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expressing fluorescent reporters can be used to identify where 
and when key molecules are expressed, while cell-specific and 
tissue-specific gene knockouts can identify their mechanistic 
contributions to autoimmunity. These studies can be performed 
with the opportunity for the full temporal development of auto-
immunity to be investigated, including assessment of where and 
when key therapeutic windows arise.

Can animal models help us understand the progression from 
asymptomatic autoimmunity to joint infiltration and bone 
erosion?
The development of autoimmunity in RA and the transition into 
clinical disease remains a poorly understood process. Changes 
in innate immune reactivity and altered T cell and B cell regu-
lation result in the development of autoantibodies targeting 
post-translationally modified proteins. These perturbations in 
immune cell activity indicate loss of tolerance and eventually 
culminate in the development of a synovial lesion that contains 
large numbers of infiltrating T cells, B cells, macrophages and 
fibroblasts.34

As this transitionary period generally occurs slowly over 
many years, different aspects of the immune response, partic-
ularly within the joints and lymph nodes, are difficult to study 
longitudinally in patients. Although animal models are unable 
to fully recapitulate human disease, their selective application 
has offered many insights into the development of autoimmunity 
and the complex interplay of immune cells in different tissues 
at various stages of disease. Importantly, as these models can be 
used in combination with technologies that would be otherwise 
impractical or unethical for use in patients, they allow for the 
study of discrete aspects of the disease that cannot be researched 
using other methods.

The ability to identify, manipulate and track specific cell popu-
lations is particularly useful in animal models, as has been shown 
in research examining the roles of autoreactive CD4 T cells in 

the development of early arthritis. The PgIA model has been 
used to demonstrate that TCR signalling strength dictates the 
fate of T cells, with those with weaker signals developing into 
T follicular helper cells (Tfh) which stimulate human PG-spe-
cific antibodies, cross-reactive with mouse PG.35 Since autoreac-
tive T cells driving autoimmunity may have escaped central and 
peripheral tolerance mechanisms due to low TCR affinity, the 
fact that autoreactive T cells in RA mostly recognise modified 
self, which bind HLA with higher affinity, offers insights into the 
activation and persistence of Tfh and other effector cells driving 
autoimmune disease progression.

T cell migration studies, using multiphoton microscopy and 
lymph node sequestering drugs36 have also demonstrated that 
the majority of aggrecan-specific T cells are not involved in the 
pathogenesis of synovial inflammation directly, but rather exert 
their effects in the lymphoid organs where they provide B cell 
help for systemic autoantibody production.37–39 Similar work 
using a partially humanised CIA model in HLA-DR1 isotype 
(HLA-DR1) mice, in which chimeric human/mouse major histo-
compatibility complex (MHC) class II molecules comprise the 
peptide-binding domain from human DR and the CD4-binding 
domain derived from mouse I-E,40 41 has shown that T cells 
expressing an RA-relevant HLA-class II allele mount a response 
to the dominant epitope of collagen II. In this model, at the time 
of first clinical arthritis symptoms, specific effector CD4 T cells 
were undetectable in the synovial fluid and rare in the blood, but 
persisted in the lymph nodes.42

Taken together, data in PgIA and CIA models suggest that 
after the initial antigen-specific CD4 +T cell priming event in 
the lymphoid organs, disease development is dependent on B 
cells, which can present antigen and produce antibodies, and 
is perpetuated by CD4 Tfh cells which provide further B cell 
help for antibody-mediated joint destruction.43 44 Methods that 
disrupt Tfh and B cells within the lymph node may therefore 
offer a potential target for new immunotherapies.

Figure 2  CIA and AIA models of arthritis. (i) CIA mice are injected with heterologous or autologous collagen in the presence of an adjuvant. (ii) 
in AIA models, mice are first immunised with an unrelated antigen in the presence of an adjuvant and then rechallenged with the same antigen in 
the joint. These models may employ the use of TCR transgenic T cells. (iii) The antigens in both models are initially presented by dendritic cells to 
CD4 T cells within the T cell zone of the lymph nodes. These CD4 T cells then interact with B cells within the follicle to produce antibodies. (iv) In the 
AIA models, the inflammation within the joint to the exogenous antigen triggers the activation of bystander T cells resulting in the targeting of joint 
antigens. (v) In both models, antigens within the joints become targeted by the immune response. (vi) This results in the destruction of cartilage and 
bones within the joints - created with BioRender.com. AIA, antigen-induced arthritis; CIA, collagen-induced arthritis; TCR, T cell receptor
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Aside from T cells, animal models also implicate many other 
immune cells in arthritic disease development and regulation, 
including B cells,45 plasmacytoid DCs31 and synovial fibro-
blasts.46 Animal models offer major insights into immune cell 
dysfunction in arthritis. As new tolerogenic therapies are devel-
oped, antigen-driven animal models will be essential tools to 
understand how treatments impact immunological processes and 
will be key to understanding how these therapies function to 
restore immunological tolerance.

How does the diversity of the TCR repertoire influence 
models?
TCR repertoire diversity is achieved on two levels: a genetic 
level involving selecting, editing and combining the various TCR 
genes, and on a cellular level involving thymic selection and 
outgrowth of certain clones in both acute and chronic immune 
responses. The strong association of autoimmune diseases, 
including RA, with certain HLA alleles is well documented.47–49 
Thus, it is plausible that thymic selection and peripheral antigen 
encounter could influence the composition of the mature T cell 
repertoire in persons susceptible to RA and in patients with 
RA.50 51 Indeed, the outgrowth or enrichment of certain T cell 
clones has been demonstrated in RA, both in the naïve52 and 
antigen-experienced T cell compartments53–56 suggesting that 
both thymic selection and antigen-driven responses skew the 
TCR repertoire in patients with RA. Similarly in the CIA model 
in DBA/1 mice, the IAq allele is required for development of the 
disease due to high affinity binding of the collagen II dominant 
epitope to I-Aq after processing of collagen II protein, driving 
activation of autoreactive T cells.57 58

Moreover, TCR repertoire diversity in patients with RA 
differs depending on the tissues sampled. For instance, the 
repertoire was found to be more restricted in the synovial 
compartment compared with peripheral blood in patients with 
RA,53 54 59 60 indicating that tissue sites may influence the reten-
tion or accumulation of CD4 T cells possibly in an antigen-
specific manner. TCR diversity has also been found to evolve 
with RA chronicity. In some cases, the TCR repertoire was more 
restricted in early RA and diversified with the progression of the 
disease,54 while in other cases the TCR repertoire was found 
to become more restricted with time.61 Additionally, changes in 
the TCR repertoire can also indicate patient response to ther-
apeutics. For instance, patients treated with tumour necrosis 
factor inhibitors showed a reduction in clonal expansion in T 
cells expressing certain TCRβ variable region (TCRBV) genes,62 
while responders and non-responders to methotrexate display 
differences in TCRBV gene expression profiles in the circulating 
CD4 T cell repertoire.63

The differences in TCR repertoire diversity reported at various 
stages of RA development and between different tissue sites 
highlights how assessment of TCR repertoire diversity has the 
potential of being an informative indicator of disease state and 
predictor of effective therapeutic regimens. However, patient to 
patient variability in clonal responses and the conflicting evidence 
of repertoire changes with disease progression accentuate our 
lack of understanding of how TCR repertoire diversity develops 
in RA and how it evolves with disease progression. Thus, animal 
models of arthritis can help elucidate development of the TCR 
repertoire as they provide a setting in which different disease 
stages can be observed more easily and allow for spatial and 
temporal assessment of TCR diversity.62 63 In addition, mouse 
models, such as CIA, with known dominant epitope, restricting 
I-A and HLA-DR molecules and responding T cells that can be 

identified with pMHC tetramers, offer a major advantage for T 
cell tolerance studies.

Models already exist that incorporate the influence of thymic 
selection on susceptibility to develop arthritis. For example, 
C57BL/6N.Q mice are more susceptible to CIA compared with 
C57BL/6 mice due to differences in MHC restriction64 65 and 
changes in T cell positive and negative selection in the SKG 
transgenic mice result in spontaneous development of arthritis.23 
Studies examining aspects of TCR repertoire diversity have 
been conducted using the CIA model of arthritis and have also 
reported a skewed or restricted TCR repertoire and the prev-
alence of certain TCRβ chains were found to be strain depen-
dent.66–69 The dominance of these chains were also relevant to 
the pathology as administration of depleting antibodies specific 
to the dominant Vβ chains were found to significantly reduce 
the incidence of CIA. One study using the HLA-DR1 mouse/CIA 
model found CD4 T cells of limited clonality in the joint with 
a highly selective subset of the TCR repertoire.70 These CD4 
T cells bind to the dominant collagen II epitope and, although 
they comprise a minor population, they may play a major role 
in disease pathogenesis. A recent study investigated differ-
ences in the composition of the TCR repertoire in joints and 
their draining lymph nodes with the progression of OIA.71 The 
authors reported a disparity in TCR repertoire diversity between 
the draining lymph nodes and joints with the progression of 
inflammatory arthritis, with the lymph nodes displaying greater 
repertoire diversity than the joints at later stages of the disease. 
The results of the study highlight two main therapeutic implica-
tions; first, that tolerogenic therapies may be more effective at 
the very early stages of arthritis when the TCR repertoire is more 
restricted and, second, that TCR repertoire of joint-draining 
lymph nodes could possibly foreshadow TCR repertoire diver-
sity of the joint, and thus be a marker of disease severity and 
guide effective therapeutic interventions. Significantly, animal 
models provide the opportunity to test these hypotheses, and 
rationalise the application of antigen-specific immunotherapy in 
disease.

Are particular models more suitable for studying specific 
immunotherapeutic approaches?
There is a wide range of animal models available for arthritis 
research but not all models are well suited for studying tolero-
genic immunotherapies. As these therapies can take many 
different forms it is essential that models are selected with 
consideration given to the method of tolerance induction. Opti-
mising model selection will strengthen the data garnered from 
these studies and should improve the translation of this research 
into effective clinical treatments.

In the pathogenesis of RA, DCs act as key players in the devel-
opment of autoimmunity as they, along with medullary thymic 
epithelial cells, present self-antigens to T cells in the thymus 
impacting negative selection, and in the periphery they are able to 
prime naive autoreactive T cells to initiate autoimmune models.72 
However, DCs are also capable of inducing and maintaining 
peripheral tolerance by blocking T cell expansion, inducing 
T cell deletion or anergy. One promising cell-based approach 
is targeting autoreactive T lymphocytes by the production of 
tolerogenic DCs (TolDCs). The tolerogenic function of DCs can 
be promoted by the exposure to different anti-inflammatory 
cytokines or by in vitro treatment with an NF-kB inhibitor. 
TolDCs act by different mechanisms including the secretion of 
immunomodulatory mediators, reduction of MHC and costim-
ulatory molecules or the expression of immune-modulatory/
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immune-inhibitory molecules.73 Preclinical data informing 
current clinical trials of TolDC immunotherapy in RA were 
derived from the ‘classical’ RA models, namely CIA74–76 and AIA 
models.77 Humanised mouse models of RA show several advan-
tages in testing tolerogenic therapy by enabling direct transla-
tion to humans through introduction of human transgenes or by 
the selective transfer of human autoantigens or cells/tissue into 
immunodeficient mice.78 However, limitations include relatively 
poor expression of the human HLA transgene, and the need for 
induction of inflammatory arthritis with heterologous antigen, 
which limit interpretation of antigen presentation and efficacy 
of tolerising immunotherapies.79

The induction of regulatory T cells (Treg) by peptide-based 
therapies have been developed for the treatment of a number 
of autoimmune diseases including RA,80 multiple sclerosis (MS) 
and Graves’ disease.81–83 In this treatment, known tolerogenic 
peptides bind directly to MHC II on DCs.84 These DCs then 
interact with CD4 T cells to induce regulatory T cells that 
suppress T cell activation. As this therapy is based on peptide 
presentation, HLA-DR transgenic mice have supported the 
design of tolerogenic T cell epitopes and testing of tolerogenic 
strategies85–87; however, important lessons have been learnt. For 
example, introduction of a human HLA allele does not guar-
antee that an HLA-DR transgenic mouse will respond to an 
epitope known to be dominant in humans.88 This implies that 
mice have a ‘hole’ in their T cell repertoire for certain HLA-
restricted T cell epitopes which can be overcome by creation 
of mice expressing both HLA-DR and TCR molecules from 
relevant patients.85 89 Furthermore, design work with individual 
peptide epitopes has shown that they must mimic naturally 
processed epitopes when bound to MHC II in order to induce 
tolerance through induction of IL-10 secreting regulatory T 
cells.90 91 This research confirms the importance of HLA-DR 
mice for the development and testing of peptide-based therapies 
in RA.

In addition to antigen-specific immunomodulatory therapy 
targeting DCs or T cells in situ, chimeric antigen receptor (CAR)-
Treg cell therapy, in which Tregs are engineered to target specific 
proteins in a MHC independent manner,92 93 is being expanded 
to include autoimmunity in light of promising results from clin-
ical trials, and product registration of CAR-T in oncology.94 In 
the context of RA and the HLA-DR1 model, it has been reasoned 
that engineering CAR-Tregs to specifically target an antigen in 
the joints of patients with RA may promote their migration to 
the site of abnormal inflammation, inducing a localised and 
protective immunosuppressive response. Accordingly, a CAR 
directed against citrullinated vimentin, a cytoskeletal protein, 
which is expressed in the synovial tissue of the majority of 
patients with RA, has been developed.95 This group is working 
to transduce this CAR into Tregs in order to assess functional 
activity in vitro and therapeutic potential in vivo of CAR-Treg 
transfer in the CIA model. Another approach in development is 
the generation of CAR CD8 CTL presenting antigenic peptide 
to specifically target and eliminate autoreactive CD4 T cells 
(Rosloniec, unpublished); these will also be tested in the HLA-
DR1 humanised mouse model of CIA. While the CAR-Treg 
approach is advantageous in that it offers specific targeting and 
imparts no HLA restriction, its drawback is the requirement for 
a specific antigen for recognition, which is a design issue in RA 
due to the number of potential autoantigens involved in disease 
progression. Strategies invoking bystander tolerance or patient 
stratification based on putative autoantigen involvement and 
disease stage may facilitate therapeutic selection of CAR-T cell 
therapy to complement immunomodulatory approaches such 

as antigen-specific immunotherapies, as have been used in solid 
tumours in vivo in mice96

One of the oldest and most widely explored tolerogenic thera-
pies is antigen feeding. In this therapy, small amounts of a specific 
antigen are administered orally to restore a state of homeostasis 
and tolerance to self-peptides in the adaptive immune system. 
This method has been used extensively with antigen-induced 
models, particularly CIA. Multiple experiments demonstrated 
that feeding collagen II prior to disease induction was protec-
tive against CIA in rats.97 98 Unfortunately, subsequent clinical 
trials with patients with RA showed conflicting results,99–101 with 
greater success observed with administration of lower antigen 
doses leading to the generation of active suppression via Tregs 
rather than anergy or clonal deletion.102 Due to inconsisten-
cies between trials, this therapy was not pursued in RA. The 
disparity between animal models and clinical studies may lie in 
the lack of knowledge about the initiating autoantigen in RA, as 
collagen II is just one of many possible autoantigens involved 
in disease progression. Similarly, the timing of clinical trials of 
antigen feeding may be too late when autoimmunity has already 
progressed to disease. In addition, differences in rodent and 
human immune responses have to be considered.103 Despite 
these setbacks, antigen-induced CIA, OIA and AIA models are 
certainly useful to understand the mechanisms of how tolerance 
is induced from an immunological perspective. They may also 
offer insights into how antigen dosing and the timing of inter-
vention affects disease outcomes.

DC targeting with antigen in the context of suppressing their 
activation is an emerging immunotherapy that is gaining popu-
larity. DC targeting recapitulates models in which transgenic 
antigen targeted to ‘resting’ DCs promotes long-lasting peripheral 
tolerance through mechanisms of T cell deletion or regulation.104 
Nanoparticles such as liposomes encapsulating disease-specific 
peptides along with immunomodulatory drugs, such as curcumin 
or calcitriol to suppress NF-kB activation required for DC acti-
vation, are taken up by DCs that interact with antigen-specific 
CD4 T cells to suppress disease progression.105 In the PgIA 
model, tolerising liposomes were found to significantly suppress 
disease severity.106 Peptide/calcitriol liposomes were found to 
exert their effects primarily through the deletion of high affinity 
antigen-specific autoreactive CD4 T cells and through anergy 
induction in the residual antigen-specific T cells. Delivery of the 
tolerising liposomes after the onset of disease also significantly 
reduced disease severity, even though arthritis is predominantly 
driven by autoantibody and complement-driven mechanisms in 
established disease.107 In contrast to pretreatment, the liposomes 
in this experiment were found to exert their effects through the 
expansion of FoxP3 +and IL-10-producing Tregs. Interestingly, 
this model suggests that the mechanisms of tolerance induction 
are dependent on the timing of liposome administration.

Will current animal models identify where and when to 
intervene?
One of the major strengths of animal models of RA is that 
they allow for in-depth investigation of molecular and cellular 
processes at all different disease stages, that is, from initia-
tion to chronic inflammation. They, therefore, also provide 
a powerful tool for studying immunotherapies, addressing 
important questions relating to the timing, route and frequency 
of administration and therapeutic effects. For example, using a 
rat allotransplantation model it was found that the timing and 
frequency of mesenchymal stem cell administration was crucial 
for graft survival, with multiple administrations having the best 

 on S
eptem

ber 2, 2021 by guest. P
rotected by copyright.

http://ard.bm
j.com

/
A

nn R
heum

 D
is: first published as 10.1136/annrheum

dis-2021-220043 on 11 A
ugust 2021. D

ow
nloaded from

 

http://ard.bmj.com/


7Meehan GR, et al. Ann Rheum Dis 2021;0:1–10. doi:10.1136/annrheumdis-2021-220043

Review

outcome in terms of the number of circulating Tregs.108 Simi-
larly, administration of IL-4-transduced DC in CIA mice via the 
intravenous or intraperitoneal routes led to higher numbers of 
DC migration to the spleen and correlated with enhanced thera-
peutic effects as compared with the subcutaneous administration 
route.109

The disease stage is particularly important for immunomod-
ulatory tolerance induction strategies, which use Tregs. The 
function, survival and stability of these cells is highly influenced 
by inflammation and tissue-specific factors which will vary 
depending on the stage and activity of the disease.110 Functional 
adaptation of FoxP3 +Tregs, also referred to as Treg plasticity, 
is an important process that occurs during protective immune 
responses. For example, exposure of Tregs to polarising cyto-
kines directs expression of appropriate chemokine receptors that 
allow Tregs to home to and regulate the relevant site of inflam-
mation. However, chronic exposure of Tregs to inflammatory 
mediators, as might occur, for example, in active RA, can backfire 
by destabilising FoxP3 expression and turn Tregs into pathogenic 
effector T cells. Indeed, it was shown that synovial fibroblast-
derived IL-6 converted FoxP3 Tregs into Th17 cells with potent 
osteoclastogenic function in a CIA mouse model.111 This has 
important implications for Treg-based therapies, whether it is 
through adoptive transfer of Tregs, induction of FoxP3 +Tregs 
via adoptive transfer of tolerogenic DCs or in vivo expansion of 
existing Tregs with low dose IL-2, which shows promise in lupus 
as well as other autoimmune diseases.112 To avoid a detrimental 
conversion of Tregs, further investigation is required to optimise 
the timing of administration of tolerogenic immunotherapies, 
the potential for coadministration of anti-inflammatory drugs 
that could prevent Treg conversion (eg, anti-IL-6), and strategies 
and conditions that support or induce stable type 1 (Tr1) Treg 
from memory T cells.

Conversely, it is important to consider potentially adverse 
effects of existing RA medications on tolerance induction. 

For example, mouse models have shown that the calcineurin 
inhibitor ciclosporin A interferes with induction of allograft 
tolerance,113 and Cox-2 inhibitors (a subclass of non-steroidal 
anti-inflammatory drugs) inhibit oral tolerance to dietary anti-
gens.114 The inhibitory effect of ciclosporin A is most likely 
caused by inhibition of Treg expansion and function.115–117 
Testing the in vivo effects of relevant RA drugs on perfor-
mance of tolerogenic therapeutics in preclinical animal models 
is important to determine the most suitable patient group for 
recruitment to clinical trials, and which DMARDs might help or 
hinder the tolerogenic response.

Another important question is where protolerogenic thera-
pies should act. There is ample evidence that peripheral toler-
ance is chiefly induced in secondary lymphoid tissues—the 
same site as for priming of tissue-specific T cell clones. For 
example, immune tolerance to inhaled or oral antigens relied 
on CCR7-dependent migration of DCs to the relevant draining 
lymph nodes,118 119 and induction of allograft tolerance through 
treatment with IL-10-producing DCs also depended on CCR7-
mediated homing of these DCs to the lymph node.120 It is not 
surprising that secondary lymphoid tissues play an important 
role in both immunogenic and tolerogenic immune responses, 
given that DCs (both mature and immature ‘tolerogenic’ DCs) 
as well as naïve T cells and Tregs home to these locations, 
providing the optimal architecture relevant for DC/T cell inter-
actions. However, it is still uncertain whether this precludes the 
possibility that tolerance could be induced in different locations, 
for example, ectopic lymphoid structures at sites of inflamma-
tion (eg, in the rheumatoid joint) as with infiltrating Tregs that 
control tissue-destructive tumour-infiltrating lymphocytes in 
tumour sites.121 Understanding at which sites tolerance induc-
tion is most effective or even possible is critical to determine and 
to develop technologies for the most optimal routes of tolero-
genic antigen (eg, TolDC) administration. Addressing these 
questions in humans is a major challenge. Although studies are 

Figure 3  Benefits of using animal models for studying rheumatoid arthritis. Animal models allow researchers to study various aspects the disease 
that would otherwise be impractical to study in human patients. (A)(i)The experimental design of animal models allow researchers to monitor disease 
progression at various time points. Specific aspects of the disease can also be examined through the use of (ii) transgenic animals, (iii) TCR transgenic 
T cells and (iv) fluorescently labelled cells. (B) Interventions including (i) antigen-specific immunotherapies and (ii) drug treatments can also be studied 
in detail. (C) Tissues including the (i) thymus, (ii) spleen, (iii) lymph nodes and (iv) synovial tissue can be collected from animals at any time point. (D) 
This allows for detailed analysis of various cell populations using techniques such as (i) flow cytometry, (ii) RNA sequencing and (iii) cytokine assays. 
(E) Another major advantage of animal models is the use of live imaging techniques including (i) intravital imaging using multiphoton microscopy and 
(ii) whole tissue imaging using techniques such as MRI scanners. Similarly, tissues collected from culled animals can be imaged by (iii) histology or (iv) 
immunofluorescence - created with BioRender.com.
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underway to compare different routes of TolDC administration 
(intradermal vs intranodal) in the RESTORE study in patients 
with MS,122 and intradermal versus intra-articular versus intran-
odal in the AuToDeCRA2 study in patients with RA (Isaacs and 
Hilkens, unpublished), partially humanised animal models could 
aid in investigating these questions in more depth. For example, 
animal models provide an excellent tool for the longitudinal 
tracking and visualisation of interactions between different cell 
populations in vivo, including PET combined with vascular or 
lymphotracking dyes and CT or MRI, as well as multicolour 
fluorescence imaging. In some circumstances, these can be trans-
lated to clinical trials. Animal models can therefore be hugely 
beneficial in getting important clues on when and where to inter-
vene, allowing for the improved, informed design of future clin-
ical trials in patients with RA.

CONCLUSION
Although there have been many criticisms of animal models due 
to the poor translatability of data from preclinical models to clin-
ical trials,123 currently these models remain essential to develop 
curative therapy in RA. Understandably not all aspects of human 
disease can be fully recapitulated in animal models including the 
long transition from breach of tolerance to autoimmunity as well 
as the extensive interplay of genetic and environmental factors 
that trigger the onset of disease. Despite these drawbacks, when 
proficiently applied in combination with different technologies, 
and selected to reflect appropriate points in disease progression, 
animal models are critical tools in mechanistic arthritis research 
and remain essential for the development of curative therapies 
(figure 3).

A key point is that of reverse translation. As new antigen-
specific immunotherapies are developed, it is critical that data 
from clinical studies further inform model selection. This will 
allow for a targeted approach to research in animal models, 
where bioassays or technologies can be improved for future 
trials, and to identify the immunological mechanisms under-
lying human disease and therapeutic responses. Used in this way, 
animal models will facilitate the development and testing of new 
therapeutic agents to reinstate immunological self-tolerance.
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