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An Integrated Visual Odometry System for
Underwater Vehicles

Abstract

Underwater navigation is always a challenging problem, because of electromagnetic attenuation. The
traditional methods involve beacons, inertial sensors, and Doppler Velocity Log (DVL), but they have
many shortcomings, such as high cost, and lengthy setup time. In order to solve underwater navigation
problems at low cost, an integrated visual odometry system has been developed and discussed in this
paper. In this method, two inertial sensors provide acceleration and attitude of the vehicle, and an
underwater sonar is used to provide the distance between the vehicle and the seabed, whilst in the
visual odometry section, an optical flow algorithm has been applied for tracking feature points. With
the depth provided by the sonar, 3D position of feature points can be calculated. Linear motion of the
vehicle is then predicted through these feature points in dual frames. Finally, nonlinear optimization
is used to correct the attitude of the vehicle using visual information. In the proposed algorithm, the
vehicle trajectory can be estimated in absolute scale by using a single camera; computational complexity
is reduced dramatically compared to other visual odometry methodologies; and this algorithm allows
the approach to work in sparse texture conditions. The results from practical experiments demonstrate

that the method is effective and it is also a low-cost solution.

Index Terms

Visual-Inertial Odometry, sensor fusion, underwater vehicles

I. INTRODUCTION

The oceans cover most of the earth’s surface and are critical sources of food and other resources
such as oil and gas. Conversely, the underwater environment can threaten the safety of human
beings engaged in underwater operations. Hence, Remotely Operated Vehicles (ROVs) are usually
employed to conduct offshore oil and gas installations and Autonomous Underwater Vehicles
(AUVs) are currently used for scientific survey tasks, oceanographic sampling, underwater arche-
ology and under-ice survey work [1] [2] [3].

Accurate localization and navigation is essential to ensure that underwater vehicles conduct
these operations successfully. However, due to the rapid attenuation of electromagnetic waves in

the underwater environment, navigation and localization for underwater vehicles are challenging
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problems. The conventional methods to solve underwater localization problems are using inertial
sensors, such as Inertial Measurement Unit (IMU) sensors, acoustic beacons installed in the
region of interest, and the Doppler Velocity Log (DVL) [4]. Some underwater vehicles are also
required to rise up to the surface periodically in order to receive satellite signals. The main
disadvantages of traditional navigation approaches are that they either suffer from unbounded
drift, or they require external infrastructure that needs to be set up and calibrated [5].

Inertial sensors, involving accelerometers, gyroscopes and DVL, suffer from unbounded drift
errors. The performances of an inertial unit are mainly determined by the quality of its com-
ponents [6]; in general, a more expensive unit has better performance. The most precise DVL
device can achieve a drift of 0.1% of the distance traveled, however, a general DVL usually has
a drift of about 5% of the distance traveled. Even so, the cost of most DVLs is over 20k USD
[6].

Acoustic devices, such as long beacons (LBL) and ultrashort baseline (USBL), require pre-
deployed and localized infrastructure [7]. However, low bandwidth, low data rate and variable
sound speed restrict their application.

Compared with conventional methodologies, Visual Odometry (VO) can provide position
and attitude of vehicles with extremely low cost. It can also bound position error by using
Simultaneous Localization And Mapping (SLAM) algorithms [1]. Visual navigation approaches
have been applied in mobile robotics and drones [8] [9]. One well-known VO application has
been on NASA’s Mars exploration rovers [10].

VO algorithms try to track feature points in continuous images captured by stereo cameras
or a monocular camera, and the camera pose can be determined by the motion of these tracked
feature points. In this case, the visual odometry requires as many feature points as possible
to detect, so that the algorithms are able to reduce the errors introduced by falsely matched
feature points in different images. Hence, most VO approaches are used for work in dense-
texture environments where VO can provide accurate trajectory estimates, with relative position
error ranging from 0.1 to 2% [11] [12]. However in sparse environments or poor illumination
conditions, the performance of VO is unreliable.

Most VO algorithms based on monocular cameras only provide the estimated pose at a relative
scale built in the initialization. That indicates that the absolute scale is unknown if the relative
scale is uncertain. Furthermore, they all require a dense-feature environment to get acceptable

predictions. However, there are few feature points on the seabed under low illumination condi-
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tions. In order to overcome these limitations, a novel Integrated Visual Odometry (IVO) system
has been developed in this paper.

The proposed IVO method with a monocular camera is expected to be capable of replacing
the high-cost traditional navigation systems. The Lucas-Kanade Optical Flow algorithm has been
applied for tracking feature points between dual-frame images captured by an optical sensor
[13]. Meanwhile an IMU development kit, with integrated signal processing, can output the
acceleration and orientation of the vehicle. Linear and nonlinear methods have been utilised to
collect information from the multiple sensors and then predict the pose and the trajectory of the
vehicle. Such a methodology is able to work in sparse texture environments, it operates with
low computational complexity, and it estimates trajectory in absolute scale even though it only
uses a monocular camera as the optical sensor. Practical experiments are reported to verify the
methodology.

This paper is organized as follows. Section 2 reviews previously reported recent research on
visual odometry and visual SLAM. Section 3 provides details of the underwater vehicle used to
capture the data, and an important assumption made in the work. Section 4 reports the geometry
transformation between the coordinates of inertial senors, sonar and the monocular camera.
Section 5 introduces the details of the proposed method. Section 6 describes the implementation
of the proposed method, experiments, results and discussion. Section 7 presents the conclusion

of the work.

II. REVIEW OF RELATED WORK IN UNDERWATER VISUAL ODOMETRIES

Visual Odometry (VO) and visual SLAM algorithms have been successfully applied in mo-
bile robotics and aerial robotics [12]. The well-known visual SLAM methods include Parallel
Tracking And Mapping (PTAM) [14], Dense Tracking And Mapping (DTAM) [15] and large-
scale direct (LSD-SLAM) [16]. Fast Semi-Direct Monocular Visual Odometry (SVO) has been
developed for air drones equipped with downward-looking cameras [17]. It operates directly
on pixel intensities, which results in subpixel precision at high frame-rates. In this system, a
probabilistic mapping method that explicitly models outlier measurements is used to estimate
3D points.

The ORB-SLAM algorithm is a feature-based method and was developed based on PTAM. It
is a reliable and complete solution for monocular SLAM [18]. It uses the same feature points

for all tasks including the tracking, mapping, relocalization, and loop closing.
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Direct Sparse Odometry (DSO) is developed based on LSD-SLAM. It is a visual odometry
method developed from a novel, highly accurate, sparse and direct structure and motion formu-
lation [19]. It combines a fully direct probabilistic model (minimizing the photometric error)
with consistent, joint optimization of all model parameters.

Engel’s research has shown that visual SLAM can provide accuracy, low cost, and bounded
position error navigation methods. However, all of these methods are pure visual SLAM. The
performances of these SLAM methods depend on the density of feature points. They all require
the use of global shuttering cameras with long focal-length, wide angle lenses, to provide a
wider view. Such lenses can enable the camera to catch more feature points; SLAMs usually
require at least 50 feature points to estimate the cameras’ motion. In fact, in the SVO method,
at least 100 feature points are required in the initialization section.

In addition, these SLAM methods are suitable for slow vehicle motion. High frame-rate global
shuttering cameras may give enough images, but the computing time of the SLAM algorithm
may lag the response of the navigation systems due to onboard computers having limited
computation abilities. For monocular SLAMs, the 3D positions of feature points are obtained
from triangular calculations. Hence, if a single camera is subject to pure rotational motion, the
triangular calculation lacks translation information, and the monocular SLAM algorithm will fail.
In order to improve the performance of pure Visual SLAMs, Leutenegger and Qin developed
inertial-visual odometries (OKVIS and VINE-Mono) for air drone navigation [20] [21]. In their
work, a cost function, constructed by summing reprojection error and inertial sensor error, is
minimized to solve for camera pose.

In [22], Eustice reports a visual navigation system for underwater vehicles, called Visually
Augumented Navigation (VAN). The multi-sensor fusion filter integrates the benefits of optical
and inertial navigation methods and is robust to low overlap of imagery [6]. The filter is developed
in a version-based form, based on the Extended Kalman Filter (EKF), where pose is estimated
by visual odometry. Actually, visual odometry provides constraints for estimation of inertial
methods. Eustice also applies an information filter to replace the EKF filter, and the results
show an improvement in accuracy. This approach was applied to underwater exploration in the
surveying of RMS Titanic [23]. In [24], the VAN method was used to inspect ship-hulls for the
U.S. Navy. Both [25] and [26] were extensions of the VAN method, a smoothing and mapping
problem formulation and efficient matrix factorizations are proposed to be able to efficiently

recover the mean and covariance values. The VAN algorithm has also been introduced into
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image sonar with pose graph methods applied to predict pose and landmarks by Hover [27].
In [28], Kim proposed a novel approach to estimate the trajectory of a vehicle using DVL
and a visual odometry in a poor environment context. Based on Eustice’s idea, Li developed a
pose-graph SLAM using forward-looking sonar to estimate trajectories [29].

Some stereo VO approaches using higher frame rate videos (10-20hz) to estimate underwater
vehicle pose have been presented recently. In [30], features are matched within stereo pairs to
compute 3D point clouds and the camera poses are estimated by aligning these successive point
clouds, making it a pure stereo vision method. In parallel, the work of Bellavia uses a keyframe-
based approach but their feature tracking is carried out by matching descriptors both spatially
(between stereo image pairs) and temporally [31].

Recent parallel work has been done by Maxime [32] and Sharmin [33] [34]. Maxime developed
a real time Monocular Visual odometry system for the underwater environment. It uses the Optical
Flow (OF) algorithm to track feature points and the depth information is obtained through
triangulation calculations. Sharmin extended the Open Keyframe-based Visual-Inertial SLAM
(OKVIS)[20] with underwater profiling sonar. The method fuses multiple information from a
stereo camera, a profiling sonar, an IMU and a pressure sensor by using a tightly-coupled
nonlinear optimization. More specifically, Sharmin derived a cost function by summing the
reprojection error, the IMU error, and the sonar error. Because of that, camera pose estimation
and mapping of underwater structures are processed simultaneously by minimizing the cost
function. Sharmin improved the method by applying a robust initialization method, an image
enhanced technique, and a loop-closure technique in [34]. However, these methods were not
tested by quantitative evaluation methods in the underwater environment. This means that the
accuracy or drift errors of these methods are not clearly understood in underwater navigation
applications.

Compared with conventional underwater navigation, the current research is a relatively low-
cost navigation solution with acceptable accuracy. Unlike other visual or inertial-visual navigation
methods, the proposed method reconstructs 3D positions of feature points by using a monocular
camera and a ping sonar. The work is based on a main assumption: the seabed is locally flat.
Firstly, the 3D positions of feature points in camera coordinates are identified efficiently with the
rotation matrix obtained from a low cost inertial unit and depth from an underwater sonar. Sec-
ondly, the translation vector is bounded from the OF algorithm. Finally, a nonlinear optimization

solver is used to correct the attitude from inertial sensors and give the optimal incremental motion
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between two frames. Therefore, the computational complexity of the methodology is relatively
light. The novelty of the method is that it is able to localise the vehicle in underwater feature-

sparse environments with 3% to 4% drift error, while other algorithms perform unsuccessfully.

III. ASSUMPTION AND DATA COLLECTION
A. Assumption of the Proposed Method

The novel IVO method is based on one main assumption.
Assumption 1. The seabed is locally flat.

In the IVO method, the optical sensor is used to identify feature points on the seabed. In actual
situations, underwater vehicles could maintain constant distance from the seabed, and peaks and

troughs caused by small objects on the seabed can be ignored.

B. Data Collection Vehicle

The data collection vehicle is a modified VideoRay Pro 3. A waterproof tube with multiple
precise sensors inside has been built and installed on the bottom of the original vehicle. The
main sensors involved are an IMU development kit with integrated signal processing, which is
expected to provide orientation data, an optical sensor (global shutter camera), which is able
to capture grayscale images when the vehicle is in motion, a gyroscope, a sonar and an Intel
RealSense T265 Tracking Camera. The gyroscope can offer the yaw angle, which is not affected
by magnetic fields. The sonar is to detect the distance between seabed and the vehicle. The T265
Tracking Camera is installed on the electronics tray in order to provide comparative results. The
T265 consists of a stereo camera, an IMU senor and a processor, which can provide the trajectory
of the camera directly using its own V-SLAM algorithm. Hence, the results from proposed IVO,
the T265 and the other open source visual SLAMs mentioned in Section II are compared.

The underwater vehicle with the additional tube is shown in Fig. 1. The sensors on the tray
inside the tube are shown in Fig. 2 and Fig. 3. The main measurement sensors and their costs are

listed in Tab. I, illustrating that the proposed IVO method is implemented on low-cost hardware.

IV. GEOMETRY TRANSFORMATION

As detailed in the previous section, there are multiple sensors located on the electronics tray.

The sensors, including the IMU, gyroscope, sonar and camera, each have their own coordinates.






