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An Integrated Visual Odometry System for

Underwater Vehicles

Abstract1

Underwater navigation is always a challenging problem, because of electromagnetic attenuation. The2

traditional methods involve beacons, inertial sensors, and Doppler Velocity Log (DVL), but they have3

many shortcomings, such as high cost, and lengthy setup time. In order to solve underwater navigation4

problems at low cost, an integrated visual odometry system has been developed and discussed in this5

paper. In this method, two inertial sensors provide acceleration and attitude of the vehicle, and an6

underwater sonar is used to provide the distance between the vehicle and the seabed, whilst in the7

visual odometry section, an optical flow algorithm has been applied for tracking feature points. With8

the depth provided by the sonar, 3D position of feature points can be calculated. Linear motion of the9

vehicle is then predicted through these feature points in dual frames. Finally, nonlinear optimization10

is used to correct the attitude of the vehicle using visual information. In the proposed algorithm, the11

vehicle trajectory can be estimated in absolute scale by using a single camera; computational complexity12

is reduced dramatically compared to other visual odometry methodologies; and this algorithm allows13

the approach to work in sparse texture conditions. The results from practical experiments demonstrate14

that the method is effective and it is also a low-cost solution.15

Index Terms16

Visual-Inertial Odometry, sensor fusion, underwater vehicles17

I. INTRODUCTION18

The oceans cover most of the earth’s surface and are critical sources of food and other resources19

such as oil and gas. Conversely, the underwater environment can threaten the safety of human20

beings engaged in underwater operations. Hence, Remotely Operated Vehicles (ROVs) are usually21

employed to conduct offshore oil and gas installations and Autonomous Underwater Vehicles22

(AUVs) are currently used for scientific survey tasks, oceanographic sampling, underwater arche-23

ology and under-ice survey work [1] [2] [3].24

Accurate localization and navigation is essential to ensure that underwater vehicles conduct25

these operations successfully. However, due to the rapid attenuation of electromagnetic waves in26

the underwater environment, navigation and localization for underwater vehicles are challenging27
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problems. The conventional methods to solve underwater localization problems are using inertial28

sensors, such as Inertial Measurement Unit (IMU) sensors, acoustic beacons installed in the29

region of interest, and the Doppler Velocity Log (DVL) [4]. Some underwater vehicles are also30

required to rise up to the surface periodically in order to receive satellite signals. The main31

disadvantages of traditional navigation approaches are that they either suffer from unbounded32

drift, or they require external infrastructure that needs to be set up and calibrated [5].33

Inertial sensors, involving accelerometers, gyroscopes and DVL, suffer from unbounded drift34

errors. The performances of an inertial unit are mainly determined by the quality of its com-35

ponents [6]; in general, a more expensive unit has better performance. The most precise DVL36

device can achieve a drift of 0.1% of the distance traveled, however, a general DVL usually has37

a drift of about 5% of the distance traveled. Even so, the cost of most DVLs is over 20k USD38

[6].39

Acoustic devices, such as long beacons (LBL) and ultrashort baseline (USBL), require pre-40

deployed and localized infrastructure [7]. However, low bandwidth, low data rate and variable41

sound speed restrict their application.42

Compared with conventional methodologies, Visual Odometry (VO) can provide position43

and attitude of vehicles with extremely low cost. It can also bound position error by using44

Simultaneous Localization And Mapping (SLAM) algorithms [1]. Visual navigation approaches45

have been applied in mobile robotics and drones [8] [9]. One well-known VO application has46

been on NASA’s Mars exploration rovers [10].47

VO algorithms try to track feature points in continuous images captured by stereo cameras48

or a monocular camera, and the camera pose can be determined by the motion of these tracked49

feature points. In this case, the visual odometry requires as many feature points as possible50

to detect, so that the algorithms are able to reduce the errors introduced by falsely matched51

feature points in different images. Hence, most VO approaches are used for work in dense-52

texture environments where VO can provide accurate trajectory estimates, with relative position53

error ranging from 0.1 to 2% [11] [12]. However in sparse environments or poor illumination54

conditions, the performance of VO is unreliable.55

Most VO algorithms based on monocular cameras only provide the estimated pose at a relative56

scale built in the initialization. That indicates that the absolute scale is unknown if the relative57

scale is uncertain. Furthermore, they all require a dense-feature environment to get acceptable58

predictions. However, there are few feature points on the seabed under low illumination condi-59
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tions. In order to overcome these limitations, a novel Integrated Visual Odometry (IVO) system60

has been developed in this paper.61

The proposed IVO method with a monocular camera is expected to be capable of replacing62

the high-cost traditional navigation systems. The Lucas-Kanade Optical Flow algorithm has been63

applied for tracking feature points between dual-frame images captured by an optical sensor64

[13]. Meanwhile an IMU development kit, with integrated signal processing, can output the65

acceleration and orientation of the vehicle. Linear and nonlinear methods have been utilised to66

collect information from the multiple sensors and then predict the pose and the trajectory of the67

vehicle. Such a methodology is able to work in sparse texture environments, it operates with68

low computational complexity, and it estimates trajectory in absolute scale even though it only69

uses a monocular camera as the optical sensor. Practical experiments are reported to verify the70

methodology.71

This paper is organized as follows. Section 2 reviews previously reported recent research on72

visual odometry and visual SLAM. Section 3 provides details of the underwater vehicle used to73

capture the data, and an important assumption made in the work. Section 4 reports the geometry74

transformation between the coordinates of inertial senors, sonar and the monocular camera.75

Section 5 introduces the details of the proposed method. Section 6 describes the implementation76

of the proposed method, experiments, results and discussion. Section 7 presents the conclusion77

of the work.78

II. REVIEW OF RELATED WORK IN UNDERWATER VISUAL ODOMETRIES79

Visual Odometry (VO) and visual SLAM algorithms have been successfully applied in mo-80

bile robotics and aerial robotics [12]. The well-known visual SLAM methods include Parallel81

Tracking And Mapping (PTAM) [14], Dense Tracking And Mapping (DTAM) [15] and large-82

scale direct (LSD-SLAM) [16]. Fast Semi-Direct Monocular Visual Odometry (SVO) has been83

developed for air drones equipped with downward-looking cameras [17]. It operates directly84

on pixel intensities, which results in subpixel precision at high frame-rates. In this system, a85

probabilistic mapping method that explicitly models outlier measurements is used to estimate86

3D points.87

The ORB-SLAM algorithm is a feature-based method and was developed based on PTAM. It88

is a reliable and complete solution for monocular SLAM [18]. It uses the same feature points89

for all tasks including the tracking, mapping, relocalization, and loop closing.90
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Direct Sparse Odometry (DSO) is developed based on LSD-SLAM. It is a visual odometry91

method developed from a novel, highly accurate, sparse and direct structure and motion formu-92

lation [19]. It combines a fully direct probabilistic model (minimizing the photometric error)93

with consistent, joint optimization of all model parameters.94

Engel’s research has shown that visual SLAM can provide accuracy, low cost, and bounded95

position error navigation methods. However, all of these methods are pure visual SLAM. The96

performances of these SLAM methods depend on the density of feature points. They all require97

the use of global shuttering cameras with long focal-length, wide angle lenses, to provide a98

wider view. Such lenses can enable the camera to catch more feature points; SLAMs usually99

require at least 50 feature points to estimate the cameras’ motion. In fact, in the SVO method,100

at least 100 feature points are required in the initialization section.101

In addition, these SLAM methods are suitable for slow vehicle motion. High frame-rate global102

shuttering cameras may give enough images, but the computing time of the SLAM algorithm103

may lag the response of the navigation systems due to onboard computers having limited104

computation abilities. For monocular SLAMs, the 3D positions of feature points are obtained105

from triangular calculations. Hence, if a single camera is subject to pure rotational motion, the106

triangular calculation lacks translation information, and the monocular SLAM algorithm will fail.107

In order to improve the performance of pure Visual SLAMs, Leutenegger and Qin developed108

inertial-visual odometries (OKVIS and VINE-Mono) for air drone navigation [20] [21]. In their109

work, a cost function, constructed by summing reprojection error and inertial sensor error, is110

minimized to solve for camera pose.111

In [22], Eustice reports a visual navigation system for underwater vehicles, called Visually112

Augumented Navigation (VAN). The multi-sensor fusion filter integrates the benefits of optical113

and inertial navigation methods and is robust to low overlap of imagery [6]. The filter is developed114

in a version-based form, based on the Extended Kalman Filter (EKF), where pose is estimated115

by visual odometry. Actually, visual odometry provides constraints for estimation of inertial116

methods. Eustice also applies an information filter to replace the EKF filter, and the results117

show an improvement in accuracy. This approach was applied to underwater exploration in the118

surveying of RMS Titanic [23]. In [24], the VAN method was used to inspect ship-hulls for the119

U.S. Navy. Both [25] and [26] were extensions of the VAN method, a smoothing and mapping120

problem formulation and efficient matrix factorizations are proposed to be able to efficiently121

recover the mean and covariance values. The VAN algorithm has also been introduced into122
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image sonar with pose graph methods applied to predict pose and landmarks by Hover [27].123

In [28], Kim proposed a novel approach to estimate the trajectory of a vehicle using DVL124

and a visual odometry in a poor environment context. Based on Eustice’s idea, Li developed a125

pose-graph SLAM using forward-looking sonar to estimate trajectories [29].126

Some stereo VO approaches using higher frame rate videos (10-20hz) to estimate underwater127

vehicle pose have been presented recently. In [30], features are matched within stereo pairs to128

compute 3D point clouds and the camera poses are estimated by aligning these successive point129

clouds, making it a pure stereo vision method. In parallel, the work of Bellavia uses a keyframe-130

based approach but their feature tracking is carried out by matching descriptors both spatially131

(between stereo image pairs) and temporally [31].132

Recent parallel work has been done by Maxime [32] and Sharmin [33] [34]. Maxime developed133

a real time Monocular Visual odometry system for the underwater environment. It uses the Optical134

Flow (OF) algorithm to track feature points and the depth information is obtained through135

triangulation calculations. Sharmin extended the Open Keyframe-based Visual-Inertial SLAM136

(OKVIS)[20] with underwater profiling sonar. The method fuses multiple information from a137

stereo camera, a profiling sonar, an IMU and a pressure sensor by using a tightly-coupled138

nonlinear optimization. More specifically, Sharmin derived a cost function by summing the139

reprojection error, the IMU error, and the sonar error. Because of that, camera pose estimation140

and mapping of underwater structures are processed simultaneously by minimizing the cost141

function. Sharmin improved the method by applying a robust initialization method, an image142

enhanced technique, and a loop-closure technique in [34]. However, these methods were not143

tested by quantitative evaluation methods in the underwater environment. This means that the144

accuracy or drift errors of these methods are not clearly understood in underwater navigation145

applications.146

Compared with conventional underwater navigation, the current research is a relatively low-147

cost navigation solution with acceptable accuracy. Unlike other visual or inertial-visual navigation148

methods, the proposed method reconstructs 3D positions of feature points by using a monocular149

camera and a ping sonar. The work is based on a main assumption: the seabed is locally flat.150

Firstly, the 3D positions of feature points in camera coordinates are identified efficiently with the151

rotation matrix obtained from a low cost inertial unit and depth from an underwater sonar. Sec-152

ondly, the translation vector is bounded from the OF algorithm. Finally, a nonlinear optimization153

solver is used to correct the attitude from inertial sensors and give the optimal incremental motion154



6

between two frames. Therefore, the computational complexity of the methodology is relatively155

light. The novelty of the method is that it is able to localise the vehicle in underwater feature-156

sparse environments with 3% to 4% drift error, while other algorithms perform unsuccessfully.157

III. ASSUMPTION AND DATA COLLECTION158

A. Assumption of the Proposed Method159

The novel IVO method is based on one main assumption.160

Assumption 1. The seabed is locally flat.161

In the IVO method, the optical sensor is used to identify feature points on the seabed. In actual162

situations, underwater vehicles could maintain constant distance from the seabed, and peaks and163

troughs caused by small objects on the seabed can be ignored.164

B. Data Collection Vehicle165

The data collection vehicle is a modified VideoRay Pro 3. A waterproof tube with multiple166

precise sensors inside has been built and installed on the bottom of the original vehicle. The167

main sensors involved are an IMU development kit with integrated signal processing, which is168

expected to provide orientation data, an optical sensor (global shutter camera), which is able169

to capture grayscale images when the vehicle is in motion, a gyroscope, a sonar and an Intel170

RealSense T265 Tracking Camera. The gyroscope can offer the yaw angle, which is not affected171

by magnetic fields. The sonar is to detect the distance between seabed and the vehicle. The T265172

Tracking Camera is installed on the electronics tray in order to provide comparative results. The173

T265 consists of a stereo camera, an IMU senor and a processor, which can provide the trajectory174

of the camera directly using its own V-SLAM algorithm. Hence, the results from proposed IVO,175

the T265 and the other open source visual SLAMs mentioned in Section II are compared.176

The underwater vehicle with the additional tube is shown in Fig. 1. The sensors on the tray177

inside the tube are shown in Fig. 2 and Fig. 3. The main measurement sensors and their costs are178

listed in Tab. I, illustrating that the proposed IVO method is implemented on low-cost hardware.179

IV. GEOMETRY TRANSFORMATION180

As detailed in the previous section, there are multiple sensors located on the electronics tray.181

The sensors, including the IMU, gyroscope, sonar and camera, each have their own coordinates.182




