3951-3977, 2016.

[69] V. Singhroy, K. Mattar, and A. Gray, "Landslide characterisation in Canada using interferometric SAR and combined SAR and TM images," *Advances in Space Research*, vol. 21, no. 3, pp. 465-476, 1998.

[70] N. Casagli, F. Catani, C. Del Ventisette, and G. Luzi, "Monitoring, prediction, and early warning using ground-based radar interferometry," *Landslides*, vol. 7, no. 3, pp. 291-301, 2010.

[71] L. Noferini, M. Pieraccini, D. Mecatti, G.

1 Macaluso, C. Atzeni, M. Mantovani, G. Marcato, 43 P. Ranjan, P. Mishra, G. Prasad, S. Dutta, V. Priya,
2 A. Pasuto, S. Silvano, and F. Tagliavini, "Using 44 and S. Rath, "Real-time monitoring system for
3 GB-SAR technique to monitor slow moving 45 landslide prediction using wireless sensor
4 landslide," *Engineering Geology*, vol. 95, no. 3-4, 46 networks," *International Journal of Modern*
5 pp. 88-98, 2007. 47 *Communication Technologies and Research*, vol.
6 [72] A. Lucieer, S. M. d. Jong, and D. Turner, 48 2, no. 12, 2014.
7 "Mapping landslide displacements using 49 [80] R. Chen, K. Chang, J. Angelier, Y. Chan, B.
8 Structure from Motion (SfM) and image 50 Deffontaines, C. Lee, and M. Lin, "Topographical
9 correlation of multi-temporal UAV photography," 51 changes revealed by high-resolution airborne
10 *Progress in Physical Geography*, vol. 38, no. 1, 52 LiDAR data: The 1999 Tsaoling landslide
11 pp. 97-116, 2014. 53 induced by the Chi-Chi earthquake,"
12 [73] D. Turner, A. Lucieer, and S. de Jong, "Time 54 *Engineering geology*, vol. 88, no. 3-4, pp. 160-
13 Series Analysis of Landslide Dynamics Using an 55 172, 2006.
14 Unmanned Aerial Vehicle (UAV)," *Remote 56 [81] R. Macciotta, M. Hendry, and C. D. Martin,
15 Sensing*, vol. 7, no. 2, pp. 1736, 2015. 57 "Developing an early warning system for a very
16 [74] J. Travelletti, and J.-P. Malet, 58 slow landslide based on displacement monitoring,"
17 "Characterization of the 3D geometry of flow- 59 *Natural Hazards*, vol. 81, no. 2, pp. 887-907,
18 like landslides: A methodology based on the 60 2016.
19 integration of heterogeneous multi-source data," 61 [82] J. Corominas, J. Moya, A. Lloret, J. Gili, M.
20 *Engineering Geology*, vol. 128, pp. 30-48, 2012. 62 Angeli, A. Pasuto, and S. Silvano, "Measurement
21 [75] B. Casson, C. Delacourt, and P. Allemand, 63 of landslide displacements using a wire
22 "Contribution of multi-temporal remote sensing 64 extensometer," *Engineering Geology*, vol. 55, no.
23 images to characterize landslide slip surface 65 3, pp. 149-166, 2000.
24 Application to the La Clapière 66 [83] W. Stevens, and B. Zehrbach, "Inclinometer
25 landslide (France)," *Nat. Hazards Earth Syst. Sci.*, 67 data analysis for remediated landslides,"
26 vol. 5, no. 3, pp. 425-437, 2005. 68 *Geotechnical Measurements: Lab and Field*, pp.
27 [76] A. Mondini, F. Guzzetti, P. Reichenbach, M. 69 126-137, 2000.
28 Rossi, M. Cardinali, and F. Ardizzone, "Semi- 70 [84] H.-F. Pei, J.-H. Yin, H.-H. Zhu, C.-Y. Hong,
29 automatic recognition and mapping of rainfall 71 W. Jin, and D.-S. Xu, "Monitoring of lateral
30 induced shallow landslides using optical satellite 72 displacements of a slope using a series of special
31 images," *Remote Sensing of Environment*, vol. 73 fibre Bragg grating-based in-place inclinometers,"
32 115, no. 7, pp. 1743-1757, 2011. 74 *Measurement Science and Technology*, vol. 23, no.
33 [77] S. Artese, and M. Perrelli, "Monitoring a 75 2, pp. 025007, 2012.
34 Landslide with High Accuracy by Total Station: A 76 [85] A. Corsini, C. Castagnetti, E. Bertacchini, R.
35 DTM-Based Model to Correct for the 77 Rivola, F. Ronchetti, and A. Capra, "Integrating
36 Atmospheric Effects," *Geosciences*, vol. 8, no. 2, 78 airborne and multi-temporal long-range terrestrial
37 pp. 46, 2018. 79 laser scanning with total station measurements for
38 [78] J. Carey, R. Moore, and D. Petley, "Patterns 80 mapping and monitoring a compound slow
39 of movement in the Ventnor landslide complex, 81 moving rock slide," *Earth surface processes and*
40 Isle of Wight, southern England," *Landslides*, vol. 82 *landforms*, vol. 38, no. 11, pp. 1330-1338, 2013.
41 12, no. 6, pp. 1107-1118, 2015. 83 [86] S. Ghuffar, B. Székely, A. Roncat, and N.
42 [79] S. Shukla, S. Chaulya, R. Mandal, B. Kumar, 84 Pfeifer, "Landslide displacement monitoring

1 using 3D range flow on airborne and terrestrial 43 and Mineral Resources, ed., 2015.

2 LiDAR data," *Remote Sensing*, vol. 5, no. 6, pp. 44 [95] G. Martelloni, S. Segoni, R. Fanti, and F.

3 2720-2745, 2013. 45 Catani, "Rainfall thresholds for the forecasting of

4 [87] V. Bennett, T. Abdoun, M. Zeghal, A. 46 landslide occurrence at regional scale,"

5 Koelewijn, M. Barendse, and R. Dobry, "Real- 47 *Landslides*, vol. 9, no. 4, pp. 485-495, 2012.

6 time monitoring system and advanced 48 [96] United Nations, "Global Survey of Early

7 characterization technique for civil infrastructure 49 Warning Systems," 2006. (available at

8 health monitoring," *Advances in Civil* 50 [Warning-Systems.pdf](https://www.unisdr.org/2006/ppew/info-resources/ewc3/Global-Survey-of-Early-Engineering, vol. 2011, 2011. 51 <a href=))

10 [88] N. Dixon, R. Hill, and J. Kavanagh, 52 [97] Z. Li, T. Wright, A. Hooper, P. Crippa, P.

11 "Acoustic emission monitoring of slope 53 Gonzalez, R. Walters, J. Elliott, S. Ebmeier, E.

12 instability: development of an active waveguide 54 Hatton, and B. Parsons, "Towards InSAR

13 system," 2003. 55 everywhere, all the time, with Sentinel-1,"

14 [89] M. La Rocca, D. Galluzzo, G. Saccorotti, S. 56 *International Archives of the Photogrammetry,*

15 Tinti, G. B. Cimini, and E. Del Pezzo, "Seismic 57 *Remote Sensing & Spatial Information Sciences*,

16 signals associated with landslides and with a 58 vol. 41, 2016.

17 tsunami at Stromboli volcano, Italy," *Bulletin of* 59

18 *the Seismological Society of America*, vol. 94, no. 60 [98] X. Zhu, D. Tuia, L. Mou, G. Xia, L. Zhang,

19 5, pp. 1850-1867, 2004. 61 F. Xu, & F. Fraundorfer, "Deep learning in remote

20 [90] E. Suriñach, I. Vilajosana, G. Khazaradze, B. 62 sensing: A comprehensive review and list of

21 Biescas, G. Furdada, and J. Vilaplana, "Seismic 63 resources," *IEEE Geoscience and Remote*

22 detection and characterization of landslides and 64 *Sensing Magazine*, 5(4), 8-36, 2017.

23 other mass movements," *Natural Hazards and* 65 [99] L. Zhang, L. Zhang, & B. Du, "Deep

24 *Earth System Science*, vol. 5, no. 6, pp. 791-798, 66 learning for remote sensing data: A technical

25 2005. 67 tutorial on the state of the art," *IEEE Geoscience*

26 [91] A. Chelli, G. Mandrone, and G. Truffelli, 68 *and Remote Sensing Magazine*, 4(2), 22-40, 2016.

27 "Field investigations and monitoring as tools for 69 [100] N. Anantrasirichai, J. Biggs, F. Albino,

28 modelling the Rossena castle landslide (Northern 70 P. Hill, and D. Bull, "Application of Machine

29 Appennines, Italy)," *Landslides*, vol. 3, no. 3, pp. 71 Learning to Classification of Volcanic

30 252-259, 2006. 72 Deformation in Routinely Generated InSAR

31 [92] W. Li, F. Dai, Y. Wei, M. Wang, H. Min, and 73 Data," *Journal of Geophysical Research: Solid*

32 L. Lee, "Implication of subsurface flow on 74 *Earth*, vol. 123, no. 8, pp. 6592-6606, 2018.

33 rainfall-induced landslide: a case study," 75

34 *Landslides*, vol. 13, no. 5, pp. 1109-1123, 2016.

35 [93] Y. Yin, H. Wang, Y. Gao, and X. Li, "Real- 76

36 time monitoring and early warning of landslides 77

37 at relocated Wushan Town, the Three Gorges 78

38 Reservoir, China," *Landslides*, vol. 7, no. 3, pp. 79

39 339-349, 2010.

40 [94] C. BG, "Technology development of 80

41 landslide rapid detection based on a real-time 81

42 monitoring," D. Korea Institute of Geoscience 82