Research paper

Rock surface IRSL dating of buried cobbles from an alpine dry-stone structure in Val di Sole, Italy

Lucas Ageby a,*, Diego E. Angelucci b, Dominik Brill a, Francesco Carrer c, Eike F. Rades d,e, Janet Rethemeyer f, Helmut Brückner a, Nicole Klasen a

a Institute of Geography, University of Cologne, 50923 Cologne, Germany
b Dipartimento di Lettere e Filosofia, University of Trento, 38122 Trento, Italy
c School of History, Classics and Archaeology, Newcastle University, NE1 7RU Newcastle, UK
d Nordic Laboratory for Luminescence Dating, Department of Geosience, Aarhus University, Rise Campus, Roskilde, DK, 4000, Denmark
e Radiation Physics Section, Department of Physics, Technical University of Denmark, DTU Rise Campus, Roskilde, DK, 4000, Denmark
f Institute of Geology and Mineralogy, University of Cologne, 50923 Cologne, Germany

ARTICLE INFO

Keywords:
Rock surface luminescence dating
Luminescence-depth profiles
IRSL
Dry-stone structures
Val di Sole
Pastoralism

ABSTRACT

Here, we investigate the application of rock surface IRSL dating to chronology restrain archaeological structures related to upland pastoralism. We applied the method to cobbles collected from archaeological units in an excavation of a dry-stone structure in Val di Sole in the Italian Alps. At this site, archaeological finds and previous radiocarbon analyses have dated an initial human occupation of the site to the Early Bronze Age (ca. 2200–1600 BC), and a possible second occupation to the Middle Bronze Age (ca. 1600–1350 BC). These archaeological units have later been buried by colluvial sediments. Theoretically, the luminescence-depth profiles from rock surfaces from inside such structures could record the exposure and burial of these archaeological units. We collected buried gneiss cobbles from these archaeological units and measured rock slices and chips from 1 to 4 cm long cores with a low-temperature pIR-IRSL protocol to investigate the signal resetting in these cobbles. Only the IRSL_{50} signal was deemed appropriate for dating. Measured luminescence-depth profiles demonstrate varying levels of signal resetting before burial. Dating of two paragneiss cobbles from the lower unit yielded corrected burial ages of ∼1450-700 BC and ∼19 ka. The older date is clearly not associated with human occupation; the younger date slightly underestimates the Early Bronze Age occupation, which was confirmed by new radiocarbon dating of charcoal (1731-1452 and 2124-1773 cal. BC). The burial of the upper archaeological unit was dated to ∼AD 1000, based on ages derived from the bottom surface of an orthogneiss cobble and the top surface of a paragneiss cobble. This is slightly younger than two new radiocarbon ages (426-596 and 537-654 cal. AD) from charcoal fragments sampled from the same unit. This new chronological data show longer exposure of the upper archaeological unit than was previously known. Furthermore, the paragneiss cobble from the upper unit has been exposed to sufficient heat to reset the IRSL_{50} and pIR-IRSL_{50} signals throughout the cobbles; an event which can be dated to ∼AD 1000–1500 BC. Comparisons between fading-corrected IRSL_{50} ages and pIR-IRSL_{50} ages from the heated cobble are in agreement, which suggests that the conventional g-value approach accurately corrects for signal loss during burial. Overall, our research suggests that rock surface IRSL dating can provide complementary chronological data for archaeological settings.

1. Introduction

The timing and strategies of prehistoric upland pastoralism in the European Alps remain largely uncertain. Although high-mountain pastures in the Alpine regions have historically had significant economic importance, known archaeological sites are still scarce (Carrer, 2012). Therefore, a thorough chronological understanding of site formation and periods of human impact on the environment from currently known sites is essential to infer the nature of human occupation of upland areas in the past.

Soon after the last deglaciation, groups of late Upper Paleolithic and, later, Mesolithic hunter-gatherers started to exploit high altitude (>2000 m above sea level) areas in the Alps, presumably during the summers (Cavalli et al., 2011). Lithic assemblages and scat-
tered finds which indicate upland hunting during the early Holocene have been recorded from several Alpine sectors, e.g., from the eastern Southern Alps (Cavalli et al., 2011), from the Silvretta Alps (Switzerland/Austria), dated to the mid-9th millennium BC (Kotheringer et al., 2015), and slightly later (8000–7000 BC) from the French Alps (Walsh et al. 2014). Palaeoecological and archaeological records (e.g., Hafner and Schröwer, 2018; Kotheringer et al., 2015) show that intense human land use, including grazing and forest clearing, may have locally occurred during the Neolithic and the Chalcolithic, while similar studies in other sectors of the Alps (e.g., Festi et al., 2014; Walsh et al., 2007) show a modest human impact on the upland environment in these early phases. During the Bronze Age (~2300–800 BC), grazing of upland pastures in the Alps became more established and widespread (Festi et al., 2014; Leveau and Walsh, 2005; Moe et al., 2007; Walsh et al., 2007). The oldest dry-stone structures (huts and enclosures) in the Alpine uplands date to this period, documenting a more intensive use of summer pastures (Angelucci et al., 2014; Reitmaier et al., 2018; Walsh and Mocci, 2011; Walsh et al., 2014), and possibly a transition toward more specialised dairy practices (Carrer et al., 2016).

Radiocarbon dating is the most frequently applied dating method for such structures (e.g., Angelucci et al., 2017), whereby, as a rule, the stratigraphically associated units are dated. Although radiocarbon dating is a well-established method that can provide reliable and high-precision ages, caution is advisable when choosing material for dating. Suitable materials such as wood, charcoal, and macrofossils are not always present in archaeological deposits. Furthermore, the stratigraphic relationship between sample depth and age is not always straightforward, e.g., due to the shallowness of upland soils (Angelucci and Anesin, 2012) or due to reworking (e.g., by bioturbation or freeze-thaw cycles), which Carcailliet (2001) reported for charcoal fragments from high altitude soils in the Alps. Also, radiocarbon ages derived from wood and charcoal might overestimate the true age, e.g., if the sampled material belongs to decay-resistant tree species, which may persist in the landscape long after the death of the tree (Schafer, 1986). Traditional optical dating approaches (multi-grain and single-grain quartz and feldspar dating) are useful geochronological tools in some archaeological contexts (e.g., Junge et al., 2016). However, insufficient signal resetting causes significant challenges when these methods are applied to settings that are affected by slope processes (Fuchs and Lang, 2009), such as alpine dry-stone structures (e.g., Carrer and Angelucci, 2013).

Keeping these dating limitations in mind, rock surface luminescence has become a promising technique for dating archaeological contexts (e.g., Feathers et al., 2019; Galli et al., 2020; al Khasawneh and Anesin, 2012) or due to reworking (e.g., by bioturbation or freeze-thaw cycles), which Carcailliet (2001) reported for charcoal fragments from high altitude soils in the Alps. Also, radiocarbon ages derived from wood and charcoal might overestimate the true age, e.g., if the sampled material belongs to decay-resistant tree species, which may persist in the landscape long after the death of the tree (Schafer, 1986). Traditional optical dating approaches (multi-grain and single-grain quartz and feldspar dating) are useful geochronological tools in some archaeological contexts (e.g., Junge et al., 2016). However, insufficient signal resetting causes significant challenges when these methods are applied to settings that are affected by slope processes (Fuchs and Lang, 2009), such as alpine dry-stone structures (e.g., Carrer and Angelucci, 2013).

Keeping these dating limitations in mind, rock surface luminescence has become a promising technique for dating archaeological contexts (e.g., Feathers et al., 2019; Galli et al., 2020; al Khasawneh et al., 2019; Sobbati et al., 2012a, 2015). The time of burial of rock surfaces can be dated using the dose-dependent, light-sensitive luminescence signal, which accumulates in feldspar and quartz grains during burial. Exposure to daylight bleaches the luminescence signal in the rock surface grains within minutes to hours (Habermann et al., 2000; Vafadadou et al., 2007), and longer periods of exposure bleach the luminescence signal further into the rock (Gliganic et al., 2019; Ou et al., 2018; Sobbati et al., 2011, 2012b). Once the rock is buried, the dose in the bleached part of the rock (i.e., the bleaching front) increases due to radioactive decay. However, information regarding the depth of the bleaching front remains, even after burial. This is a significant advantage over conventional optical dating techniques in settings where bleaching conditions are less favourable since cobbles that were sufficiently exposed can be identified by the existence of luminescence signal-depth plateaus which are not saturated.

This study aims to investigate if rock surface luminescence dating is a viable dating method for chronologically constraining site formation of buried dry-stone structures in upland environments. To do so, we apply feldspar infrared stimulated luminescence (IRSL) dating to rock surfaces from cobbles collected from two archaeological units within a dry-stone structure from the Italian Alps. We compare our optical dating results to new and previously published radiocarbon ages. Furthermore, we offer new insight into the annealing of IRSL and post-infrared-IRSL (pIR-IRSL) signals in rocks.

2. Regional setting and site description

The study area is located in Val Poré, a tributary valley on the south-facing slope of the tectonic valley Val di Sole, Trentino, Italy (Fig. 1A). Local metamorphic rocks belong to the Ulten unit, which, together with the Tonale unit, forms the Tonale nappe in the Upper Austroalpine domain. The Tonale nappe is mainly made up of paragneiss, with intercalations of orthogneiss and mafic lithologies (Dal Piaz et al., 2007). The paragneiss (TUG in Fig. 1A) shows medium-high polymeric metamorphism. The rock mainly features muscovite (both biotite and muscovite), quartz, sodium-rich feldspars, kyanites, and garnets. The paragneiss often displays compositional banding due to the alternation between micaceous layers and layers rich in quartz and feldspars. The orthogneiss (TUO in Fig. 1A) contains quartz, plagioclase, alkali feldspars, and micas (mostly biotite). The metamorphic overprinting of the Upper Austroalpine domain is polymeric and covers a prolonged time interval, which includes a Palaeozoic phase (mostly Variscan) and an Eoalpine, Cretaceous phase. The orthogneiss intercalations, and the banding in the paragneiss, are parallel to regional schistosity and consistent with regional-scale foliation referring to the Variscan orogeny (Dal Piaz et al., 2007). The geomorphology of Val Poré is mainly dominated by glacial and periglacial processes (see Angelucci et al., 2014). The head of Val Poré is a glacial cirque filled with coarse talus and, on the eastern side, an active rock glacier that mainly consists of gneissic boulders. Downslope of the cirque, the rock glaciers appear mostly inactive. Gravitational and periglacial slope processes are also visible. Grasslands occur below the rock glaciers (~2300 metres of elevation), exploited as grazing areas during the summer. Here podsols and cambisols (25–40 cm thick) cover the bedrock, moraine ridges, and relict rock glaciers. The landscape is affected by slope processes, most notably frost creep and gravitational slope deformations.

The chosen site for this study, MZ051S (Fig. 1B), is located at ~2260 m above sea level in Val Poré. It is currently being investigated as part of the Alpine Landscapes: Pastoralism and Environment of Val di Sole (ALPES) project (e.g., Carrer and Angelucci, 2013; Angelucci et al., 2014; Carrer and Angelucci, 2018). This site is interpreted as a livestock enclosure, delimited by a collapsed dry-stone wall which is partly embedded in the topsoil (Fig. 1B). The dimensions of the enclosure are approximately 41 × 17 m, with the longer axis positioned with a north–south orientation. Fieldwork at the site has uncovered a ~40 cm thick deposit which includes two archaeological units: US4a and US5a (Fig. 1C), both consisting of thin, poorly developed, buried A horizons. These horizons were developed from yellowish-brown silty loam (usually containing clasts of local gneiss), and later buried by colluvium derived from the erosion and re-deposition of former surface sediments and soil horizons, re-deposited from upslope of the site. Unit US4a yielded only scarce archaeological finds; several lithic and ceramic finds (knapped artefacts obtained from chert and potsherds) have been recovered from layer US5a (Angelucci et al., 2017). The units have previously been 14C dated (Table 1) to Middle and Early Bronze Age, respectively (Angelucci et al., 2017). New radiocarbon ages (COL6511.1.1-COL6514.1.1), measured at the CologneAMS facility of University of Cologne (Dewald et al., 2013), verify US5a as Early Bronze Age, while also establishing a more complex chronology for US4a with the surprisingly young 14C ages of 537–654 and 426–596 cal. AD. Younger and better preserved dry-stone structures have been surveyed in Val Poré and neighbouring tributary valleys (Carrer and Angelucci, 2013; Angelucci et al., 2014; Carrer and Angelucci, 2018). The largest of such structures (e.g., MZ001S, located at ~2260 m above sea level in Val Poré) typically consist of a hut and four enclosures. These structures are associated with historic pastoral land use (Carrer and Angelucci, 2013) and have been constructed using local lithologies, mostly from paragneiss. The archaeological finds associated with MZ005S (Dell’Amore et al., 2017; Medici et al., 2014), and three 14C samples (also from MZ005S) dated to the 7th, the 15th, and the 20th centuries AD (Angelucci and Carrer, 2015; Carrer and Angelucci, 2013), indicate that these still exposed structures were built between late Medieval to early Modern periods.
Fig. 1. (A) Geological mapping of the study area. Data visualisation: Geological Service of the Autonomous Province of Trento (Italy). (B) The landscape of Val Poré is dominated by grazed grasslands covering Quaternary sediments and gneissic bedrock. Gneissic boulders form a rock glacier, which southern snout is visible in the upper right corner. (C) Outline (dashed line) of MZ051S in Val Poré. The approximate location of the 2018 excavation is outlined (solid line) near the centre of the excavation. (D) The stratigraphic succession of MZ051S. Two archaeological units, US4a and US5a, have previously been described by Angelucci et al. (2017). C and D are modified after Angelucci et al. (2017). (E) Gneissic cobbles were excavated from the archaeological units inside MZ051S.

Table 1

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>Lab. ID</th>
<th>Sample</th>
<th>Unit</th>
<th>^{14}C (%)</th>
<th>Radiocarbon age (BP)</th>
<th>cal. AD/BC</th>
<th>Previously published in:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>COL6514.1.1</td>
<td>ID1216</td>
<td>US4a</td>
<td>−34</td>
<td>1476 ± 46</td>
<td>537-654 AD</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>COL6511.1.1</td>
<td>R868</td>
<td>US4a</td>
<td>−29</td>
<td>1550 ± 40</td>
<td>426-596 AD</td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>DSH6956</td>
<td>ID1145</td>
<td>US4a</td>
<td>−26</td>
<td>3225 ± 26</td>
<td>1532-1435 BC</td>
<td>Angelucci et al. (2017)</td>
</tr>
<tr>
<td>0.35</td>
<td>COL6513.1.1</td>
<td>R100</td>
<td>US5a</td>
<td>−22</td>
<td>3296 ± 48</td>
<td>1731-1452 BC</td>
<td></td>
</tr>
<tr>
<td>0.35</td>
<td>COL6513.1.1</td>
<td>ID1149</td>
<td>US5a</td>
<td>−24</td>
<td>3585 ± 46</td>
<td>2124-1773 BC</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>DSH6955</td>
<td>ID1146</td>
<td>US5a</td>
<td>−20</td>
<td>3459 ± 23</td>
<td>1880-1691 BC</td>
<td>Angelucci et al. (2017)</td>
</tr>
</tbody>
</table>
were prepared for AMS radiocarbon analysis using acid and alkali with a cooled Buehler Isomet 1000 precision saw. Charcoal pieces when the sides of the cobbles had been exposed in the past. The to minimise the effect of signalResetting, which might have occurred with a water-cooled Proxxon TBH 28124 diamond-tipped bench drill, or with MZ051S-3. Cobbles were cored parallel to their shortest axis (MZ051S-2, MZ051S-7, MZ051S-8) and orthogneiss (MZ051S-3). The cobbles originate from local outcrops of pre-Permian paragneiss (MZ051S-2, MZ051S-7 and MZ051S-8 from layer US5a (Table 2). The cobbles of intact cores difficult. We proceeded with two cobbles from each red-light condition due to their shape which would make extraction up to two days before sampling. After extraction, the cobbles were deemed inadequate for further preparation upon inspection in the centre of this cobble when preliminary luminescence-depth measurements (insets in Fig. 3A–B) were filtered through an interference filter (410 nm) and detected with an Electron Tube PDM 9107Q-AP-TTL-03 blue/UV sensitive photomultiplier tube. Sample-dependent test doses varied between 2.5 and 8.7 Gy. We aimed at keeping the test dose ≤100% of expected D. (determined by a dose test). A significant reduction in test dose–response (>40%) has been reported by Colarossi et al. (2018) for pIR-IRSL single grain data when applying a hot bleach at the end of the test dose cycle; results which are similar to those observed for our slices (Fig. 3C) when measured with IRSL protocol with a hot bleach at the end of the test dose cycle. To lessen this sensitivity change, Colarossi et al. (2018) proposed the use of a long, elevated IR stimulation (500 s at 225 °C) at the end of both the natural and test dose cycles to remove recuperation. Here, we use the low-temperature pIR-IRSL(150) protocol to prevent the sensitivity change between the natural and first test dose cycle (Fig. 3C). We measured additional slices from cobble MZ051S-2 with a pIR-IRSL(150) protocol (Table 3). We wanted to investigate the intensity of the optically less sensitive, high-temperature pIR-IRSL(290) signal (Kars et al., 2014) in the centre of this cobble when preliminary luminescence-depth measurement showed that it might have experienced heating.

Dose recovery tests were administered to three slices/chips per sample (bleached for 24 h in a Hönle solar simulator) to examine the ability of the SAR protocols to recover known beta doses of ~2.6 to 21.9 Gy. Arithmetic mean dose recovery ratios (Fig. C.1, Appendix) are reported with and without subtraction of the dose residuals (Fig. C.2, Appendix). Dose recovery ratios (measured/given dose) range between 0.97–1.06 for the IRSL(100) signal and are thus near unity after subtraction of the residual dose. Without the subtraction, recovered doses for the IRSL(50) signal slightly overestimate but are still within 10% of the given dose. We did not use the pIR-IRSL(150) signal to date our samples due to the mostly poor dose recovery, both with or without residual subtraction (ratio range with subtraction: 0.75–1.31; without subtraction: 1.10–1.37). IRSL(50) residual doses from bleached slices/chips were low (< 0.5 Gy) except for MZ051S-7 (1.09 ± 0.35 Gy). The measured residuals range for the pIR-IRSL(150) signal is between 1.1 ± 0.1 to 3.8 ± 0.3 Gy. Dose recovery ratios for the pIR-IRSL(290) protocol were measured after 300 s of heating at 450 °C. The dose recovery ratio for this protocol is acceptable at 1.09 ± 0.19.

3.3. Effective dose rate throughout the cobbles

The radionuclide concentrations (Table 4) in the cobbles and the surrounding sediments were measured with high-resolution gamma spectrometry with a germanium detector for ~42 h. One dose rate
sample per cobble (~200 grams each) was homogenised and allowed to rest for a minimum of three weeks to allow ^{228}Rn to reach equilibrium. For MZ051S-3, the majority of the cobble was crushed for dose rate measurements. For the other cobbles, cross-sections were cut to create representative subsamples. Radionuclide concentrations were converted to environmental dose rates with conversion factors reported by Cresswell et al. (2018). The average summer moisture content was calculated from moisture content upon sampling. The winter moisture content is assumed to be equal to the average saturated moisture content. We calculated the weighted average moisture content assuming three months of summer and nine months of winter, based on five soil samples. The moisture content in the cobbles is assumed to be negligible. We assume an average feldspar grain size of 400 μm for the cobbles. This is based on visual inspections of thin sections from previously collected rocks from the site. Depth-dependent, effective dose rates were calculated using the approach of Freiesleben et al. (2015), which uses the principle of superposition (Aitken, 1985) to scale the effective contribution of gamma and beta radiation to the cobbles based on infinite matrix dose rates derived from the sediments and the cobbles themselves. Attenuation factors of 1.89 and 0.01 for beta and gamma, respectively, were used to scale the attenuation of radiation (Aitken, 1985). The alpha radiation from the cobbles and surrounding sediments was not considered as the infinite matrix alpha dose rate was <4% of total dose rate in all samples, and thus, the effective alpha dose rate to 400 μm grains is considered to be negligible. The cosmic dose rate was assumed to be constant throughout the cobbles (Freiesleben, 1985). The alpha radiation from the cobbles and surrounding sediments was not considered as the infinite matrix alpha dose rate was <4% of total dose rate in all samples, and thus, the effective alpha dose rate to 400 μm grains is considered to be negligible. The cosmic dose rate was assumed to be constant throughout the cobbles (Freiesleben et al., 2015) and was calculated using the calc_CosmicDoseRate function from the R-package Luminescence (Burrow, 2019). Due to the shallow deposition depth, the function used data from Prescott and Hutton (1988), their Fig. 1) to estimate the soft and hard components of cosmic ray flux, and Prescott and Stephan (1982, their Eq. 1) to correct the cosmic component for altitude and latitude.

The internal potassium content of the feldspar grains within the cobbles was estimated with micro-X-ray fluorescence (μ-XRF), with a Bruker M4 Tornado μ-XRF spectrometer; an approach previously utilised by Rades et al. (2018). Relative element concentrations (potassium, calcium, aluminium, sodium, and silicon) were mapped on five slices per sample (Fig. D.1, Appendix). Visual comparison indicates that areas with relatively high concentrations of potassium align with the distribution of dark minerals (Fig. 2), which appear to have low concentrations of calcium and sodium. These darker grains are presumed to be micas, most likely biotites. We targeted feldspar grains by point measuring (spot size ~20 μm) the non-mica grains which showed high concentrations of potassium, aluminium, calcium or sodium; elements which are abundant in feldspar. The acquired XRF spectra were analysed using the Bruker M4 Tornado software. A combined approach of fundamental parameter analysis and type calibration (Flude et al., 2017) with a feldspar standard was used to quantify element concentration in the slices. The average potassium concentrations of the feldspar grains in all rocks (Table 4) indicate significantly lower concentrations than the commonly assumed $12.5 \pm 0.5\%$ (Huntley and Baril, 1997) for alkali feldspars.

3.4. Fitting of luminescence-depth profiles

We fitted the luminescence-depth profiles in R v. 3.6.1 with the nlst function from the stats package (R. Core Team, 2019). We applied the model (Table 5) developed by Freiesleben et al. (2015) to discern between exposure and burial events in our luminescence-depth profiles. The model uses the luminescence intensity ($L(x)$), the saturated luminescence intensity (L_0), and the light attenuation coefficient (μ). Also, the model includes the exposure time (t_e) and the subsequent burial time (t_b). The rate of electron trapping: $F(x) = \frac{1}{\mu x}$ is included in the model, in which D is the effective dose rate at depth x, and D_b is the characteristic dose. Average IRSL$_{50}$ luminescence-depth profiles were calculated from the individual cores. Individual μ values were determined for each surface by fitting; this, to allow for spatial variations of mineralogy within each of the cobbles. The sample-dependent average D_b was constrained by exponential fitting of growth curves (highest irradiated dose >2800 Gy) and is assumed to be constant for all cores. The parameter σ_D describes the rate of emptying of traps based on the product of the photon flux and the photoionisation cross-section for $x = 0$. Since no exposure age calculations were attempted through fitting, σ_D was combined with t_e. No weights were applied during fitting. Fitting param are reported in Table 6 and fitting residuals are presented in Fig. C.3 (Appendix).

| Table 3 | Overview of the low-temperature pIR-IRSL$_{150}$ and the pIR-IRSL$_{290}$ SAR protocols. The pIR-IRSL$_{290}$ protocol was applied to all rocks. The pIR-IRSL$_{290}$ protocol was only applied to MZ051S-2 to investigate the depth of resetting for the harder-to-bleach pIR-IRSL$_{290}$ signal. The IRSL$_{150}$ signal in pIR-IRSL$_{290}$ protocol was not used for any analysis since high preheat temperatures have shown to cause underestimation in the IRSL$_{150}$ signal (Li and Li, 2011a). |
| Table 4 | Summary of radionuclide concentrations in the cobbles and the surrounding sediments, and the attenuated infinite matrix dose rates. |

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Signal</th>
<th>pIR-IRSL$_{150}$</th>
<th>pIR-IRSL$_{290}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Irradiation</td>
<td>Irradiation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Preheat (180 °C for 100 s)</td>
<td>Preheat (320 °C for 100 s)</td>
<td>Le (IRSL${150}$)</td>
<td>Le (pIR-IRSL${290}$)</td>
</tr>
<tr>
<td>3</td>
<td>Pause (30 s)</td>
<td>Pause (30 s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>IRSL (50 °C for 300 s)</td>
<td>IRSL (50 °C for 300 s)</td>
<td>La (pIR-IRSL${150}$)</td>
<td>La (pIR-IRSL${290}$)</td>
</tr>
<tr>
<td>5</td>
<td>IRSL (150 °C for 300 s)</td>
<td>IRSL (290 °C for 300 s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Irradiation</td>
<td>Irradiation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Preheat (180 °C for 100 s)</td>
<td>Preheat (320 °C for 100 s)</td>
<td>Te (IRSL${150}$)</td>
<td>Te (pIR-IRSL${290}$)</td>
</tr>
<tr>
<td>8</td>
<td>Pause (30 s)</td>
<td>Pause (30 s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>IRSL (50 °C for 300 s)</td>
<td>IRSL (50 °C for 300 s)</td>
<td>Ta (IRSL${150}$)</td>
<td>Ta (pIR-IRSL${290}$)</td>
</tr>
<tr>
<td>10</td>
<td>IRSL (150 °C for 300 s)</td>
<td>IRSL (290 °C for 300 s)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sample type</th>
<th>Water content (%)</th>
<th>Radionuclide concentration</th>
<th>Dose rate (Gy ka$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MZ051S-2 Cobble</td>
<td>0</td>
<td>1.96 ± 0.11</td>
<td>6.46 ± 0.42</td>
<td>1.11 ± 0.01</td>
</tr>
<tr>
<td>MZ051S-3 Cobble</td>
<td>0</td>
<td>2.88 ± 0.16</td>
<td>12.25 ± 0.74</td>
<td>0.89 ± 0.01</td>
</tr>
<tr>
<td>MZ051S-7 Cobble</td>
<td>0</td>
<td>2.34 ± 0.13</td>
<td>10.76 ± 0.63</td>
<td>1.00 ± 0.01</td>
</tr>
<tr>
<td>MZ051S-8 Cobble</td>
<td>0</td>
<td>0.69 ± 0.04</td>
<td>2.05 ± 0.14</td>
<td>0.52 ± 0.01</td>
</tr>
<tr>
<td>MZ051S-4a Sediment</td>
<td>68 ± 6</td>
<td>4.68 ± 0.25</td>
<td>11.88 ± 0.62</td>
<td>2.49 ± 0.03</td>
</tr>
<tr>
<td>MZ051S-5a Sediment</td>
<td>68 ± 6</td>
<td>5.51 ± 0.29</td>
<td>10.39 ± 0.62</td>
<td>2.17 ± 0.03</td>
</tr>
</tbody>
</table>
Fig. 3. Representative dose response curves for (A) MZ051S-2 (paragneiss) at ~12 mm depth from the top surface, and (B) MZ051S-3 (orthogneiss) at ~3 mm depth from the bottom surface. The insets show the natural IRSL decay curve for the same slices. (C) Comparison of test dose response (\(T_x/T_n\)) from a paragneiss rock from Val di Sole, measured over several SAR cycles. The low-temperature pIR-IRSL protocol show significantly less change in test dose sensitivity, compared to an IRSL protocol with a hot bleach at the end of each cycle.

Table 5
Model developed by Freiesleben et al. (2015), used to fit burial and exposure events in the cobbles.

<table>
<thead>
<tr>
<th>Event</th>
<th>Fitting model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial burial</td>
<td>(L_0(x) = 1)</td>
</tr>
<tr>
<td>First exposure E1</td>
<td>(L_1(x) = L_0(x)e^{-t_1/\tau_x}e^{-\sigma_{\phi_1}x})</td>
</tr>
<tr>
<td>First burial B1</td>
<td>(L_2(x) = (L_1(x) - 1)e^{-t_2/\tau_x}e^{-\sigma_{\phi_2}x} + 1)</td>
</tr>
<tr>
<td>Second exposure E2</td>
<td>(L_3(x) = L_2(x)e^{-t_3/\tau_x}e^{-\sigma_{\phi_3}x})</td>
</tr>
</tbody>
</table>

3.5. Age calculations

The burial age can be calculated by either deriving the \(t_b\) parameter from the modelled exposure history of each rock surface (e.g., Freiesleben et al., 2015; al Khasawneh et al., 2019) or by estimating the burial dose by measuring \(D_e\) in slices from depths in which the signal was reset prior to burial (e.g., al Khasawneh et al., 2019; Rades et al., 2018; Sohbati et al., 2015). For our cobbles, we only consider the second approach reliable because we cannot detach the \(t_\phi\) and \(\sigma_{\phi_0}\) parameters, we have significant intra-core variations in our luminescence-depth profiles, and, as noted by al Khasawneh et al. (2019), \(t_b\) uses average \(D_0\) values rather than individual \(D_0\) values derived from dose–response curves from individual slices.

Instead, we calculated burial ages (ka before AD 2018) by dividing arithmetic mean \(D_e\) values derived from measuring slices/chips with depth-corrected dose rates. To identify which depths were suitable to use for \(D_e\) calculations (i.e. the slices had been sufficiently reset before burial), we applied the approach described by al Khasawneh et al. (2019). They proposed using the modelled luminescence-depth profiles to calculate a ratio between the pre-burial (E1; Table 5) and burial profiles (B1; Table 5). This ratio (\(E1/B1\)) represents the proportion of the burial dose, which is a pre-burial dose residual. Significant proportions of pre-burial dose indicate insufficient bleaching, which is undesirable for dating. We consider depths for which pre-burial dose
was modelled to constitute ≤1% \((E_1/B_1 \leq 0.01)\) of the burial dose to have been fully reset. Therefore, burial ages were calculated from slices that were extracted from such depths. All luminescence ages are reported with 1-\(\sigma\) errors and measurement uncertainties.

3.6. Fading corrections

Anomalous fading (Wintle, 1977; Spooner, 1994) was measured using two different approaches. The first is the standard approach (Auclair et al., 2003) for sediment dating of feldspars, during which samples are irradiated and preheated in the laboratory, and the signal intensities are measured after different storage periods. For each cycle, the slices were irradiated with \(\sim 8.9\) Gy and storage periods ranged between prompt (i.e. no pause) to \(\sim 17–33\) h. For MZ051S-7, we added a measurement of signal loss after approximately 7 months of storage. Three slices per cobble were measured and cobble-specific, mean g-values were calculated from the results with the analyse_FadingMeasurement function (Kreutzer and Burrow, 2020) in R. The mean g-values \(g_{\text{meas}}\) were calculated to be \(2.12 \pm 0.67, 2.74 \pm 0.57, 4.61 \pm 0.35\) and \(1.16 \pm 0.58\) %/decade for MZ051S-2, MZ051S-3, MZ051S-7 and MZ051S-8, respectively (Fig. C.4, Appendix). Also, we measured g-values for four slices (storage up to 8 months) for the pIR-IRSL\(_{290}\) protocol applied to MZ051S-2 (fading=1.63 \(\pm\) 0.51%/decade). Ages were subsequently corrected using the procedure of Huntley and Lamothe (2001) with the \(R\) function calc_FadingCorr (Kreutzer, 2020).

The second approach uses the ratio between the intensity of the field saturation levels from the centre of the cobbles and the laboratory saturation level to correct for signal fading (Rades et al., 2018). The rationale behind this approach is that the field saturated signal should be in saturation; hence, the difference between the field saturated signal and the signal irradiated to saturation in the laboratory is assumed to arise from fading. The normalised natural signal \(L_{\text{natt}}\) and the saturated laboratory doses \(L_{\text{sat}}\) were measured for three slices per rock (doses \(>2800\) Gy), and the average ratios were used to correct ages. The fading ratios \(L_{\text{natt}}/L_{\text{sat}}\) are \(0.57 \pm 0.07\) for MZ051S-3, \(0.44 \pm 0.10\) for MZ051S-7, and \(0.52 \pm 0.09\) for MZ051S-8. This approach did not apply to MZ051S-2 since no slices were in saturation (see Section 4.1). Thus, for MZ051S-2, we were restricted to use only the conventional approach for fading correction since we lacked a field saturated signal to compare with.

4. Luminescence-depth profiles and burial ages

4.1. Luminescence-depth profiles

Here, we present IRSL\(_{50}\) \(L_n/T_n\) data from individual cores as luminescence-depth profiles (Figs. 4 and 5). The depth of resetting of the IRSL\(_{50}\) signal in the cobbles varies between different cobbles and surfaces. The luminescence-depth profiles from MZ051S-3 (Fig. 4A) demonstrate significantly larger \(L_n/T_n\) values at the centre, compared...
to the top or bottom surface. The signal in the outer millimetres at the top surface has been bleached to <1% of the level measured in the centre of the cobble (field saturation). At ~2 mm (core 6) or 3.5 mm (core 7) of depth, \(L_{\text{top}}/T_{\text{a}} \) is >1%. \(L_{\text{top}}/T_{\text{a}} \) increases deeper into the cobble until field saturation is reached at ~7.5 mm of depth. At the bottom surface of MZ051S-3, all cores demonstrate a \(L_{\text{top}}/T_{\text{a}} \) plateau at between 1%–2% of field saturation until ~5 mm (25–30 mm in Fig. 4A) of depth. Between ~5–10 mm of depth (20–25 mm in Fig. 4A) \(L_{\text{top}}/T_{\text{a}} \) rises towards field saturation. Here, the luminescence-profiles differ between some of the cores; most notably the deeper bleaching front of core 4 compared to the other cores, and the shallower bleaching fronts of cores 1 and 5 compared to cores 2 and 3. At the top surface, cores 6 and 7 also demonstrate some scatter at ~2–5 mm of depth. The luminescence-depth profiles (IRSL_{50} data) from MZ051S-7 (Fig. 4B) demonstrate more shallow resetting compared to MZ051S-3. The luminescence-depth profiles for MZ051S-7 are mostly based on measurements of chips, not on whole slices, and these measurements demonstrate considerable intra-core variations between chips from the same depth within a single core. The bleaching front is shallow at the top surface since \(L_{\text{top}}/T_{\text{a}} \) is only below field saturation at the outer ~4 mm of the rock. At the bottom surface, field saturation is reached already in the second slice. The surface slice at the bottom has a \(L_{\text{top}}/T_{\text{a}} \) of ~8% of field saturation. In the top surface of MZ051S-8, \(L_{\text{top}}/T_{\text{a}} \) (Fig. 4C) increases from the surface, until ~4 mm of depth. Like for MZ051S-7, the luminescence-depth profiles of MZ051S-8 are mostly based on chips, which demonstrate similar intra-core variations. At the top surface of MZ051S-2, \(L_{\text{top}}/T_{\text{a}} \) (Fig. 5) from IRSL_{50} measurements increases without any obvious plateau from the surface until ~5 mm of depth. Here, \(L_{\text{top}}/T_{\text{a}} \) plateaus, through the entire remaining depth of the cobble, until the bottom surface. The \(L_{\text{top}}/T_{\text{a}} \) values from this plateau are surprisingly low, considering the thickness (70 mm) of MZ051S-2. Despite using a test dose of only ~4.3 Gy, the maximum \(L_{\text{top}}/T_{\text{a}} \) for the IRSL_{50} signal we observe in any slice at any depth is < 3.0. The arithmetic mean \(L_{\text{top}}/T_{\text{a}} \) from this plateau is ~1.3; assuming that field saturation \(L_{\text{top}}/T_{\text{a}} \) (measured with the same test dose) from the lithologically similar MZ051S-7 is applicable to MZ051S-2, then this is only ~4% of the expected \(L_{\text{top}}/T_{\text{a}} \) if MZ051S-2 had a saturated signal plateau. Due to the lack of a saturated signal level, Fig. 5 is plotted without any normalisation. We measured \(L_{\text{top}}/T_{\text{a}} \) for the optically more stable pIR-IRSL_{290} signal in four slices from the bottom surface, and seven slices from the centre of MZ051S-7. Overall, these \(L_{\text{top}}/T_{\text{a}} \) values are comparable (Fig. 5) to those determined from IRSL_{50} measurements.

4.2. Fitting

Here, we present fitting of averaged luminescence-depth profiles (for the IRSL_{50} signal) (Fig. 7) and their corresponding model parameters (Table 6). No fitting is attempted for MZ051S-2 since \(L_{\text{top}}(x) \) is not known for this cobble. The top surface for MZ051S-3 is best fitted with two exposure events (E1_{top} and E2_{top}), separated by a burial event (B1_{top}). The bleaching front of E1_{top} appears to have reached ~4 mm of depth before burial during B1_{top}. The second exposure event E2_{top} appears to be shorter than E1_{top}, and only the outer ~2.5 mm appear to have been affected. The fitting of the bottom surface is challenging due to the large inter-core variations in \(L_{\text{top}}/T_{\text{a}} \) at depths >5 mm. Visual inspections of the luminescence-depth profiles from the individual cores clearly show a single exposure event, followed by a single burial event. Keeping this in mind, we fit the averaged luminescence-depth profile for the bottom surface for a single exposure event (E1_{bottom}) and for a single burial event (B1_{bottom}) despite the poor fit at depths >6 mm from either surface (Fig. C3, Appendix). The bleaching front of E1_{bottom} reset the signal <1% of \(L_{\text{top}}(x) \) to ~7 mm of depth from the bottom surface. While there is no ambiguity regarding the thoroughness of resetting on the bottom surface of MZ051S-3, the ratio E1_{bottom}/B1_{bottom} (Fig. 7A2) show that B1_{bottom} contains no significant pre-burial dose at depths between ~23–30 mm. The severe resetting (<1%) of the IRSL_{50} signal in the top surface of MZ051S-3 suggests that no burial age can be calculated from \(D_{e} \) values from slices located at <3 mm of depth. However, since the fitting indicates the presence of a weak burial plateau between 3 mm and 4 mm we will proceed to use \(D_{e} \) values from slices extracted from this depth to calculate a burial age for B1_{top}.

The top surface of MZ051S-7 has been fitted for an exposure event (E1_{top}), followed by a burial event (B1_{top}). While the observed signal plateau at this surface is very short, the IRSL_{50} signal appears to have been sufficiently reset during E1_{top} to create a bleaching front which reached >0.5 mm. The ratio E1_{top}/B1_{top} (Fig. 7B2) shows that <1% of the observed dose was present before burial. Thus, despite the weak signal plateau of only 2 mm, we proceed to calculate a burial age from the top surface of MZ051S-7. The modelled pre-burial luminescence-depth profile from the bottom surface predicts that signal resetting was insufficient the last time this surface was exposed to create a bleaching front even at the very surface of the cobble. This suggests that no information regarding the last burial is available from the bottom surface of MZ051S-7. For MZ051S-8 (Fig. 7C1), we fit the top surface for an exposure event (E1_{top}) and a subsequent burial event (B1_{top}). Sufficient bleaching appears to have occurred during E1_{top} to reset the IRSL_{50} signal beneath the surface. The subsequent B1_{top} event should therefore date the last burial of this rock surface. The E1_{top}/B1_{top} ratio from the fitting (Fig. 7C2) indicates that ~1% of the observed dose is

<table>
<thead>
<tr>
<th>Cobble</th>
<th>Surface</th>
<th>(D_{e}) (Gy)</th>
<th>(\mu) (mm)</th>
<th>(r_{e}/r_{m,\text{top}})</th>
<th>(r_{e}/r_{m,\text{bottom}})</th>
<th>(t_{e}) (ka)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MZ051S-3</td>
<td>Top</td>
<td>430 ± 30</td>
<td>0.91 ± 0.16</td>
<td>250 ± 261</td>
<td>4 ± 24</td>
<td>2 ± 5</td>
</tr>
<tr>
<td>MZ051S-3</td>
<td>Bottom</td>
<td>430 ± 30</td>
<td>0.65 ± 0.07</td>
<td>872 ± 699</td>
<td>2 ± 2</td>
<td></td>
</tr>
<tr>
<td>MZ051S-7</td>
<td>Top</td>
<td>615 ± 23</td>
<td>0.86 ± 0.13</td>
<td>10 ± 4</td>
<td>7 ± 9</td>
<td></td>
</tr>
<tr>
<td>MZ051S-7</td>
<td>Bottom</td>
<td>615 ± 23</td>
<td>1.18 ± 0.30</td>
<td>4 ± 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MZ051S-8</td>
<td>Top</td>
<td>467 ± 19</td>
<td>0.93 ± 0.20</td>
<td>9 ± 5</td>
<td>35 ± 17</td>
<td></td>
</tr>
</tbody>
</table>

Table 6: The parameters acquired from fitting luminescence-depth profiles.
pre-burial in the surface slice. Therefore, a burial age from the surface slices should not be affected by inherited dose from a previous event.

4.3. Burial ages

Burial ages for the four cobbles are presented in Table 7. Considering the similarity in L_n/T_n in the non-saturated plateau (~5–70 mm) in MZ051S-2, we interpret this to represent an isochronous resetting event which can be dated using SAR protocols (Table 3). Since this plateau is manifested over significant depth-distances in the cobble (~65 mm), we would expect the effective dose rate to vary between some of the slices. Therefore, we calculate the age for each slice individually before averaging the age over the entire plateau, instead of using the approach described in Section 3.5. For the IRSL$_{50}$ signal, we calculate an arithmetic mean age from 62 slices collected varying depths of the plateau (Fig. 6A). The same approach was used to calculate pIR-IRSL$_{290}$ ages from five additional slices (Fig. 6A). The IRSL$_{50}$ uncorrected ages throughout this signal plateau range between 1.4 and 4.6 ka, with an arithmetic mean age estimate of 2.23 ± 0.61 ka. The uncorrected pIR-IRSL$_{290}$ ages range between 2.00 and 3.19 ka, with the arithmetic mean...
age estimate of 2.68 ± 0.55 ka. Fading correction with g-values (Auclair et al., 2003; Huntley and Lamothe, 2001), yield corrected ages of 2.64 ± 0.75 ka (1370 BC–130 AD) and 3.03 ± 0.67 ka (1680–340 BC) for the IRSL\textsubscript{50} and IRSL\textsubscript{290} protocols, respectively. The luminescence-depth profile from the outer ~4 mm of the top surface of MZ051S-2 (Fig. 4A) indicates that some resetting of the signal has occurred after the previously described resetting event. We measured the D\textsubscript{e} of one slice from ~2 mm depth to date this event. The resulting IRSL\textsubscript{50} age estimate for this slice yields an uncorrected burial age of 0.85 ± 0.10 ka and a corrected burial age of 1.00 ± 0.13 ka (890–1150 AD). We calculate the burial age from two slices (3–4 mm of depth) from the top surface of MZ051S-3 which yields an uncorrected arithmetic mean age of 1.08 ± 0.08 ka. For the bottom surface, we calculate the arithmetic mean IRSL\textsubscript{50} age of five slices from ~2 mm of depth. The uncorrected mean age is 0.86 ± 0.05 ka. When corrected with the measured g-value, the top surface dates to 1.34 ± 0.13 ka (550–810 AD), and the bottom surface dates to slightly younger: 1.05 ± 0.09 ka (880–1060 AD). Fading corrections with the \(L_{\text{sat}} / L_{\text{sat}} \) fading ratio yields older ages of 1.90 ± 0.24 ka (120 BC–360 AD) for the top surface and 1.51 ± 0.18 ka (330–690 AD) for the bottom surface. For MZ051S-7, we calculate a burial IRSL\textsubscript{50} age by measuring D\textsubscript{e} measurements on three intact surface slices. Age calculations yield an uncorrected burial age of 2.19 ± 0.24 ka. Again, the fading-corrected ages vary depending on which fading correction method we apply. Fading correction with g-value yields an age of 3.11 ± 0.37 ka (1460–720 BC), compared to the considerably older age of 4.99 ± 0.51 ka (3480–2460 BC) with the \(L_{\text{sat}} / L_{\text{sat}} \) ratio correction method. D\textsubscript{e} measurements from 12 surface chips from the top surface of MZ051S-8 yield an uncorrected arithmetic mean age of 16.9 ± 1.9 ka; much older than the expected age. Fading correction with g-value increases the age estimate to 18.7 ± 2.3 ka. Correcting the age estimate with \(L_{\text{sat}} / L_{\text{sat}} \) ratio increases the age further to 38.3 ± 9.7 ka.

5. Bleaching experiment

The results presented in Section 4 show that while at least some resetting has occurred in all cobbles, the bleaching fronts, especially for MZ051S-7 and MZ051S-8, are shallow. The \(E_{1\text{top}} / B_{1\text{top}} \) ratios for both these cobbles indicate that the pre-burial dose constitutes significant proportions of the buried dose already at 0.5 mm of depth (see insets in Fig. 7B–C). We would expect deeper bleaching in rock surfaces that should have experienced significant exposure. One possible explanation for these shallow bleaching fronts is erosion. While erosion of rock surfaces has been shown to affect the depth of the bleaching front (Sohbati et al., 2018; Lehmann et al., 2020), in the given case, we cannot quantify erosion rates since we lack independent dates for how long these surfaces were exposed before burial. An alternative explanation for shallow depth-profiles is strong attenuation of light due to lithological parameters (e.g., Ou et al., 2018). We investigate the effect of light penetration on the resetting of the IRSL\textsubscript{50} signal in MZ051S-7 and which potential effect the mineral orientation may have on the rate of resetting. The paragneisses from Val Poré have a distinct orientation of mineral foliation (Fig. 8), and dark mica minerals are common. The occurrence of dark minerals has shown to block the bleaching of the luminescence signal in minerals beneath (Meyer et al., 2018). Visual inspection of a thin section from a paragneiss from the relevant geological unit clearly shows mica grains surrounding the more translucent quartz and feldspar grains (Fig. B.2, Appendix). If the attenuation of light penetration into the rock is weaker at surfaces with planes perpendicular to the foliation (with a lower surface area
covered by mica minerals), then these surfaces should be targeted during sampling. Unbleached surfaces were exposed on a rooftop of the University of Cologne, Germany, during the summer of 2019. We sampled the exposed surfaces after 0, 1, 3, 8, and 32 days and subsequently measured the luminescence-depth intensity of two cores for each surface and each period of exposure (Fig. 9). The signal is, as predicted, in saturation throughout the cores that have not been exposed (0 days of exposure). The surface slices in all other cores have been bleached <5% of saturated IRSL. \(\frac{L_{m}}{T_a} \) is less than 1% in the surface slice after three days at the rooftop in optimal bleaching conditions (e.g., a fresh surface, many hours of daylight in sunny weather, and no coverage of sediments or lichen). After 32 days of exposure has \(\frac{L_{m}}{T_a} \) been reset to <0.5% of saturation at the surface. The IRSL\(_{50}\) signal reaches 95% of field saturation between 3.2 mm (1 day of exposure) and 4.1 mm (32 days of exposure) of depth in the cores cut parallel to the foliation. This is similar to cores cut perpendicular to the foliation for which the signal reaches field saturation between 3.5 mm (1 day of exposure) and 4.3 mm (32 days of exposure). Our experiment shows that residual IRSL\(_{50}\) signals in the surface slice in paragneiss rock surfaces from Val di Sole can be expected to be beneath 1% of field saturation after three days of exposure. Both surfaces did bleach during exposure; however, resetting appears to occur slightly quicker in the surface cut perpendicular to foliation. It is not possible, based on our experiment, to assert if the shallow bleaching profiles observed in the natural paragneisses are due to erosion or insufficient light penetration, but simulated profiles (Fig. 10) indicate that exposure periods longer than a decade would bleach the signal to 5 mm or more.

6. Discussion

6.1. Signal resetting in the cobbles

Rock surface luminescence dating of buried cobbles is only possible if the luminescence signals can be reset during exposure to light or heat. A previous study by Ou et al. (2018) demonstrated little or no depletion in IRSL\(_{50}\) and pIR-IRSL signals in some lithologies during lengthy exposure. Three of the cobbles (MZ0515-3, MZ0515-7, MZ0515-8) presented in this paper demonstrate significantly lower (approximately one order of magnitude or more) \(\frac{L_{m}}{T_a} \) towards the edges of the cobbles, compared to their respective centres. This, together with the data presented in Fig. 9, shows that some resetting in the outer millimetres of our cobbles will occur if the surfaces are exposed for at least four weeks. The resetting appears to occur even quicker in MZ0515-3, based on the observed resetting (\(E_{z0} \)) of the top surface, which we interpret to have occurred while the surface was exposed in the excavation; a reasonable assumption since the cobble was completely covered before being excavated. Overall, MZ0515-3 displays considerable inter-core variations for the depth of resetting. These variations become apparent when we fit the averaged luminescence-depth profiles with the Freiesleben et al. (2015) model. Fitting of an average luminescence-depth profile is challenging when fitted with average \(\mu \) and \(t_{IRSL} \) values since these parameters do not consider small-scale mineralogical variation or uneven spatial erosion of the rock surface. Spatially uneven light attenuation due to the presence of darker minerals is a problem in banded metamorphic rocks (Meyer et al., 2018); this is likely affecting our cobbles too.

The outer 0.5 mm from the top surface of MZ0515-7 appears to have been bleached before burial, which is demonstrated by the \(E_{1}/B1 \) ratio (Fig. 7B.2) <0.1. This is a shallow luminescence-depth profile considering that simulated luminescence-depth profiles (Fig. 10) indicate that exposure periods longer than one year would bleach the signal 2 mm into the rock or more. While we cannot be certain regarding the length of exposure of the top surface of MZ0515-7, the formation of an A horizon (US5a) suggests extended exposure of this unit before being buried by colluvium. The luminescence-depth profile of MZ0515-8 displays a similar pattern with a short bleaching front. Erosion would likely have shortened the bleaching front of the luminescence-depth profile of these two cobbles if they were exposed for extended periods (e.g., one year or longer).

The measured chips from MZ0515-7 show significant intra-core variation for the luminescence intensity, for which the underlying reason is currently not understood. To circumvent the problem of intra-core variations, we exclusively derive the burial age of the top surface of MZ0515-7 from three intact surface slices. The bottom surface of

Table 7

<table>
<thead>
<tr>
<th>Sample</th>
<th>Protocol</th>
<th>Part of rock</th>
<th>Dose rate</th>
<th>g-value</th>
<th>Fading ratio</th>
<th>Mean D0 (Gy)</th>
<th>n</th>
<th>Uncorr. age (ka)</th>
<th>Corr. age (ka)</th>
<th>Corr. age (AD/BC)</th>
<th>Corr. age (AD/BC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MZ0515-2 IRSL50</td>
<td>Top</td>
<td>2.74 ± 0.06</td>
<td>0.06 2.05 0.55</td>
<td>2.28 ± 0.05</td>
<td>1.00 ± 0.13</td>
<td>890-1150 AD</td>
<td>1</td>
<td>0.85 ± 0.10</td>
<td>1.00 ± 0.13</td>
<td>120 BC-360 AD</td>
<td>1680-340 BC</td>
</tr>
<tr>
<td>MZ0515-2 pIR-IRSL50</td>
<td>Centre</td>
<td>2.74 ± 0.06</td>
<td>0.06 2.05 0.55</td>
<td>5.93 ± 1.19</td>
<td>2.64 ± 0.75</td>
<td>1170 BC-130 AD</td>
<td>62</td>
<td>2.23 ± 0.61</td>
<td>2.64 ± 0.75</td>
<td>120 BC-360 AD</td>
<td>1680-340 BC</td>
</tr>
<tr>
<td>MZ0515-3 IRSL50</td>
<td>Top</td>
<td>2.85 ± 0.06</td>
<td>0.06 2.05 0.55</td>
<td>7.11 ± 1.38</td>
<td>3.03 ± 0.67</td>
<td>550-810 AD</td>
<td>5</td>
<td>2.68 ± 0.55</td>
<td>3.03 ± 0.67</td>
<td>120 BC-360 AD</td>
<td>1680-340 BC</td>
</tr>
<tr>
<td>MZ0515-3 IRSL50</td>
<td>Centre</td>
<td>2.85 ± 0.06</td>
<td>0.06 2.05 0.55</td>
<td>3.03 ± 0.21</td>
<td>1.34 ± 0.13</td>
<td>120 BC-360 AD</td>
<td>2</td>
<td>1.08 ± 0.08</td>
<td>1.34 ± 0.13</td>
<td>120 BC-360 AD</td>
<td>1680-340 BC</td>
</tr>
<tr>
<td>MZ0515-7 IRSL50</td>
<td>Top</td>
<td>2.73 ± 0.06</td>
<td>0.06 2.05 0.55</td>
<td>4.61 ± 0.34</td>
<td>2.41 ± 0.13</td>
<td>3480-2460 BC</td>
<td>3</td>
<td>2.19 ± 0.24</td>
<td>3.11 ± 0.37</td>
<td>1460-720 BC</td>
<td>3480-2460 BC</td>
</tr>
</tbody>
</table>

*Integrated over 0 to 0.7 mm of depth.
*Errors include standard error (1σ).
*Fading correction with g-value (Huntley and Lamothe, 2001).
*Fading correction calculated by dividing uncorrected age by fading ratio.

![Fig. 10. Modelled luminescence-depth profiles, simulated (dashed lines) for different exposure durations for MZ0515-7. The parameters \(\mu \) (1.42 ± 0.18 mm\(^{-1}\)) and \(T_{IRSL} \) (333 ± 158 x\(^{-1}\)) were derived by fitting (solid line) the signal profile (non-weighted) from a surface exposed on the rooftop in Cologne (Fig. 9, 32 days of exposure of surface cut parallel to the mica foliation) with the model: \(I(t) = \sigma_0 \exp(-\mu t) \).](image-url)
MZ051S-7 was insufficiently bleached or eroded before burial and thus, does not provide significant information regarding the cobbles’ history. The lack of a saturated IRSL$_{50}$ (or pIR-IRSL) signal plateau throughout MZ051S-2 is an interesting and unexpected observation. The extensive period between the cooling of the minerals after the rock formation and sampling is well beyond the saturation limit for any luminescence signal, and thus, the electron traps in the mineral crystals in the centre of the rock must have been emptied during a later event. There is some scatter observed in the luminescence-depth profile, especially around 50 mm of depth (Fig. 4A). This area of scatter appears to coincide with a mineralogical change towards a more prominent foliation of dark minerals (Fig. 6). Possibly, these darker areas represent an area with a higher dose rate. It is unlikely that these outliers represent a different event than the other slices from the centre of MZ051S-2. None of them appears to be close to saturation, and they do not form a visible plateau. Hence, despite this scatter, we interpret the luminescence-depth profile presented in Fig. 4A as an isochronous dose plateau (excluding the top ~5 mm). Therefore, a resetting event must, at some point in the past, have depleted the luminescence signals throughout the entire cobbles. Complete optical resetting of the luminescence signals throughout MZ051S-2 during light exposure is unlikely. When we model the rate of resetting of the IRSL signal in MZ051S-7 (i.e. a rock of similar lithology) with the model by Sohbati et al. (2012c), the simulated profiles indicate that optical resetting to the centre of the cobbles is not possible (Fig. 10), even if the rock surface experienced no erosion during exposure. Furthermore, the resetting of the pIR-IRSL$_{290}$ signal within the centre of the cobbles by optical resetting is even more unlikely, considering the hard-to-bleach character of the pIR-IRSL$_{290}$ signal demonstrated by laboratory bleaching experiments (Kars et al., 2014) and published pIR-IRSL$_{290}$-depth profiles from cobbles (Freiesleben et al., 2015). In contrast, heat could effectively reset both the IRSL$_{50}$ and the pIR-IRSL$_{290}$ signals. Previous investigations of thermal stability of the IRSL$_{50}$ signal with pulse annealing (Murray et al., 2009; Li and Li, 2011b; Thomsen et al., 2011) have demonstrated that the IRSL$_{50}$ signal is thermally reset by short exposures (60 s or less) to temperatures >450 °C. Elevated temperature pIR-IRSL signals are more thermally stable (Li and Li, 2011b; Thomsen et al., 2011), but do nevertheless deplete at temperatures >550 °C (Thomsen et al., 2011). A thermal reconstruction of a prehistoric hearth by Brodaric et al. (2012) indicated that such a feature could reach temperatures >600 °C. No hearth has so far been discovered during excavations in Val Poré, but fire has likely been present at the site. This is demonstrated by the charcoal fragments and fire modified artefacts, collected from the archaeological units (Angelucci et al., 2017). While further investigations of the thermoluminescence characteristics of MZ051S-2 would be necessary to determine the duration and temperature of the heating events, the complete resetting throughout the cobbles would require extensive heat during longer periods, e.g., in a hearth, or, perhaps, during a forest fire. However, at our site, no other cobbles show any signs of resetting in the middle of the cobbles. The isolated observation of extreme resetting in MZ051S-2 indicates selective heating, unlikely to occur during a forest fire. Therefore, we find that the resetting of the centre-bottom part of MZ051S-2 is analogous to a heating event which most likely was induced by human activities at the site during the Late Bronze Age or during the Iron Age. We observe no signs of any subsequent resetting event on the bottom surface of the cobbles, which indicates that the bottom surface did not see significant exposure following the heating. This interpretation implies lengthy exposure of the top surface of MZ051S-2 as part of the topsoil; such exposure should bleach to over 5 mm of depth as is indicated by the simulation exposure periods presented in Fig. 10. The bleached (and subsequently buried) profile at the top surface is, while deeper than the bleached profile of e.g., MZ051S-7, slightly shallower than expected for such a long exposure. Erosion is also here a likely but untested explanation.

6.2. Fading estimates

For our cobbles, the application of g-value corrections (Huntley and Lamothe, 2001) yields significantly different ages compared to the L_{nat}/L_{sat} ratio (Rades et al., 2018). All conventional IRSL$_{50}$ g-values (~2–5%/decade) do not differ significantly to the average g-values reported by Thomsen et al. (2008) for potassium-rich (3.0 ± 0.1%/decade) and sodium-rich (3.1 ± 0.2%/decade)feldspar extracts from sediments of various geographical and sedimentological origins. The pIR-IRSL$_{290}$ signal from MZ051S-2 fades at a similar rate as is reported by Sohbati et al. (2013) for sodium-rich feldspars (~0.2–2.2%/decade) measured with a pIR-IRSL$_{290}$ protocol. The apparent thermal resetting of MZ051S-2 grants us the possibility to compare our g-value corrected IRSL$_{50}$ age with the uncorrected and corrected pIR-IRSL$_{290}$ ages. The IRSL$_{50}$ and pIR-IRSL$_{290}$ ages agree within uncertainties. This is encouraging, especially since our laboratory experiments with the pIR-IRSL$_{290}$ protocol show acceptable dose recovery. Previously, pIR-IRSL$_{290}$ dating of heated stones has been successfully compared to OSL dating of quartz (al Khasawneh et al., 2015), and pIR-IRSL$_{290}$ dating has repeatedly been demonstrated to be accurate when compared with other luminescence dating techniques or dating methods (e.g., Buylaert et al., 2012; Murray et al., 2014; Klasen et al., 2018; Zander et al., 2019). Based on the agreement between the IRSL$_{50}$ and pIR-IRSL$_{290}$ in MZ051S-2 and previous successful applications of pIR-IRSL$_{290}$ dating, we propose that the g-value corrected ages in Table 7 are the preferred ages to use for chronostratigraphic interpretations. However, the extrapolation of this rationale to lithologies from other sites should be done with caution since Rades et al. (2018) have previously applied L_{nat}/L_{sat} ratio correction with success. When comparing both methods in their study, they received indistinguishable ratios (or L_{nat}/L_{sat} ratio for one boulder. For a second boulder, however, only the L_{nat}/L_{sat} ratio yielded a realistic age. The most appropriate fading correction approach could therefore vary between different lithologies, or be dependent on the size of the burial dose which is to be corrected; the latter since fading rates are expected to be higher for larger doses (Huntley and Lian, 2006). Rades et al. (2018) discussed that the L_{nat}/L_{sat} ratio represents an upper limit for fading estimates. If so, the L_{nat}/L_{sat} approach may be more suitable to older samples with luminescence intensities closer to saturation, compared to the Huntley and Lamothe (2001) approach which is more reliable in the lower dose range.

6.3. Chronostratigraphy

The burial age of ~19 ka derived from cobbles MZ051S-8 is clearly not associated with the occupation of MZ051S, but rather dates a
burial event during the glaciation/deglaciation cycles in the Upper Pleistocene. Radiocarbon dating of soil organic matter and \(^{10}\)Be cosmogenic nuclide dating from the adjacent Val di Rabbi shows cycles of ice retreat and advances which started \(\approx 18\) ka cal. BP (Favilli et al., 2009). It is, therefore, possible that MZ051S-8 would have been exposed and subsequently buried during the early phase of deglaciation. More samples, preferably from primary depositions, are needed to verify such an event. We also cannot exclude that erosion has removed the more recent exposure history of the cobble. Charcoal fragments from Alpine soils (1800–2200 m above sea level) in Val di Sole have been dated to the early Holocene (\(-8900–8200\) BC), which is a clear indication that at this time, the area was deglaciated and post-glacial soil formation had begun (Favilli et al., 2010). Soil formation in the Early Holocene has been confirmed by radiocarbon dating of charcoal (\(-6550–6450\) cal. BC) from the adjacent tributary valley of Val Molinac, and slightly later (\(-4600–4500\) and \(-4800–4700\) cal. BC) also in Val Poré (Angelucci and Carrer, 2015). It is, therefore, well-established that the landscape in Val Poré remained relatively stable during the early and middle Holocene, which would have enabled soil formation (Fig. 11.1).

The previously reported, first known human occupation in Val Poré, dated to 1880–1691 BC (Angelucci et al., 2017), is confirmed by the new radiocarbon ages (COL6S12.1.1: \(-1750–1450\) BC; COL6S13.1.1: \(-2100–1750\) BC) from unit US5a at MZ051S (Fig. 11.2). These ages (together with radiocarbon age DSH6955 and the archaeological evidence) demonstrate that human groups occupied the Holocene topsoil during the Early Bronze Age. The occupied surface was subsequently buried by colluvium, deposited during a short period of reactivation of slope dynamics due to geomorphological instability (Fig. 11.3). The timing of such activities and the subsequent formation of US4a is currently not fully constrained. The previously published radiocarbon age DSH6956 (\(-1550–1450\) cal. BC) from US4a pinpoints the occurrence of human activities in the area during the Middle Bronze Age (Angelucci et al., 2017) and the possible reoccupation of MZ051S during this period. Logically, the top surface of cobble MZ051S-7 (collected from US5a) should represent the burial of US5a, i.e. the onset of deposition of colluvium, and should therefore pre-date US4a. However, the burial age (1460–720 BC) of MZ051S-7 is slightly younger than DSH6956 at 1σ. This chronological inconsistency is not yet resolved. Although the reworking of sample DSH6956 from US5a is a possibility (which could result in age overestimation), the stratigraphic evidence suggests that the top surface of MZ051S-7 was exposed even after the deposition of the colluvium superimposing US5a. It is, therefore, our current interpretation that MZ051S-7 slightly underestimates the burial age of US5a. We consider the likeliest explanation for this to be the continued exposure of the top surface of MZ051S-7, even after the deposition of colluvium. The thinning of colluvium further away from the slope (where MZ051S-7 was collected) suggests that the explanation of a slightly protruding top surface of MZ051S-7 is quite likely. Additional age estimates from cobbles from US5a, combined with detailed observation of the vertical position of their top surface, could in the future help to establish the time of burial of US5a with more confidence; a re-interpretation of the onset of slope activities and the chronostratigraphic implication for MZ051S-7 might then be necessary.

Our dating efforts indicate that US4a remained exposed for a considerable time (Fig. 11.4), perhaps more than a millennium, before the reactivation of the nearby slope (Fig. 11.5). The heating event exhibited in MZ051S-2 provides a minimum age for the formation of unit US4a, together with the first date for human reoccupation at or near MZ051S. While the large dating uncertainty of this event prevents precise pinpointing for chronostratigraphic purposes, we now know, despite the scarcity of archaeological finds from US4a, that some human activity likely occurred at MZ051S during the Late Bronze Age or the Iron Age. Traces of human occupation (potsherds) in Val Poré from these periods have previously been discovered at the nearby dry-stone enclosure named MZ005S (Angelucci and Carrer, 2015). The new radiocarbon ages COL6S11.1.1 and COL6S14.1.1 from US4a show that the surface of US4a remained exposed and stable, at least until the 5th–7th centuries AD. This observation is confirmed by burial ages from MZ051S-3 and the top of MZ051S-2, albeit that these cobble ages (except the top of MZ051S-3) suggest a slightly later time of burial at \(-AD\) 1000. These age disparities are small when dating uncertainties are considered, but an explanation for the observed scatter between the methods could be that they do not date the same event. While the radiocarbon ages date the death of trees from which wood was subsequently burned (both events could have occurred long before the final burial of US4a), the cobbles date the end of the last exposure of US4a. Therefore, our interpretation is that human activity occurred at or near MZ051S in the Early Middle Ages (dated by radiocarbon), which was followed by the initiation of the second period of slope instability (possibly due to human land use) towards the end of the 1st millennium AD/beginning of the 2nd millennium AD (constrained by cobble dating). Slope instability in Val Poré continued to occur during the 2nd millennium AD, as was previously confirmed during the excavation of MZ005S. At this site, at least two generations of colluvium are recorded. These have sealed an ephemeral surface dating from the 7th–8th centuries AD, and the early-Modern artefact-bearing topsoil (Carrer and Angelucci, 2015). At MZ051S, present soil formation was initiated following the deposition of colluvium (Fig. 11.6).

7. Conclusions

The investigated rock surfaces from MZ051S in Val di Sole display various levels of resetting before burial, a prerequisite for burial dating. The presented research aimed to examine the suitability of rock surface IRSL to date buried dry-stone structures linked to pastoralism in upland pastures. Our first results from Val di Sole show encouraging signs for the applicability of the method to such, from a dating point of view, challenging archaeological structures. We here provide new information on the chronostratigraphic development of the livestock enclosure MZ051S in the Italian Alps. Combined rock surface IRSL dating and radiocarbon dating show that the upper archaeological unit US4a was exposed from the Bronze Age until the Middle Ages, perhaps as late as at the shift between the 1st and 2nd millennia AD. The agreement shows the potential of rock surface IRSL dating as a chronological tool to date buried stone structures and to corroborate radiocarbon dating in contexts where such dating is challenging. For the lower archaeological unit US5a, the relationship between the cobble ages and the general chronostratigraphy is more complicated and requires further investigations.

One unexpected discovery from our research in Val di Sole is that one cobble demonstrates both optical bleaching and annealing by heat, which had occurred during different events in the past. The timing of such events is recorded within the luminescence-depth profiles; these events can be dated using both IRSL\(_{50}\) and pIR-IRSL\(_{200}\) dating techniques. A possible explanation for annealing is forest fires, which could occur naturally or induced by humans. None of the other cobbles from our site (including the smaller MZ051S-3) show any signs of resetting in the centre of the cobbles. Thus, we argue that in this case, we can directly date human activities with rock surface IRSL dating. The dating of the heating event demonstrates that the dry-stone structure MZ051S must have been occupied, at least ephemeral, even after the Early Bronze Age. The implication of our observations is that rock surface IRSL dating can be applied at archaeological sites to date heating events, even if no heated artefacts have been recovered. Furthermore, the archaeological implication is that rock surface luminescence dating may help to detect ephemeral events of human activity, which left no relevant archaeological record and could have remained undetected otherwise.

Questions on how to correct for fading of the feldspar signal in rocks remain. Here, we show that for the heated rock of MZ051S-2, the g-value corrected IRSL\(_{50}\) age is in agreement with the more stable pIR-IRSL\(_{200}\). However, due to the lack of a naturally saturated signal,
we cannot directly compare such ages with $L_{\gamma}/I_{\text{sat}}$ ratio corrected ages. We here favour the application of g-value corrected ages for the cobbles from Val di Sole, but encourage more research to explore the suitability of different fading correction approaches for rocks of different lithologies and with varying burial doses.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

Dr. Anja Zander, University of Cologne, is thanked for gamma spectrometry measurements. Laura Vezzoni, University of Trento, is thanked for visual inspections of petrographic thin sections. The authors are grateful to Dr. Fabio Cavalli, University of Trento, for helping during fieldwork and for providing photo-plans of the excavations. Lucas Ageby is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) — Project number 57444011 - SFB 806 as part of project F2 in CRC 806 — Our Way To Europe. Francesco Carrer’s research is funded by the Newcastle University Academic Track programme (NUAcT), UK. Project ALPES is undertaken in the context of a specific agreement between the Department of Humanities of the University of Trento and the Soprintendenza per i Beni Culturali of the autonomous Province of Trento. The project is funded by the University of Trento, Italy and by the Terre Alte programme of the CAI (Italian Alpine Club) and is supported by the Municipality of Mezzana, Italy (Trento). The authors are indebted to the people from Ortisé and Menas for their help, and to all the students and researchers who have participated in fieldwork activities. The work by Eike F. Rades was funded by the German Research Foundation (DFG) in the framework of a Research Fellowship (RA 2836/1-1). Finally, we thank Dr. Michael Meyer and two anonymous reviewers for their helpful feedback and comments, which greatly improved the manuscript.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.quageo.2021.101212.

References

Burrow, C., 2019. calcCosmicDoseRate: Calculate the cosmic dose rate. function version 0.5.2. In: Kreutzer, S., Burrow, C., Dietze, M., Fuchs, M., Schmidt, C., Fischer, M., Friedrich, J. (Eds.), Luminescence: Comprehensive Luminescence Dating Data Analysis. R Package Version 0.9.0.109.

