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 27 

Abstract. Landslide early warning 28 

remains a grand challenge due to the high 29 

human cost of catastrophic landslides 30 

globally and the difficulty of identifying 31 

a diverse range of landslide triggering 32 

factors. There have been only a very 33 

limited number of success stories to date. 34 

However, recent advances in earth 35 

observation (EO) from ground, aircraft 36 

and space have dramatically improved 37 

our ability to detect and monitor active 38 



landslides and a growing body of 1 

geotechnical theory suggests that pre-2 

failure behavior can provide clues to the 3 

location and timing of impending 4 

catastrophic failures. In this paper, we 5 

use two recent landslides in China as case 6 

studies, to demonstrate that (i) satellite 7 

radar observations can be used to detect 8 

deformation precursors to catastrophic 9 

landslide occurrence, and (ii) early 10 

warning can be achieved with real-time 11 

in-situ observations. A novel and exciting 12 

framework is then proposed to employ 13 

EO technologies to build an operational 14 

landslide early warning system. 15 

 16 

INTRODUCTION 17 

Landslides (where soil or rock moves 18 

down a slope) have been shaping 19 

mountainous regions for millennia, but 20 

today they pose a destructive hazard to 21 

people and infrastructure resulting in 22 

hundreds of deaths and billions of dollars 23 

of damage every year [1]. The 24 

combination of a rapidly increasing 25 

global population and intensifying 26 

weather extremes associated with recent 27 

climate change suggests that landslide 28 

risk will dramatically increase over the 29 

next decade. Landslide deformation can 30 

be extremely slow (few mm per year) or 31 

involve sudden extremely rapid failure 32 

[2], and thus their hazards include both 33 

enduring damage to manmade structures 34 

and catastrophic destructive events. 35 

While small landslides make up the vast 36 

majority of landslide ‘events’ in any 37 

given year, it is large landslides that tend 38 

to be responsible for most of the damage 39 

and loss of life [3]. Current landslide risk 40 

mitigation strategies tend to reduce 41 

exposure - the likelihood that someone or 42 

something is impacted by a landslide - 43 

primarily by moving to, or locating 44 

infrastructure in, less hazardous 45 

locations; but for many people and assets 46 

relocation is not feasible. In these 47 

situations, short-term evacuation is often 48 

the most attractive or only option. 49 

Therefore, improved landslide 50 

forecasting and the development of early 51 

warning capabilities are expected to play 52 

crucial roles in managing landslide risk 53 

for many individuals and communities. 54 

The major landslide triggering factors 55 

(e.g., rainfall and seismic shaking) and 56 

the basic physics governing landslide 57 

initiation are well known. Yet predicting 58 

where and when landslides will occur 59 

remains a grand challenge primarily due 60 

to the difficulty in forecasting the 61 

triggering factors themselves, and the 62 

spatial variations in earth materials and 63 

slope conditions. Existing forecasting 64 

methods generally involve functional 65 

relationships between trigger-factor 66 

intensity (e.g. precipitation history and 67 

peak seismic ground acceleration) and 68 

landslide probability. However, the 69 

connection between triggers and 70 

landslides is complex, with some 71 

landslides occurring in the absence of an 72 

identifiable trigger and others occurring 73 



with significant delay. For example, the 1 

2006 Leyte landslide that killed over 2 

1100 people in the Philippines, occurred 3 

five days after a large rainstorm, so that 4 

although the population were initially 5 

evacuated they had returned to their 6 

homes [4]. Displacements recorded over 7 

time could provide critical additional 8 

information for predicting the possible 9 

timing of impending slope failure [5].  10 

Based on conventional in-situ survey 11 

methods, the concept of ‘landslide early 12 

warning systems’ has been proposed for 13 

several years, e.g. [6-12]. The outcomes 14 

of these works are often suggested 15 

warning criteria for specific locations. 16 

Successful early warning cases, where a 17 

clear warning was given prior to 18 

catastrophic slope failure, have been very 19 

limited due to the inadequate temporal 20 

and spatial precision of ground 21 

observations [13]. Building trustworthy 22 

real-time early warning systems (capable 23 

of identifying the ‘very high-risk time’ to 24 

prompt short-term evacuation) with 25 

suitable spatial and temporal precision is 26 

an important but difficult challenge. 27 

Spaceborne Synthetic Aperture 28 

Radar (SAR) sensors emit radar signals 29 

and record the amplitude of the 30 

backscattered signal as well as the phase 31 

(from which the changes in range 32 

between satellite and Earth’s surface can 33 

be inferred) [14]. Interferometric SAR 34 

(InSAR) is a powerful tool for measuring 35 

the Earth’s surface motion over large 36 

regions (e.g. [15-17]) in all weather 37 

conditions, at metre-resolution and offers 38 

the capability to remotely monitor 39 

unstable slopes, e.g. [18-21]. Recent 40 

studies have demonstrated that 41 

conventional InSAR and related time 42 

series techniques (e.g. Persistent 43 

Scatterer InSAR and small baseline 44 

InSAR) can identify, map and monitor 45 

active landslides [22-26] and even to 46 

detect precursory deformation signals 47 

prior to their eventual failure, e.g. [27-48 

29]. Note that spaceborne InSAR 49 

currently has a minimum repeat cycle of 50 

6 days for Sentinel-1, 1 day for COSMO-51 

SkyMed [30], 11 days for TerraSAR-X 52 

and longer for other satellites, which 53 

represents a major limitation of 54 

spaceborne InSAR for early warning 55 

systems.  56 

In-situ global navigation satellite 57 

system (GNSS) monitoring is capable of 58 

measuring three-dimensional landslide 59 

motion at very high temporal frequency 60 

(e.g. 20 Hz) and spatial accuracy (2-4 mm 61 

in plan and 4-8 mm in vertical) [31]. 62 

Other in-situ monitoring methods include 63 

extensometers, inclinometers, and pore 64 

water pressure sensors. However, these 65 

methods only provide point-based 66 

measurements at sensors that are costly to 67 

install and maintain. Thus in-situ 68 

observations are limited by the number of 69 

sensors that can be deployed at the key 70 

locations and may not capture the spatial 71 

variations in landslide motion prior to 72 

failure. There are two obvious hurdles to 73 

the deployment of ground-based 74 



monitoring techniques: (i) the sites with 1 

potential landslides should be detected 2 

prior to their failure; and (ii) the key 3 

monitoring locations in the landslide 4 

bodies should be identified.  5 

Spaceborne InSAR and in-situ 6 

sensors are complementary tools to 7 

monitor surface displacements given 8 

InSAR’s high spatial resolution (metres 9 

to 10s metres) over a wide region (e.g. 10 

250 km x 250 km for Sentinel-1) but 11 

limited temporal resolution (constrained 12 

by the frequency of satellite overpasses) 13 

and in-situ sensors’ fine temporal 14 

resolution at their locations. We suggest 15 

that it is now both feasible and timely to 16 

combine these EO technologies to build 17 

an integrated landslide early warning 18 

system. In this paper, the 2017 Xinmo 19 

(Sichuan, China) landslide is used to 20 

demonstrate the ability of spaceborne 21 

InSAR to identify precursory landslide 22 

deformation, while the 2017 Dangchuan 23 

#4 landslide in Heifangtai (Gansu, China) 24 

is used to demonstrate the successful 25 

application of timely early warning for 26 

landslides by in-situ measurements [32].  27 

Based on the advantages, limitations and 28 

complementarity of different EO 29 

methods, a landslide early warning 30 

framework is proposed to increase the 31 

resilience of local communities to 32 

landslide hazards by informing short-33 

term evacuations. 34 

Our paper makes the case that 35 

landslide early warning from earth 36 

observation (EO) is now within our 37 

grasp. We believe that this is a message 38 

that is both important and timely. It is 39 

important because landslides kill 40 

thousands of people every year, 41 

predominantly in those parts of the world 42 

that are poorest and thus least able to 43 

protect themselves. It is timely because, 44 

though early warning has long been 45 

touted as a ‘golden bullet’ in landslide 46 

risk mitigation, it requires accurate 47 

predictions that have generally been out 48 

of reach until now. 49 

 50 

METHODOLOGY 51 

The InSAR dataset for the time series 52 

displacement extraction of Xinmo 53 

landslides includes 29 descending SAR 54 

images acquired by Sentinel-1A/1B 55 

satellites from 09 November 2015 to 19 56 

June 2017 SAR on every 6-24 days. 57 

ESA’s Sentinel-1A/1B satellites operate 58 

day and night performing C-band 59 

microwave SAR imaging, providing 60 

radar imagery with a wide coverage (e.g. 61 

250 × 250 km) and a short repeat cycle 62 

(6-24 days). The SAR data in this study 63 

were interferometrically processed with 64 

GAMMA software. Shuttle Radar 65 

Topography Mission (SRTM) with 30 m 66 

horizontal resolution was used to 67 

simulate and eliminate the topographic 68 

phase. Interferograms were filtered by 69 

the adaptive filtering method to reduce 70 

the noise. Coherent pixels were detected 71 

using the full-rank matrix approach 72 



demonstrated in [33] and their time series 1 

analysis was performed following the 2 

InSAR time series integrated 3 

atmospheric estimation model (InSAR 4 

TS+AEM) described in [34]. Both the 5 

coherent pixel detection approach and the 6 

InSAR TS+AEM method have been 7 

successfully used in previous InSAR 8 

studies. The mean velocity map and time 9 

series displacements results were finally 10 

geocoded into WGS84 coordinate 11 

system. 12 

The Heifangtai area has been monitored 13 

with a range of in-situ sensors including 14 

7 GNSS receivers, 34 crackmeters, 2 15 

range gauges and 13 piezometers since 16 

2017 by researchers from the State Key 17 

Laboratory of Geohazard Prevention and 18 

Geoenviroment Protection (SKLGP) at 19 

Chengdu University of Technology. The 20 

data collected by all the sensors was 21 

transmitted to SKLGP in real time with 22 

GPRS (General Packet Radio Service). 23 

Note that the crackmeter was a real-time 24 

adaptive one developed by SKLGP [35], 25 

which acquired one sampling per hour in 26 

normal conditions but automatically 27 

increased its samples when a 28 

displacement acceleration was detected. 29 

 30 

RESULTS  31 

Pre-failure movement signals revealed 32 

with spaceborne InSAR 33 

On 24 June 2017, a landslide of 13 34 

million cubed meters suddenly buried 35 

Xinmo village, Sichuan province, China, 36 

causing 10 deaths, with 73 persons still 37 

missing. Xinmo village is located on the 38 

left bank of the Songping River, a first-39 

order tributary of the upper reaches of 40 

Minjiang River [36]. The surrounding 41 

steep slopes are prone to rock falls, 42 

landslides, and debris flows [37]. The 43 

region is tectonically active with several 44 

active faults nearby that have generated 45 

three Mw >=6.7 earthquakes since the 46 

1930s (Fig. 1A). Xinmo village itself was 47 

built on the deposits of an old landslide 48 

triggered by the 1933 Mw 7.3 Diexi 49 

earthquake [36, 38] (Fig. 1A).  50 

To explore the pre-failure 51 

displacement history of the Xinmo 52 

landslide, InSAR analysis was performed 53 

on Sentinel-1 data to determine a mean 54 

velocity map and a time series of 55 

landslide motion for a ~1.5-year period 56 

prior to failure (Fig. 2). The accumulative 57 

displacement map during the period from 58 

November 2015 to June 2017 (Fig. 2A) 59 

shows that the area near the head scarp of 60 

the landslide exhibited clearly detectable 61 

displacements with a maximum of 3 cm 62 

preceding failure. Figs 2C, 2D and 2E, 63 

show the displacement times series 64 

results for three selected points P1, P2 65 

and P3 whose locations are shown in Fig. 66 

2B. The last three acquisition dates are 26 67 

May 2017, 07 June 2017 and 19 June 68 

2017 (5 days before the failure), 69 

respectively. A dramatic acceleration can 70 

be observed during the period from 07 71 

June 2017 to 19 June 2017 (from 17 days 72 

before the failure). It should also be noted 73 



that all the interferograms were carefully 1 

checked to avoid phase unwrapping 2 

errors and the InSAR time series was 3 

performed pixel by pixel. We did NOT 4 

apply strong spatial filtering, and hence 5 

our InSAR mean velocity map is not as 6 

smooth as those in previous studies. 7 

However, the overall pattern of our 8 

InSAR mean velocity map is consistent 9 

with those in previous results (e.g. [28], 10 

[29]). 11 

This clearly demonstrates that 12 

quantitative time series analysis from 13 

satellite radar observations can detect 14 

accelerated movements prior to 15 

catastrophic failure, occurring 5-17 days 16 

before the landslide. It should be noted 17 

that the source area of the Xinmo 18 

landslide is located on a steep slope at an 19 

altitude of ~3400 m a.s.l. where in-situ 20 

sensors would be difficult to install. This 21 

highlights one notable advantage of 22 

InSAR over in-situ monitoring sensors.  23 



Fig. 1. The location, pre-event and post-event photos of the 24 June 2017 Xinmo 1 

landslide. (A) Location of the Xinmo landslide and the epicenters of three large 2 

historical earthquakes. (B) Unmanned aerial vehicle (UAV) aerial photo of the Xinmo 3 

landslide with an inset photo of Xinmo village taken before the event. (C) Post-failure 4 

photo of the Xinmo landslide (the whole village was buried under the accumulated 5 

debris). 6 



Fig. 2. Pre-failure movement signals and source area revealed by InSAR. (A) 

Cumulative displacements for coherent pixels from time series InSAR analysis. (B) 

Enlarged active displacement area and the location of points P1, P2 and P3; (C)(D)(E) 

Displacement time series for points P1, P2 and P3, respectively. 

Early warning for the Dangchuan 4# 1 

landslide using in-situ sensors 2 

The Heifangtai loess terrace, located 3 

in Yongjing County, Gansu Province, 4 

China (Fig. 3B) with an area of 13.7 5 

squared km, is formed from a terrace of 6 

Quaternary aeolian loess deposits [39]. 7 

Since the Yellow River pumping 8 

irrigation project was kicked-off in 1966, 9 

frequent landslides have occurred on the 10 

terrace margins. The Dangchuan 4# 11 

landslide lies in southwest-central 12 

Heifangtai near Guoxia town, Yongjing 13 

County. Among all the in-situ sensors, a 14 

crackmeter installed across the trailing 15 

head scarp edge of Dangchuan 4# (Fig. 16 

3A) provided critical displacement 17 

measurements in real time which were 18 

used in a successful 8-hour early warning 19 

in 2017. 20 



Fig. 3. landslide warning at Dangchuan 4# landslide in Heifangtai. (A) The location 

of Dangchuan 4# landslide with various in-situ sensors; (B) cumulative displacement 

and displacement rates from a crackmeter installed across the trailing head scarp edge 

during the period from 1 August 2017 to 1 October 2017; (C) On 23 September 2017 a 

photo of Heifangtai landslide warning announcement which was posted on a pillar in 

Guoxia town by the local government; (D) At 20:55 on 30 September 2017, a red 

warning message was delivered to the local government through WeChat app; (E) The 

post-failure photo of the Heifangtai landslide (Dangchuan 4# slope) which failed at 

05:00 on 1 October 2017.

The crackmeter observations showed 1 

a clear acceleration in the displacement 2 

rate at Dangchuan 4# on 23 August 2017 3 

(Fig. 3B), and hence a yellow warning 4 

was issued to the village head and local 5 

government by text message, informing 6 

them to: ‘pay close attention to this slope 7 

and prepare for disaster prevention’. 8 



After a detailed field investigation, the 9 

local government confirmed the warning 10 

and released an official landslide warning 11 

announcement to local communities on 12 

23 September 2017 with several alert 13 

boards posted around the landslide area 14 

(Fig. 3C). On 27 September 2017 the 15 

yellow warning was upgraded to an 16 

orange warning due to the accelerating 17 

displacement rate measured at the 18 

crackmeter. At 17:50 on 30 September 19 

2017, a red warning was released 20 

automatically by the system (Geohazard 21 

Real-time Monitoring and Early Warning 22 

System [40]) developed by SKLGP, 23 

which was confirmed by a panel of 24 

experts. Three hours later (at 20:55 on 30 25 

September 2017), an official red warning 26 

was issued to the local government (Fig. 27 

3D), prompting a government led 28 

emergency response and evacuation. The 29 

local government immediately started 30 

their emergency response, and more than 31 

20 villagers in the landslide hazard zone 32 

were evacuated. At 05:00 on 1 October 33 

2017, a landslide occurred (Fig. 3E), 34 

damaging several buildings but with no 35 

casualties thanks to the early warning 36 

[32].  37 

This successful case clearly 38 

demonstrates the potential importance of 39 

real-time displacement measurements 40 

and the role that in-situ sensors could 41 

play in early warning systems. A 42 

preliminary retrospective InSAR study 43 

showed that InSAR with L-band ALOS-44 

2 images was able to capture the 45 

accelerated movements prior to failure, 46 

occurring 15 days before the landslide 47 

(Fig. 4).  48 

 49 

Fig. 4. Pre-event displacements of the 50 

Dangchuan 4# landslide revealed by L-51 

band observations. (A) The mean 52 

velocity map from time series InSAR 53 

analysis. (B) Enlarged active 54 

displacement area and the location of 55 

points P1, P2 and P3; (C)(D)(E) 56 

Displacement time series for points P1, 57 

P2 and P3, respectively. 58 

 59 

DISCUSSION 60 

The feasibility and complementarity of 61 

EO for landslide early warning 62 

A range of laboratory, field and 63 

theoretical studies have identified pre-64 

failure creep acceleration of landslides 65 

and suggest that it can be divided into 66 

three phases [41-44]: (i) Primary creep, 67 

(ii) Secondary creep, and (iii) Tertiary 68 

creep (Fig.A). Primary creep is 69 

characterised by a decreasing strain rate 70 

over time, which often lasts for a short 71 

period or can be even absent in some 72 

cases [42]. Secondary creep is 73 

characterised by slow movement at near 74 



constant rate (but with fluctuations in real 75 

slopes due to the influence of external 76 

factors, such as rainfall). The duration of 77 

the secondary creep is difficult to 78 

estimate and can last for months, years or 79 

even decades [42, 45], despite continuous 80 

displacement during this phase. Tertiary 81 

creep is characterized by a rapid 82 

acceleration of displacement until final 83 

failure [46]. Although such speed-ups 84 

may be common prior to catastrophic 85 

failure events [45], the number of actual 86 

observations of such speed-up behavior 87 

remains limited due to the absence of the 88 

right EO technologies in the right 89 

locations at the right times. Therefore, 90 

there are two primary challenges for 91 

landslide early warning: (i) monitoring 92 

surface displacements over a wide region 93 

with sufficient resolution and accuracy to 94 

identify areas undergoing secondary 95 

creep; and (ii) identifying when or under 96 

what circumstances a slow-moving 97 

landslide (i.e. in secondary creep phase) 98 

enters the accelerated displacement 99 

tertiary creep phase leading to rapid 100 

failure. 101 

Advances in EO offer the potential to 102 

address these two challenges. In the 103 

primary and secondary phases, weekly to 104 

monthly observations would be sufficient 105 

to distinguish areas undergoing more 106 

rapid creep. In the tertiary creep phase, 107 

sub-daily sampling intervals are needed 108 

to capture the acceleration in creep (Fig. 109 

5B). InSAR currently has a shortest 110 

repeat cycle of 1-11 days while GNSS 111 

and some other in-situ sensors can 112 

provide high-rate (e.g. 1-20 Hz) 113 

measurements. Only slow tertiary creep 114 

displacements (e.g. <0.012 m/day over a 115 

distance of 100 m for Sentinel-1 [47]) 116 

could potentially be captured by InSAR 117 

because its measuring capability is 118 

limited by the spatial displacement 119 

gradients. This limitation can be 120 

overcome by SAR pixel offset tracking 121 

(e.g. [19]) and/or Range Split Spectrum 122 

Interferometry assisted Phase 123 

Unwrapping (R-SSIaPU) method [47]; 124 

in-situ sensors generally do not have such 125 

limitations (Fig. 5C). On the other hand, 126 

InSAR offers extensive spatial coverage 127 

enabling detection of potential landslides 128 

in the primary and secondary creep 129 

phases. To monitor a single slope in its 130 

tertiary phase InSAR and in-situ sensors 131 

can provide complementary coverage in 132 

space and time.  133 



Fig. 5. EO feasibility analysis on the three stages of landslide. (A) Idealized 

displacement-time curves for the three stages of creep [6, 41, 42]. (B)-(C) Typical 

sampling intervals and velocity scale analysis for satellite InSAR and in-situ sensors in 

three creep phases. The landslide speeds in (c) are defined according to [48, 49], i.e. 

extremely slow (<16 mm/year), very slow (1.6 m/year), slow (13 m/month) and 

moderate (1.8 m/h). 

 1 

EO based landslide early warning 2 

system 3 

Fig. 5 illustrates that EO can provide us 4 

with unprecedented and encouraging 5 

opportunities for pre-failure creep 6 

monitoring. However, the different 7 

technologies have their own advantages 8 

and limitations as illustrated by the 9 

Xinmo and Dangchuan case studies. A 10 

single EO method is insufficient to 11 

capture all the signals in the different 12 

creep stages, and hence multiple EO 13 

technologies should be combined to 14 

develop landslide EWS.  Fig. 6 shows 15 

the framework of an operational 16 

landslide early warning system relying 17 

on an optimal combination of these EO 18 

technologies.19 



Fig. 6. EO based landslide early warning system. (A) Field investigation to 

determine geomechanical response properties. (B) Simulation and assessment of 

potential impact. (C) Real-time monitoring on displacement, precipitation etc. (D) 

Long-term displacement rate monitoring and analysis. 

Step 1. Spaceborne InSAR is 1 

employed to comprehensively detect 2 

active slopes (i.e. clusters of points that 3 

exhibit certain deformational activity 4 

[50]) to find potential landslides at a 5 

regional scale. The archived and newly 6 

acquired SAR images (e.g. ESA’s 7 

Sentinel-1) are interferometrically 8 

processed and then analysed in time 9 

series. An automatic feature detection 10 

algorithm (possibly relying on machine 11 

learning approaches, e.g. [51, 52]) should 12 

be developed to detect potential 13 

landslides based on the regional 14 



deformation rate maps and displacement 1 

time series. Time series analysis can be 2 

used to determine the sensitivity of 3 

landslide motion to external factors such 4 

as seasonal precipitation and seismic 5 

shaking (e.g. [23, 53]). First-order 6 

geomechanical modeling of landslide 7 

behavior based on critical-state soil 8 

mechanics or rate-and-state friction can 9 

provide important insights on the 10 

stability conditions of landslides (e.g. 11 

[54-56]). Eventually, such 12 

geomechanical analysis may allow us to 13 

anticipate failure conditions prior to the 14 

pronounced accelerations of the tertiary 15 

phase (e.g. [57]). 16 

Step 2. Assessment of potential 17 

impacts of the active landslides at a local 18 

scale. After the potential landslide 19 

initiation hazard is identified for specific 20 

locations, field investigations help assess 21 

the geological setting of the landslide. A 22 

landslide dynamics model (e.g. [58, 59]) 23 

can be applied to predict the speed and 24 

run-out extent of potential landslide 25 

events. Potential landslide sites identified 26 

in Step 1 can be simulated to determine 27 

the likely impact on human settlements 28 

for each landslide. Topographic and 29 

socio-spatial data can be collated for 30 

landslide modelling and impact 31 

assessment. A detailed local land 32 

property map, including key 33 

infrastructures such as buildings, roads, 34 

power lines, and a population-35 

distribution map could be generated 36 

based on existing open source data and 37 

community participation. These will 38 

support the impact assessment as well as 39 

early warning communication with the 40 

local community. This step also identifies 41 

the sites for which real-time landslide 42 

monitoring (RTLM) is required.  43 

Step 3. A multi-sensor integrated 44 

system is installed combining remote 45 

sensing methods and in-situ sensors for 46 

the specific sites where the RTLM is 47 

needed. In-situ sensors can be carefully 48 

located according to the landslide motion 49 

information provided by InSAR so that 50 

an accurate continuous monitoring in 51 

time and space for all hazardous 52 

landslides in a region can be achieved by 53 

integrating these two systems whilst 54 

minimizing the associated costs by 55 

limiting the number of in-situ sensors. 56 

High-rate (e.g. 1 Hz) raw in-situ 57 

observations (e.g. GNSS and 58 

crackmeters) can be transmitted to a data 59 

centre via wireless communication 60 

infrastructure, and real-time processed 61 

with short baselines in a kinematic mode. 62 

Recent experiments with GNSS suggest 63 

~2-4 mm horizontal and 4-8 mm vertical 64 

accuracy are possible at 1 Hz [60, 61]. 65 

Real-time monitoring is particularly 66 

important since existing observations on 67 

tertiary creep suggest that the timescale 68 

for this phase ranges from minutes to 69 

months [44, 62, 63]. Thus the data should 70 

be transmitted back to the data centre in 71 

real time and processed automatically. 72 

However, these in-situ observations are 73 

not only useful for identifying the onset 74 



of tertiary creep but can be used in the 1 

secondary phase to determine the 2 

sensitivity of landslide motion to external 3 

factors at a higher resolution and 4 

precision than was possible in stage 1 5 

[23, 53]. The mechanical models 6 

introduced at stage 1 can be refined and 7 

calibrated through monitoring of 8 

environmental factors and geological-9 

geotechnical parameters such as the pore 10 

pressure in soils (Table 1) [13, 64].  11 

Table 1. Commonly used technologies for landslides monitoring. Note that UAV 

and TDR represent unmanned aerial vehicle and time domain reflectometry, 

respectively. 

Observation 

Types 

Technology Precision  Examples 

Displacement Spaceborne InSAR mm-cm [65] [21, 66, 67] 

Airborne InSAR mm-cm [68] [68, 69] 

Ground-based InSAR mm-cm [70] [63, 70, 71] 

UAV photogrammetry ~ 6cm [72] [72, 73] 

GNSS mm-cm [74] [80, 81] 

Optical image matching cm-m [75] [75, 76] 

Crackmeter mm-cm [77] [78, 79] 

Extensometer ~3 mm [80] [81, 82] 

In-place inclinometer ~8 mm [65] [10, 83, 84] 

Tiltmeter ~0.1°[13] [13, 79, 87] 

Total station ~±1 ppm [77] [77, 85] 

Terrestrial Lidar ~0.2-0.5 m [80] [80, 86] 

Shape acceleration array ±1.5 mm/30 m 

[87] 

[13, 81, 87] 

Active waveguides Mm [88] [13, 88] 

Seismometer \ [89, 90] 

Pore pressure Piezometer \ [13, 91, 92] 

TDR \ [93, 94] 

Tensiometer (Soil 

hygrometer) 

\ [54, 94] 

Precipitation Rain gauge \ [79, 95] 

 1 

Step 4. Communication with local 2 

communities. Providing timely and 3 

useful warnings to people exposed to 4 

landslide hazard is the ultimate objective 5 

of an early warning system. Thus 6 



engagement and communication with 1 

local communities should be a key 2 

feature of an effective landslide EWS. A 3 

large body of work already exists on the 4 

social science of early warning, 5 

providing useful insights, explanations 6 

for unexpected EWS failure, potential 7 

secondary disasters and examples of 8 

good practice. Experience from past 9 

disasters worldwide suggests that 10 

emergency preparedness, planning and 11 

response are some of the weakest 12 

elements in many existing EWSs [96]. In 13 

particular, the link between the technical 14 

capacity to issue a warning and the 15 

public’s capacity and commitment to 16 

respond effectively to the warning is 17 

often weak, limiting the capacity of the 18 

warning to trigger an appropriate and 19 

effective response from the community. 20 

Warning systems that mainly focus on 21 

technical aspects and ignore social 22 

factors generally do not work effectively 23 

because the warnings do not prompt 24 

effective action due to lack of community 25 

buy-in, which results in poor engagement 26 

and operation. There appears to be fairly 27 

widespread consensus among both 28 

academics and practitioners that EWSs 29 

are most effective when they are built in 30 

collaboration with those at risk rather 31 

than imposed from outside. 32 

 33 

OUTLOOK 34 

The remaining three Big Questions for 35 

landslide forecasting and early warning 36 

are as follows: (Big Question 1) where 37 

are potential landslides, (Big Question 2) 38 

when will landslides occur, and (Big 39 

Question 3) how to best reduce landslide 40 

disaster risk. 41 

Big Question 1 - where are potential 42 

landslides: We are entering an exciting 43 

new era of Earth Observation data, and 44 

recent advances in satellite radar and in-45 

situ sensors (e.g. GNSS) have allowed us 46 

to collect high-quality measurements to 47 

quantify the Earth's surface 48 

displacements and then address Big 49 

Question 1 over entire mountain ranges at 50 

space and time scales that are finer than 51 

ever before and at relatively low cost. In 52 

the EO based landslide early warning 53 

system, the relatively short repeat cycles 54 

of current SAR missions still represent a 55 

limitation of InSAR to detect potential 56 

landslides, but the Geosynchronous - 57 

Continental Land-Atmosphere Sensing 58 

System (G-CLASS), one of the three 59 

Earth Explorer ideas that have been 60 

accepted by ESA’s Programme Board for 61 

Earth Observation to compete as the tenth 62 

Earth Explorer mission, might provide a 63 

solution. Considerable work has been 64 

done to interferometrically process 65 

massive SAR data sets in an automatic 66 

way (e.g. [97]), but more should be done 67 

to investigate how to detect potential 68 

landslides from big SAR data in a 69 

consistent, reliable and smart manner. 70 

Machine learning technologies have been 71 

widely implemented in the field of 72 

computer science and remote sensing 73 



[98-99], where statistical techniques are 1 

employed to learn specific and complex 2 

tasks from given data. Recent studies 3 

report that machine learning has the 4 

capability to identify signals associated 5 

with geohazards from large data sets (e.g. 6 

[100]), suggesting that the integration of 7 

machine learning with EO technologies 8 

might be one encouraging solution to 9 

automatic landslide detection. To address 10 

Big Question 1, there is an urgent need to 11 

answer the following: (i) at what 12 

percentage are the detected landslides 13 

true positives? (ii) what is the percentage 14 

of the missing landslides (false 15 

negatives)? and (iii) in which scenarios 16 

are the landslides more likely be 17 

successfully detected?  18 

Big Question 2 - when will landslides 19 

occur: A range of state-of-the-art 20 

landslide initiation and runout models 21 

have enabled us not only to estimate the 22 

location and geometry of potential 23 

landslides, but also to assess their 24 

potential impacts.  25 

It remains a grand challenge to 26 

predict when landslides will occur. There 27 

have been a limited number of successful 28 

case studies including the 2017 29 

Heifangtai landslide. In these cases, 30 

deformation anomalies (acceleration 31 

and/or change in pattern) observed prior 32 

to failure have been recongnised as 33 

‘precursors’. However, accurate EWSs 34 

require the identification of a diagnostic 35 

signature that can be somewhat uniquely 36 

related to impending failure. The degree 37 

to which this signature is unique, defines 38 

the confidence with which a warning can 39 

be issued, which represents a much 40 

stricter definition of ‘precursor’. Further 41 

research is required to constrain the 42 

relationship between accelerated 43 

displacement and landslide failure and 44 

thus to establish these diagnostic 45 

signatures with more confidence. We 46 

suggest that widespread and long-term 47 

deformation monitoring combined with 48 

landslide observations will enable 49 

considerable progress on this problem. 50 

Big Question 3 - how to best reduce 51 

landslide disaster risk: The experience of 52 

the cooperation between experts and 53 

local communities in Dangchuan 4# 54 

landslide has improved our 55 

understanding of best practices for 56 

Community-Based Disaster Risk 57 

Management (CBDRM). How to best 58 

coproduce a site specific warning system 59 

with both local experts and with members 60 

of at-risk communities to reduce 61 

landslide disaster risk remains an open 62 

challenge for the whole community. 63 
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