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Abstract

This paper presents a new formulation of the 2D shallow water equations, based on which a numerical model (referred to as NewChan) is developed for simulating complex flows in non-uniform open channels. The new shallow water equations mathematically balance the flux and source terms and can be directly applied to predict flows over irregular bed topography without any necessity for special numerical treatment of source terms. The balanced governing equations are solved on uniform Cartesian grids using a finite-volume Godunov-type scheme, enabling automatic capture of transcritical flows. A high-order numerical scheme is achieved using a second-order Runge-Kutta integration method. A very simple immersed boundary approach is used to deal with irregular domain geometry. This method can be easily implemented in a Cartesian model, and does not have any influence on computational efficiency. The numerical model is validated against several benchmark tests. The computed results are compared with analytical solutions, previously published predictions and experimental measurements and excellent agreements are achieved.
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1. Introduction

In most engineering practice, open channel flows can normally be assumed to be hydrostatic in pressure distribution. Fluid particles move on depth-averaged velocity with the vertical acceleration component neglected. Under these assumptions, a flow can be described using the 1D St Venant or 2D shallow water equations. Many numerical models for simulating open channel flows have been published based on these equations, e.g. [1-7].
In practice, open channel flows can be very complicated when interacting with domain geometry, bed topography and/or structures. Complex flow patterns, such as supercritical flow, transitional flow, subcritical flow, hydraulic jump and hydraulic drop, can appear instantaneously in a considered channel reach. Currently, a popular way to deal with these complex flow processes is to use a Godunov-type scheme, e.g. [5,7]. The advantage of a Godunov-type scheme is its capability of automatically capturing different flow types, including shock-type flow discontinuity (e.g. hydraulic jump). This approach is adopted in the present model.
When simulating a flow in a domain with irregular boundaries, a popular approach is to solve the governing equations on a boundary-fitted curvilinear grid, e.g. [2,5,7]. In order to obtain numerical solutions, the governing equations are transformed from Cartesian to a new curvilinear coordinate system. An important drawback of this method is that the governing equations will become much more complicated in the new coordinate system, which unfortunately increases discretization errors and numerical instability. Furthermore, to generate a good quality boundary-fitted grid is not a straightforward task in certain cases when the boundary becomes extremely irregular and complicated. An alternative way to deal with the curved boundary problem is to use the Cartesian cut cell technique, e.g. [8-10], in which the unwanted regions outside the computational domain are cut out of the background mesh, so that the curved boundaries are approximated by a series of line segments. Using cut cells, the flow equations are directly solved on a Cartesian grid system. However, the main disadvantage of this technique is its effect on computational efficiency of an explicit numerical scheme. When a small cut cell (with area less than half of that of the original uncut cell) is met, a correspondingly small time step has to be used in order to maintain numerical stability. To overcome this problem, a conventional way is to merge the small cut cells with a neighboring cell to form a ‘large cut cell’. However, this method is considered to lose accuracy. Actually, even for those cut cells larger than half of a normal fluid cell, these is still a constraint on the time step as the worst case is to perform the calculation on a cut cell with half of its original area. This means that, whenever a Cartesian cut cell method is implemented, the computational efficiency of a model will become at most half of its counterpart without using cut cells if no local time step method is considered. Therefore, it would be desirable to have a Cartesian grid based model with boundary-fitting, but without any effect on computational efficiency.
Another difficulty in modeling open channel flows is to deal with the source terms in the governing equations, i.e. bed slope and friction. As the bed topography and friction have great influence on open channel flows (or even determine the flow patterns), it is extremely important to evaluate these terms properly in a numerical model. In the last two decades, efforts have been made to develop well-balanced schemes for simulating surface flow hydrodynamics, e.g. [11-17]. In particular, Rogers et al. [17] derived a new formulation of shallow water equations with flux and source terms balanced mathematically and hence the balancing property is independent on numerical process. In this paper, a new formulation of shallow water equations is derived in a similar way to that proposed by Rogers et al., but it is more general and applicable to a problem involving wetting and drying.
This work presents a novel numerical model that deals with these problems simultaneously. The governing 2D shallow water equations will be re-formulated in a new balanced form in Section 2. In Section 3, the new equation set is solved using an explicit finite-volume Godunov-type scheme incorporated with the HLLC approximate Riemann solver. A Runge-Kutta time stepping scheme is used to achieve second-order accuracy. For the irregular boundary problem, a simple local boundary modification method is implemented. Then in Section 4, this new model is validated against four benchmark tests. Brief conclusions are drawn in Section 5.
2. Governing Equations

The 2D shallow water equations can be derived by vertically integrating the 3D Reynolds averaged Navier-Stokes equations. Traditionally, the hyperbolic conservation law of the 2D shallow water equations are expressed as (e.g. [18,19]):
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where t denotes time, x and y are the Cartesian coordinates, and u, f, g and s are the vectors representing the conserved variables, fluxes in the x and y-directions, and source terms, respectively. The vectors are given by 

	            
[image: image2.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

vh

uh

h

u

,




[image: image3.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

+

=

uvh

gh

h

u

uh

2

2

2

1

f

,

            
[image: image4.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

+

=

2

2

2

1

gh

h

v

uvh

vh

g

,
and


[image: image5.wmf]ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ë

é

¶

¶

-

-

¶

¶

-

-

=

y

z

gh

x

z

gh

b

by

b

bx

r

t

r

t

0

s

,
	(2)


where h is the total water depth; u and v are depth-averaged velocity components in the x and y-directions, respectively; g is the gravity acceleration; [image: image6.wmf]r

 is the density of water; zb is the bed elevation above the datum and 
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 are the bed friction stresses, representing the effect of bed roughness on the flow and may be estimated by using the following empirical formulae
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in which the bed roughness coefficient 
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 is the Manning coefficient.

Even though they are widely used, however, Rogers et al. [17] have demonstrated that above formulation of the shallow water equations (1) and (2) may not preserve a still water state of u = 0, v = 0 but h ≠ 0 in a domain with non-uniform bed profile when they are solved using a finite volume Godunov-type method incorporated with the Roe’s approximate Riemann solver. The proof can be extended to other approximate Riemann solvers (e.g. HLLC).
In order to cope with the problem, the vector terms in (2) are reformulated as follows:
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Taking the x-direction momentum equation as an example, the new formulation is essentially derived from the following relationship:
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In the above formulations, as shown in Figure 1, η is defined as the surface elevation above the datum; the water depth is then evaluated by h = η – zb.
The hyperbolic property of the new conservation law consisting of shallow water equations (1) and (4) can be confirmed by examining the eigen-structures of the flux Jacobian. The new shallow water equations are mathematically balanced for the flux and source terms so that still water state can be automatically maintained. This can be easily demonstrated by considering a general case of motionless steady state of fluid with u = 0, v = 0, but h ≠ 0 in a domain with spatially varying bed bathymetry. The continuity equation is directly satisfied as u = 0 and v = 0. The x-direction momentum equation reduces to 
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 after eliminating all of the zero terms caused by the zero velocities. Under the wet-bed conditions (h ≠ 0), η is a constant at a still steady state and hence the x-direction momentum equation can be further simplified to 
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 are the bed elevations at the right and left interfaces of a grid cell, respectively. Similar analysis can be applied to the y-direction momentum equation.

3. Numerical Models

The shallow water equations (1) and (4) are solved using a finite-volume Godunov-type scheme. High resolution is achieved using a second-order Runge-Kutta integrating method. A finite volume numerical scheme solves the integral form of the governing equations, resulting in the following explicit time-marching formula:
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where the superscript n represents time level; subscripts i and j are the cell indices in the x and y-direction, respectively; ∆t is the time step; ∆y is the cell dimension in the y-direction; 
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 are the fluxes through the west, east, south and north cell interfaces, respectively.
Applying a second-order Runge-Kutta method, the time-marching formula (6) is rearranged to
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where K i,j is defined by
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The intermediate flow variables are calculated, using a first-order scheme, from
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In order to calculate 
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 hence to update the flow variables at each time step, it is necessary to correctly evaluate the interface fluxes f i-1/ 2, j, f i+1/ 2, j, g i, j-1/ 2 and g i, j+1/2, which involves solving local Riemann problems in the context of a Godunov-type scheme. In this work, the HLLC approximate Riemann solver is adopted as it automatically accommodates proper prediction of wet-dry interface and is easy to implement. The implement of the HLLC approximate Riemann solver in a Godunov-type scheme is well-documented in the literature (see e.g. [20,21]).
When updating the flow variables in a new time step using the second-order Runge-Kutta method, we firstly compute 
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 involves applying the HLLC approximate Riemann solver to evaluate fluxes through all four cell interfaces and properly calculating the source terms, as indicated in equation (8). To solve a local Riemann problem at a cell interface, Riemann states at both sides of the interface are required. In the present numerical scheme, the flow variables are stored at the cell centers at each time step and therefore a proper reconstruction approach is needed to establish the face values (Riemann states). Because a first-order accurate scheme is used when calculating the intermediate flow variables, the Riemann states are considered to be the same as the corresponding cell-centered values. For example, at the cell interface i +1/2, 
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As the shallow water equations (1) and (4) are mathematically balanced, source terms are directly calculated at each cell center and there is no need for any special numerical treatment. The bed slope terms 
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 are evaluated using central difference (second-order accurate). For example, the source terms in x-direction are calculated by
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Once the interface fluxes and source terms are properly evaluated, the intermediate flow variables 
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 can then be predicted using equation (9). It is noted that a first-order accurate Godunov-type scheme can be obtained if the flow variables in equation (9) are directly updated to the new time step. Therefore a useful feature of the current shallow flow model is that switch between first-order and second-order accurate schemes is straightforward.
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 is evaluated based on intermediate flow variables 
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. The only difference is that a spatially second-order accurate scheme is used when estimating the Riemann states at each cell interface. In a finite volume method, this can be realized by using a linear interpolation to reconstruct the face values from the cell-centered flow variables. In order to prevent spurious oscillations that would occur near to discontinuous solutions (steep gradient) in a second or higher-order accurate numerical scheme, a minmod slope limiter is used together with the linear reconstruction to compute the Riemann states (see e.g. [21]). Then the interface fluxes can again be evaluated using the HLLC approximate Riemann solver. Together with proper computation of source terms (based on 
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 can be calculated using equation (8) and the flow variables can be updated to a new time step using equation (7).
The current numerical scheme is explicit, and its stability property is controlled by the Courant-Friedrichs-Lewy (CFL) criterion, which can be used for predicting an appropriate time step ∆t for a new iteration:
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with
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where C is the Courant number specified in the range 0 < C ≤ 1 and is set to 0.8 for all of the test cases in this work to ensure stability. 

In this work, two types of boundary conditions are used, i.e. transmissive and reflective (slip) boundary conditions. For a normal transmissive boundary, including inflow and outflow, fictional values of flow variables at a ghost cell are given by:
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where [image: image56.wmf]u

ˆ

 and [image: image57.wmf]v
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 are the depth-averaged velocity components normal and tangential to the boundary.  Subscripts B and I denote the values of flow variables at the ghost and inner boundary cells, respectively. 
In case of slip boundary conditions, if the boundary happens to align with the cell face, the flow values at the ghost cell are directly given by:
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which predicts a zero normal velocity component through the boundary. However, in a general situation, a computational domain could be complicated and the boundary curves may not align with cell faces. A Cartesian grid can only provide a ‘staircase’ approximation to such boundaries. The staircases compromise the accuracy of numerical predictions. Even worse, they may locally produce spurious flow circulations and ruin the results.
In order to provide better numerical solutions near to a non-aligned boundary, a simple local boundary modification method is implemented in the current model. This method can be classified as an immersed boundary approach (e.g. [22,23]). In the ghost-cell immersed boundary method introduced by Tseng and Ferziger [23], the value of a flow variable in a ghost cell is interpolated from those values in neighbor cells in conjunction with appropriate boundary conditions. Using the current simple method for boundary treatment, the flow values in a ghost cell are calculated directly from those flow variables in the boundary cell under consideration. As shown in Figure 2, a boundary curve cuts the Cartesian computational grid into two parts, where the shadowed part is the solid area outside of the computational domain and the other part is fluid area. A cell with its centre located in the solid area is called a solid cell. Otherwise, a cell is defined as a fluid cell (with cell centre inside the fluid area). The computational domain consists of all the fluid cells. Those fluid cells neighboring one or more solid cells are defined as boundary fluid cells (e.g. Cell C in Figure 2). The local boundary modification method applies to all the boundary fluid cells whenever ghost values are required. Taking Cell C in Figure 2 as an example, slip boundary conditions require a zero normal velocity component on the boundary. In practical computation on a Cartesian grid without special boundary treatment, the boundary point is assumed to be at the mid-point (O') of a cell face next to the boundary curve. Flow variable values are directly given by (13), which would cause inaccuracy. Herein a simple method is proposed, where the first step is to find the boundary point (O) that is closest to O'. The angle θ is identified to define the tangential at point O. Then it is assumed that the boundary point O migrates to O' and slip boundary conditions require velocity component normal to the tangential equal to zero. After decomposing the velocity components at the tangential and normal directions, slip boundary conditions can be expressed as:
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Solving these simple equations gives the Cartesian velocity components at the ghost cell and the slip boundary conditions are now given by:
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Despite its simplicity, it will be demonstrated that this local boundary modification method is effective and accurate. Another important feature is that the method has no effect on computational efficiency. 
4. Results and Discussion

In this section, the high-resolution shallow water equation solver described above is validated against four benchmark test cases and numerical predictions are compared with analytical solutions, alternative numerical results and experimental measurements, where available. In all of the simulations, g = 9.81m/s2 and ρ = 1000kg/m3.
4.1 Wave Propagating in a Channel with an Irregular Bed Profile
The first test is about an analytical wave propagating in a channel with an irregular bed profile, which was proposed at a workshop on dam-break simulations [24] and reconsidered by Zhou et al. [16]. This case can be considered as an idealization of coastal tidal wave traveling upstream through a river mouth.
This is actually a 1D problem occurring in a frictionless channel of L = 1500m long, with the wave defined by
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The present 2D model is directly applied to simulate this tidal flow on a 50 × 5 uniform grid with Δx = Δy = 30m. The water is initially still with a surface elevation η = 20m. h(0, t) and u(0, t) is imposed at the western inflow boundary. At the eastern outflow boundary, u(L, t) = 0, which leads to a no flow boundary. Figure 3 presents the comparison of predicted water surface elevation and velocity with analytical solutions at t = 32,400s. The irregular bed profile zb(x) is also indicated in Figure 3(a). Both the surface elevation and velocity profiles agree very well with the analytical solutions. This confirms the capability of the current balanced governing equations and the corresponding numerical scheme in simulating unsteady flow over complex bed topography.
4.2 Oblique Hydraulic Jump

The second test is to simulate a steady hydraulic jump developed when a unidirectional supercritical flow in an open channel is contracted by an inclined solid wall. In a 40m × 30m frictionless channel with a flat bed, a uniform flow occurs with water depth and velocity being 1m and 8.57m/s, respectively, which gives a supercritical flow with a Froude number of 2.74. Now the southern channel wall is modified so that, starting from x = 10m, it inclines inwards with an angle of 8.95o to the x-direction. Under the new channel configuration, the fast moving supercritical flow reflects from the southern inclined wall and forms an oblique hydraulic jump. Theoretically, the jump starts from x = 10m, crosses the channel at an angle of 30o to the x-direction. Water depth changes abruptly from 1.0m to 1.5m after the jump.

Because the southern channel wall is not aligned with the cell face, this case actually validates the simple local boundary modification method for treating the non-aligned boundary problem. Rogers et al. [24] suggested that a Cartesian grid method with stair-case approximation of the inclined boundary wall could not reproduce accurately the steady hydraulic jump in this case. In the current simulation, a sample grid, consisting of 40 × 30 cells, is illustrated in Figure 4, in which the boundary fluid cells are marked by small circles and the simple local boundary modification method is applied to these cells. Slip boundary conditions are imposed on the southern boundary wall. The northern channel wall is assumed to be open. Inflow boundary conditions assume u = 8.57m/s and h = 1m at the western end of the channel. The eastern boundary is set to be outflow without specifying any flow condition. Starting from the initial flow with uniform depth and velocity, the model is run until a steady state is reached. The steady state is indicated by a global relative error R defined by
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where 
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 are water depth of the current and previous time steps at cell (i, j). The solution is considered to be steady state if R < 1 × 10-8.

Simulation is firstly carried out on a 160 × 120 grid. Figure 5 shows the convergence history, in which numerical solution takes about 15s to converge to a steady state. Figure 6 presents the predicted 3D water surface elevation. A steady hydraulic jump is observed to be properly predicted, across which the water depth changes suddenly from 1m to 1.5m. The numerical solution near to the inclined wall is smooth and gives a correct water depth of 1.5m, implying the effectiveness and accuracy of the local boundary modification method. Figure 7 shows the velocity vectors near to the inclined boundary wall. The velocities occupy the tangential direction while maintaining their magnitude when they come close to the wall, which is physically correct according to the slip boundary conditions. Figure 8 illustrates the depth contours and the water surface profiles along central line of the domain, predicted on three different grids with 40 × 30, 80 × 60 and 160 × 120 cells, respectively. The correct position of the jump (indicated by the dash line in the graphs of depth contours) is accurately predicted on all three grids. The sharp-fronted water surface caused by the hydraulic jump appears to converge to a discontinuous solution as the grid becomes finer. 
For the purpose of comparison, simulation is also run on a 160 × 120 grid without implementing the local boundary modification method, i.e. the inclined boundary wall is approximated by staircases. The convergence history is illustrated in Figure 9. Obviously, it takes a much longer time (more than twice as long) to achieve a steady state. Figure 10 presents the 3D water surface and depth contours. Solution near to the inclined wall is obviously smashed and ‘spikes’ are predicted. The location of the jump is also wrongly predicted. Similar results were presented by Rogers et al. [24] using an adaptive quadtree grid based shallow water equation solver with fine mesh used near to the inclined boundary wall. Figure 11 presents those velocity vectors near to the inclined channel wall. Velocities significantly decrease in magnitude at those boundary cells. Numerical viscosity is apparently introduced into the solution and cause the flow to ‘wiggle’, resulting in an unreliable prediction. Therefore, without proper boundary treatment, a numerical model based on a Cartesian grid may not be applicable to certain cases in practice. This again validates the local boundary modification method and confirms that, despite its simplicity, the method is accurate and robust. This simple method is directly applicable to a general case with more complicated geometry.
4.3 Hydraulic Jump and Drop

This case, also considered by Zhou and Stansby [6], is a useful test to validate a numerical scheme’s capability of dealing with complex flow situations with source terms. The test occurs in a channel of 30.5m long, with a non-uniform bed profile in the longitudinal direction. The upstream section of 14.5m long is horizontal and the downstream part of 16m long has a bed slope of S = 0.03. The inflow conditions at the western end of the channel are u = 3.571m/s and h = 0.06m, which gives a Froude number of Fr = 4.65. The Manning’s coefficient is n = 0.019m1/3s-1. A highly complex flow profile is developed under these conditions. The incoming supercritical flow joins the subcritical flow developed in the horizontal reach through a hydraulic jump. As the bed slope changes from horizontal to S = 0.03 (steep slope under the current conditions), the flow will eventually develop into supercritical flow. And the only way to connect the subcritical flow in the horizontal reach and the downstream supercritical flow is through a hydraulic drop. Reproducing these complex flow features could be a crucial task for a numerical model.
Numerical simulation is carried out on a 61 × 5 uniform grid with Δx = Δy = 0.5m. This gives a channel width of 2.5m. The dimension in the y-direction does not affect the numerical results as this is actually a 1D problem. No specific conditions are needed at the eastern outflow boundary as the flow automatically evolves into supercritical flow after the hydraulic drop. Slip boundary conditions are assumed at the northern and southern channel walls. Initially the water depth and velocity in the entire domain are assumed to be the same as those prescribed at the inflow boundary. 
The numerical model is run until t = 270s after the steady-state solution is achieved, again defined by R < 1 × 10-8. Figure 12 illustrates the convergence history. Figure 13 shows the water surface profile along the central line of the channel, comparing with an analytical solution obtained by numerically integrating the general equation of gradually varied flow incorporated with the hydraulic jump formula [26]. The surface profile is characterized mainly by a hydraulic jump in the horizontal channel reach and a hydraulic drop around the turning point where the bed slope changes from horizontal to steep. Before the jump, the inflow depth increases through an H3 profile until the first sequent depth of the jump is reached. After the jump and before the drop, an H2 profile is developed. And after the drop, a S2 curve transits the flow to the supercritical flow depth corresponding to the prescribed flow conditions. The resulting profile is as expected and agrees well with the analytical approximation.
4.4 Dam Break in a Channel with a Local Constriction

The current numerical model is used to reproduce an experimental dam-break wave through a channel with a local constriction, proposed by CADAM workshop [24]. The experiment setup is illustrated in Figure 14, in which a 0.5m wide horizontal channel is separated into a reservoir and floodplain by a gate (dam) at 6.1m downstream of the western boundary. A channel constriction of 1.0m long and 0.1m wide is installed at 7.9m downstream of the gate. After the constriction, the channel returns back to the original width. All the transition walls are in 45o with the channel walls.
Initially, still water is 0.3m deep upstream of the gate and the floodplain downstream of the gate is wetted by 0.003m deep still water. Western, northern and southern boundaries are assumed to be reflective walls. Transmissive boundary conditions are imposed at the eastern boundary. The Manning’s coefficient is set to 0.01m1/3s-1 in the entire domain. The gate is removed entirely at t = 0.
Numerical simulation of the dam-break waves is carried out on a uniform grid with Δx = 0.05m and Δy = 0.0125m. The predicted 3D water surface elevation and corresponding depth contours are presented in Figure 15 at sample output times. After sudden collapse of the dam, a wall of water rapidly propagates downstream as a shock-type wave. Associated with the shock front, a rarefaction is formed and travels upstream. The shock front reaches the channel constriction at t = 4s and a reflected shock is immediately developed and starts to propagate upstream. Part of the original shock front past through the constriction and continues traveling downstream towards the eastern boundary. Complicated wave patterns are formed due to wave diffraction and interactions. Time history of water surface elevation is recorded at four gauge points located at 1.0m upstream the gate, 6.1m, 8.6m and 10.5m downstream the gate, respectively, along the central line of the channel. Figure 16 shows the comparison of predicted time histories and experimental measurements. The arrival time of shock front is accurately predicted, which is essential for dam-break wave simulation [27]. The numerical predictions generally agree with the numerical data. Certain discrepancies are also predicted by Goutal and Maurel [27] using a different numerical approach.
5. Conclusions

This paper has presented a shallow flow model, NewChan, developed for simulating complex open channel flows. Herein, we highlight two new features of the model, which are the new flux and source term balanced shallow water equations for simulations on domains with irregular bed topography and the simple local modification method for treating curved boundary problems. The new hyperbolic formulation of the balanced shallow water equations is solved using a high-resolution finite volume Godunov-type method incorporated with the HLLC approximate Riemann solver on Cartesian uniform grids. Second-order accuracy of the numerical scheme is achieved by a Runge-Kutta time integrating approach. The model is validated against several benchmark tests and the results compare very well with theoretical, alternative numerical solutions and/or experimental measurements. Even though the model is designed for simulating complex open channel flows, it is a robust, efficient and accurate numerical tool directly applicable to predict shallow flow hydrodynamics in more general cases, e.g. flows in the rives, lakes, estuaries, etc. In the future, upon proper implementation of a numerical technique for wetting and drying, NewChan can be also used for flood simulation, e.g. predicting flood flows onto floodplains through a breach of a flood defense.
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Figure 1  Definition sketch of bed topography for the shallow water equations.
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Figure 2  Local boundary modification method for a Cartesian grid model.
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Figure 3  Tidal wave propagating in a channel with irregular bed profile.
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Figure 4  Oblique hydraulic jump: sample computational grid.
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Figure 5  Oblique hydraulic jump: convergence history.
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Figure 6  Oblique hydraulic jump: 3D water surface predicted on a 160 × 120 grid.
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Figure 7  Oblique hydraulic jump: velocity vectors near to the inclined wall.
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(a) 40 × 30 grid
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(b) 80 × 60 grid
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Figure 8  Oblique hydraulic jump: depth contours and central water surface profiles on different grids.
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Figure 9  Oblique hydraulic jump: convergence history for the case without boundary treatment.
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Figure 10  Oblique hydraulic jump: results without boundary treatment.
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Figure 11  Oblique hydraulic jump: velocity vectors near to the inclined wall without boundary treatment.
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Figure 12  Hydraulic jump and drop: convergence history.

[image: image87.wmf]
Figure 13  Hydraulic jump and drop: surface profile.
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Figure 14  Dam break: experimental setup.
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(a) t = 4.0s
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Figure 15  Dam break: 3D surface elevation and depth contours at different output times.
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(a) Gauge 1
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(c) Gauge 3
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Figure 16  Dam break: comparison between predicted time history of water surface elevation and experimental measurements at four gauge points.
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