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1 Introduction

As the information technology infrastructure of an organisation increases in size
and complexity, the access control policies it needs will grow correspondingly
more complex. In a service-oriented environment, organisations can quickly come
together to work in virtual organisations (VOs), with all the resource and infor-
mation sharing that that entails. The structure of these VOs may be constantly
changing, as companies join to provide necessary new skills, or members com-
plete their part of a task and withdraw from the VO. The access control policy
of the VO will be a composite of relevant parts of the policies from the individual
organisations. It will therefore also be continuously evolving, as new members
provide new resources and leaving members remove resources. We present here
initial progress towards developing tool support for building and maintaining
these access control policies.

XACML [16] has recently emerged as a de facto standard access control policy
language in service-oriented environments. The benefits of XACML are consid-
erable: it is very flexible, and policies may refer to other policies, which may be
in remote locations. XACML therefore facilitates the development of larger poli-
cies from distributed component policies. Although the single standard language
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XACML offers makes the combining of these policies more straightforward, the
developer is still faced with a difficult task. This is particularly true when work-
ing in the context of a VO. Parts of the overall access control policy may be
developed and maintained by each partner organisation, and it may be that no
one person is solely responsible for the resultant policy. Updates to policies need
to be handled carefully, as policies may refer to each other. A developer needs to
have confidence in a policy before it is deployed. Validating policies to build this
confidence can be done in various ways. They can be tested against individual
access requests or scenarios; they can be checked for internal consistency or co-
herence; or they can be checked against some conditions imposed on the access
control policy, such as for example legal obligations.

What is required is a formal model to support the full range of analysis
techniques. To be most effective strong tool support must also be provided. At
present research into tools supporting such pre deployment analysis is at an early
stage. In this paper we present some of our preliminary results on automated
analysis and validation of access control policies. Some promising complementary
approaches are considered in Section 5.

We translate policies into the formal modelling language VDM-SL — the
language of VDM. We show how we can test policies against individual requests,
compare policies with each other and check the internal consistency of policies.
The structure of the XACML is preserved in the translation, and therefore a
faulty policy can be fixed within the VDM framework and translated back to
XACML.

In Section 2 we give an overview of XACML. Section 3 gives a VDM-SL de-
scription of the data types and algorithms common to all access control policies.
Section 4 shows how these data types may be instantiated to describe a specific
policy and how the VDMTools framework may be used to test the instantiated
policies, and compare them with each other. We also consider formalising the
requirements on the example policy, describe our progress towards automatically
extracting VDM-SL specifications from XACML documents. Section 5 describes
related work and makes some comparisons. Section 6 draws some conclusions
and describes several promising avenues for further work. A preliminary version
of this work appeared as [3].

2 XACML and access control

XACML [16] is the OASIS standard for access control policies. It is written in
XML and provides two languages: a policy language for describing access control
policies, and a request language for interrogating these policies, to ask the policy
if a given action should be allowed.

A simplified description of the way XACML policies work is as follows. An
XACML policy has an associated Policy Enforcement Point (PEP) and a Policy
Decision Point (PDP) (See Figure 1.) The PDP can be thought of as holding
the policy. The PEP intercepts access requests from users. It translates them
into the XACML request language and sends the XACML request to the PDP.
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The PDP evaluates the request with respect to the access control policy it holds
and sends a response to the PEP. The request is then enforced (permitted or
denied) by the PEP. In this way the combined effect of the PEP and the PEP
is to act as a sort of execution monitor for the system, permitting only allowed
actions.

PDP

XACML XACML
request response

access request access response
%4(]» PEP P Resource

(permit/deny)

Fig. 1. XACML overview.

We will assume that a PDP contains a set of Policies!, each of which contain
a set of Rules?. Rules in XACML contain a target (which further contains sets
of resources, subjects and actions) and an effect (permit or deny). If the target
of a rule matches a request, the rule will return its effect. If the target does not
match the rule not applicable is returned.

As well as a set of rules, a policy contains a rule combining algorithm and a
target. All rules within a policy are evaluated by the PDP. The results are then
combined using the rule combining algorithm,and a single effect is returned.

The PDP evaluates each policy and combines the results using a policy com-
bining algorithm. The final effect is then returned to the PEP to be enforced.
We choose to model a deny biased PEP: if permit is received from the PDP then
the PEP will permit access; any other response will cause access to be denied. A
permit biased PEP will only deny requests for which the PDP decision is deny.

More precisely, when a request is made, the PDP will return exactly one of:

— PERMIT: if the subject is permitted to perform the action on the resource,

— DENY: if the subject is not permitted to perform the action on the resource,
or

— NOTAPPLICABLE: if the request cannot be answered by the service.

The full language also contains the response Indeterminate. This is triggered by
an error in evaluating the conditional part of the rule. In this work we make
the simplification that requests and rules are environment independent. This
still allows us to consider a rich class of policies. In particular, it allows us

! This means that a single access control policy can be made up of a number of
XACML policies.

2 Strictly, it contains a set of policy sets, each of which contain a set of policies.
Each policy contains a set of rules. Extending our model to include this additional
complexity would be straightforward.
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to omit the environment and condition components. We therefore do not use
INDETERMINATE.

A full XACML request includes a set of subjects (e.g. a user, the machine the
user is on, and the applet the user is running could all be subjects with varying
access rights) to perform a set of actions (e.g. read, write, copy) on a set of
resources (e.g. a file or a disk) within an environment (e.g. during work hours
or from a secure machine). It may also contain a condition on the environment,
to be evaluated when the request is made.

3 Modelling XACML

The Vienna Development Method (VDM) [14,8] is a model-oriented formal
method incorporating a modelling or specification language (VDM-SL) with for-
mal semantics [1], a proof theory [2] and refinement rules [14]. VDM’s origins
lie in work on the formal definition of programming languages and compilers at
IBM’s Vienna Laboratory in the 1970s [13]. The characteristics of the specifica-
tion language make it well suited for our work, in which we effectively provide a
VDM semantics for a subset of XACML. In this paper, we will use the mathe-
matical syntax of ISO Standard VDM-SL [1].

3.1 The VDM-SL language

A VDM-SL model is based on a set of data type definitions, which may include
invariants (arbitrary predicates characterising properties shared by all members
of the type). Functionality is described in terms of functions over the types, or
operations which may have side effects on distinguished state variables. Func-
tions and operations may be restricted by preconditions, and may be defined
in an explicit algorithmic style or implicitly in terms of postconditions. The
models presented in this paper use only explicitly-defined functions. We remain
within a fully executable subset of the modelling language, allowing our models
of XACML policies to be analysed using an interpreter.

VDM has strong tool support. The CSK VDMTools (www.vdmbook. com) in-
clude syntax and type checking, an interpreter for executable models, test script-
ing and coverage analysis facilities, program code generation and pretty-printing.
These have the potential to form a platform for tools specifically tailored to the
analysis of access control policies in an an XACML framework.

3.2 XACML in VDM-SL

An access control policy is essentially a set of complex data types, and the
XACML standard is a description of these data types and of the evaluation
functions over them. Thus VDM-SL, with its separation of data types and func-
tionality, is a suitable language to describe access control policies.

We now describe the data types and functionality of an XACML policy. The
description is presented in VDM-SL. We impose the simplifications mentioned
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in the previous section. In particular, we limit targets to sets of subjects, actions
and resources, and exclude consideration of the environment. This means we
only consider the effects permit, deny and not applicable.

Data types: The first definition introduces the type PDP. Elements of this type
are composite values (pairs), and each field is labelled. The first field has label
policies and contains a set of the elements of the type Policy. The second field
contains a single enumerated value® of the type CombAlg, defined immediately
below.

PDP :: policies : Policy-set
policyCombAlg : CombAlg

CombAlg = DENYOVERRIDES | PERMITOVERRIDES

DENYOVERRIDES and PERMITOVERRIDES will act as pointers to the appropriate
algorithms, to be defined later. Other possible combining algorithms are given
in [16] but for simplicity we will model only these two here.

A policy contains a target (the sets of subjects, resources and actions to which
it applies), a set of rules, and the name of a rule combining algorithm.

Policy target : Target
rules : Rule-set
ruleCombAlg : CombAlg

Target ::  subjects : Subject-set
resources : Resource-set
actions : Action-set

Each rule has a target and an effect. If a request target overlaps with the rule
target, in a way made precise by the function targetmatch, then the rule effect
is returned. Otherwise not applicable is returned. The brackets [..| denote that
the target component may be NULL. In this case, [16] requires that the value is
the target of the parent policy.
Rule :: target : [Target]
effect : Effect

The effect of the rule can be permit, deny, or not applicable. These are modelled
as enumerated values.

Effect = PERMIT | DENY | NOTAPPLICABLE

Functionality: Instances of the above types are evaluated with respect to a
request, which is simply a target:

Request :: target : Target

3 In VDM-SL, The only operator defined over enumerated values is equality.
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We begin with the component function targetmatch. In [16] a request target
(targetl) and a rule/policy target (target2) are said to match if they each have
at least one element in common.

targetmatch : Target x Target — Bool

targetmatch(targetl, target2) 2
(targetl.subjects N target2.subjects) # { } A
(targetl.resources N target2.resources) # { } A
(targetl.actions N target2.actions) # { }

A request is evaluated against a rule using evaluateRule. If the rule target is NULL
the targets are assumed to match, since the parent policy target must match. If
the targets match the effect of the rule is returned, otherwise NOTAPPLICABLE
is returned.

evaluateRule : Request X Rule — Effect

evaluateRule(req, rule) 2
if rule.target = NULL
then rule.effect
else if targetmatch(req.target, rule.target)
then rule.effect
else NOTAPPLICABLE

A policy is invoked if its target matches the request. It then evaluates all its
rules with respect to that request, and combines the returned effects using its
rule combining algorithm.

evalPol : Request x Policy — Effect

evalPol(req, pol) 2
if targetmatch(request.target, policy.target)
then cases pol.ruleCombAlg of
DENYOVERRIDES — evalRulesDenyQOverrides(req, pol.rules)

PERMITOVERRIDES — evalRulesPermitOverrides(req, pol.rules)
others NOTAPPLICABLE
end

else NOTAPPLICABLE

The implementation of the deny override algorithm is

evalRulesDenyQuverrides : Request X Rule-set — Effect

evalRulesDenyOverrides(req, rs) 2
if 3r € rs - evaluateRule(req, r) = DENY
then DENY
else if 3r € rs - evaluateRule(req, r) = PERMIT
then PERMIT
else NOTAPPLICABLE
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If any rule in the policy evaluates to DENY, the policy will return DENY. Oth-
erwise, if any rule in the policy evaluates to PERMIT, the policy will return
PERMIT. If no rules evaluate to either PERMIT or DENY, the policy will return
NOTAPPLICABLE.

The permit override algorithm (omitted) is identical in structure, but a single
PERMIT overrides any number of DENYs.

The evaluation of the PDP and its rule combining algorithms has an equiv-
alent structure to the policy evaluation functions already presented.

evaluatePDP : Request X PDP — Effect
evaluatePDP(req, pdp) £

cases pdp.policyCombAlg of

DENYOVERRIDES — evalPDPDenyOverrides(req, pdp)
PERMITOVERRIDES — evalPDPPermitOverrides(req, pdp)
others NOTAPPLICABLE

end

evaluate PDPDenyQOuverrides : Request x PDP — FEffect

evaluatePDPDenyQuerrides(req, pdp) 2
if dp € pdp.policies - evalPol(req, p) = DENY
then DENY
else if dp € pdp.policies - evalPol(req, p) = PERMIT
then PERMIT
else NOTAPPLICABLE

The above functions and data types are generic. Any XACML policy in VDM-
SL will use these functions. In the next section we show how to instantiate the
data types with a particular policy.

4 Populating and testing the policy

In this section we present the initial requirements on an example policy. In
Section 4.1 we instantiate the model presented in Section 3.2 with a policy
aimed at implementing these requirements. In Section 4.2 and Section 4.3 we
show how we can use the testing capabilities of VDMTools [5] to find errors in
these policies. In Section 4.4 we consider how we might formalise the properties
of Section 4.1 in order to check them automatically and in Section 4.5 we discuss
the our work on automatic translation from XACML to VDM-SL.

4.1 A simple example

This example is taken from [6], and describes the access control requirements
of a university database which contains student grades. There are two types of
resources (internal and external grades), three types of actions (assign, view and
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receive), and a number of subjects, who may hold the roles Faculty or Student.
We therefore make the following definitions to produce a derivative specification
from our general model.

Action = ASSIGN | VIEW | RECEIVE

Resource = INT | EXT
Subjects are enumerated values:
Subject = ANNE | BOB | CHARLIE | DAVE

We populate the student and faculty sets as:

Student : Subject-set = { ANNE, BOB}
Faculty : Subject-set = {BoB, CHARLIE}

making Bob a member of both sets. In practice, an access control request is
evaluated on the basis of certain attributes of the subject. What we are therefore
saying here is that the system, if asked, can produce evidence of Anne and Bob
being students, and of Bob and Charlie being faculty members.

Informally, we can argue that populating the student and faculty sets so
sparsely is adequate for testing purposes. All rules we go on to define apply
to roles, rather than to individuals, so we only need one representative subject
holding each possible role combination.

The properties to be upheld by the policy are

1. No students can assign external grades,

2. All faculty members can assign both internal and external grades, and

3. No combinations of roles exist such that a user with those roles can both
receive and assign external grades.

Our initial policy (following the example in [6]) is

Requests for students to receive external grades, and for faculty to assign
and view internal and external grades, will succeed.

Implementing this policy naively leads to the following two rules, which together

will form our initial (lawed) policy. Students may receive external grades,?
StudentRule : Rule = ((Student, EXT, RECEIVE), PERMIT)

and faculty members may assign and view both internal and external grades.
FacultyRule : Rule = ((Faculty, {INT, EXT}, { ASSIGN, VIEW}), PERMIT)

The policy combines these two rules using the permit overrides algorithm.
The target of the policy is all requests from students and faculty members.

4 The correct VDM-SL description is
StudentRule : Rule = mk_Rule(mk_Target(Student, {EXT}, {RECEIVE}), PERMIT)
For ease of reading we omit the mk_ constructs and brackets around singleton sets.
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PolicyStuFac : Policy =
((Student U Faculty, {INT, EXT}, { ASSIGN, VIEW, RECEIVE}),
{StudentRule, FacultyRule}, PERMITOVERRIDES)

In fact, this policy would have the same effect for all requests if the two rules
were combined using the deny overrides algorithm. This is because there is no
request which one rule permits and another denies.

The PDP is a collection of policies; in this case only one.

PDPone : PDP = (PolicyStuFac, DENYOVERRIDES)

We use the deny overrides algorithm here but because there is only one policy,
there will only be one effect, and no opportunity for overriding.

4.2 Testing the derivative specification

VDMTools [5] provides considerable support for testing VDM specifications.
Individual tests can be run at the command line in the interpreter. The test
arguments can be also read from pre prepared files, and scripts are available to
allow large batches of tests to be performed.

A systematic approach to testing requires that we have some form of oracle
against which to judge the (in)correctness of test outcomes. This may be a
manually-generated list of outcomes (where we wish to assess correctness against
expectations) or an executable specification (if we wish to assess correctness
against the specification). In this section we use a list of expected results as
our oracle. Section 4.3 uses one version of a VDM-SL specification as an oracle
against another version.

Tests on PDPone are made by forming requests and evaluating the PDP
with respect to these requests, using the function evaluatePDP from Section 3.2.
Below we show four example requests and the results anticipated by the three
properties in Section 4.1. The results from PDPone are in the third column.

Request Prediction = PDPone
(ANNE, EXT, ASSIGN) DENY NOTAPPLICABLE
(Bos, EXT, ASSIGN) DENY PERMIT
(CHARLIE, EXT, ASSIGN) PERMIT PERMIT
(DAVE, EXT, ASSIGN) DENY NOTAPPLICABLE

In the first test, PDPone returns not applicable when user Anne (a student)
asks to assign an external grade. This is because there is no rule which specifically
covers this situation. A deny biased PEP would resolve this by denying the
request. We choose to keep the not applicable result to give the tester more
comprehensive information.

The second test points out an error, because Bob (who is both a faculty mem-
ber and a student) is allowed to assign external grades, in violation of property
one, which states that no student may assign external grades. This policy has
been written with an implicit assumption that the sets student and faculty are
disjoint. Constraining these sets to be disjoint when we populate them allows us
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to reflect this assumption. In practice this constraint would have to be enforced
at the point where roles are assigned to individuals rather than within the PDP.

The third test is permitted, as expected, since Charlie is a member of faculty,
and the fourth test returns not applicable, because Dave is not a student or a
faculty member.

Multiple requests The policy as defined can be broken if multiple access con-
trol requests are combined into one XACML request. For example the request
below (identified in [6])

(ANNE, {EXT}, {ASSIGN, RECEIVE})

is permitted. As pointed out in [6], this breaks the first property, because Anne
(a student) is piggybacking an illegal request (assigning an external grade) on a
legal one (receiving an external grade). In future, therefore, we make the assump-
tion that the PEP only submits requests that contain singleton sets. Given this
assumption, we can limit the test cases we need to consider to those containing
only single subjects, actions and resources.

4.3 Comparing specifications of PDPs

Here we show how we can determine the differences between two versions of a
policy. In effect, we use the results from the first version as an oracle, compare
them with the results of the second version and alert the user to any inconsis-
tencies.

To demonstrate this, we suppose (following [6]) that teaching assistants (TAs)
are to be employed to help with the internal assignment of grades. They are
not, however, allowed to help with external assignment of grades. A careless
implementation, that merely included the names of the TAs as faculty members,
would overlook the fact that students are often employed as TAs.

A more robust implementation, that makes TAs a separate role and develops
rules specific for them, is given below. Note that in TArule2, TAs are explicitly
forbidden to assign or view external grades; their role is restricted to dealing
with the internal grades.

TArulel : Rule = ((TA,{INT}, { ASSIGN, VIEW}), PERMIT)
TArule2 : Rule = ((TA, {EXT}, {ASsIGN, VIEW}), DENY)

The rules are combined into a (TA-specific) policy

PolicyTA : Policy =
((TA, {InT, EXT}, { ASSIGN, VIEW, RECEIVE}),
{TArulel, TArule2}, PERMITOVERRIDES)

which is combined with PolicyStuFac from Section 4.1 to give a new Policy
Decision Point:

PDPtwo : PDP = ({ PolicyTA, PolicyStuFac}, DENYOVERRIDES)

This new PDP can of course be tested independently, but it can also be com-
pared with the previous one. We do this with respect to a test suite. The policies
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are small and so this test suite can be comprehensive. In order to have a fully
instantiated policy to test, we populate the roles as

Student : Subject-set = { ANNE, BoB}
Faculty : Subject-set = { CHARLIE}
TA : Subject-set = {BoB, DAVE}

taking care that there is a person holding each possible combination of roles
that we allow. Every request that each person can make is considered against
each PDP. This is easily automated using a simple shell script, which creates
every possible request and feeds them all to the PDP. The observed changes are
summarised below.

Request PDPone PDPtwo
(BoB, INT, ASSIGN) NOTAPPLICABLE PERMIT
(Bos, INT, VIEW) NOTAPPLICABLE PERMIT
(BoB, EXT, AssIGN) NOTAPPLICABLE DENY
(Bos, EXT, VIEW) NOTAPPLICABLE DENY
(DAVE, INT, ASSIGN) NOTAPPLICABLE PERMIT
(DAVE, INT, VIEW) NOTAPPLICABLE PERMIT
(DAVE, EXT, ASSIGN) NOTAPPLICABLE DENY
(DAVE, EXT, VIEW) NOTAPPLICABLE DENY

As a TA, Bob’s privileges now include assigning and viewing internal grades,
as well as all the privileges he has as a student. Everything else is now explicitly
denied.

All requests from Dave, who is a now TA but not a student, are judged not
applicable (and consequently denied) by the first policy, but the second policy
allows him to view and assign internal grades. It explicitly forbids him to assign
or view external grades.

Internal consistency of a PDP: We consider a set of rules to be consistent
if there is no request permitted by one of the rules which is denied by another
in the set. A set of policies is consistent if there is no request permitted by one
of the policies which is denied by another in the set.

Rule consistency within a policy and policy consistency within a PDP can
each be checked using the method outlined above, using the functions evalu-
ateRule and evaluatePol from Section 3.2.

4.4 Satisfaction of Policy Requirements

In Section 4.1 we gave a formalisation of a specific policy for the student as-
signment example. We identified three properties to be upheld by the policy,
expressed informally. We validated the VDM model of a policy by testing and
manually inspecting the results of the tests to gain confidence in the conformance
to informal requirements (Section 4.2). It is interesting to consider the formali-
sation of these requirements and the potential for checking them automatically
when policies are developed or updated.
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Using a formal model encourages us to consider the precise meaning of pol-
icy requirements. For example, the first property in Section 4.1 is “ No students
can assign external grades”. This might be considered to be primarily a require-
ment on a policy (or a PDP embodying a policy), so it might be expressed as
follows (for PDPone):

—3s € Student - evaluatePDP((s, EXT, ASSIGN), PDPone) = PERMIT

The informal statement of the requirement, however, relates to the overall
effect of the policy. In XACML this is not necessarily the same thing as the
value returned by the PDP; decisions are implemented at the enforcement point
(PEP). Since the formal constraint above allows a student’s request to assign
external grades to yield not applicable, the PEP may yet allow the access. The
formalisation above is therefore valid if the PEP is deny biased, but not if it is
permit biased.

Formal versions of the other two requirements from our example are stated
below, again assuming a deny biased PEP:

Vf € Faculty -
evaluatePDP((f,INT, ASSIGN), PDPone) = PERMIT A
evaluatePDP((f, EXT, ASSIGN), PDPone) = PERMIT

- Ju € Student N Faculty -
evaluate PDP((u, EXT, ASSIGN), PDPone) = PERMIT A
evaluate PDP((u, EXT, RECEIVE), PDPone) = PERMIT

Being able to formalise the requirements at this level allows us to check
conformance by encoding the requirements as boolean functions in the model.
In general, for a larger-scale system, evaluating those functions will amount to
an exhaustive test of the request space. In spite of this, it may sometimes be
feasible to make the appropriate checks when policies are updated.

4.5 Automatic generation of the VDM-SL from XACML

The GOLD project [18,4] has been researching into enabling technology to en-
able the formation, operation and termination of VOs within the high-value
chemicals industry. Access control is a key issue within GOLD. To support this
work we have produced an experimental Java API for automatic generation
of the VDM-SL representation of an access control policy from a number of
XACML policies. It produces a VDM-SL description representing the combined
set of XACML policies. It operates on policies which conform to the XACML
role based access control profile [15] (XACML RBAC). The RBAC profile insists
that permissions are assigned to roles, and that roles are assigned to individu-
als, rather than that permissions are assigned directly to individuals. It requires
three XML files for each role. The role declaration file simply names the role and
points to the relevant permissions file for that role. The permissions file contains
the policy for that role. The information extracted from the permissions file is
used to create instances of the VDM types Rule and Policy. The role assignment
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file contains a list of the user identities of permitted holders of that role. It is
used to retrieve the target users for that role.

The API exposes a WSDL interface which, in combination with VDMTools,
can be used to streamline the validation of XACML policies in each of the ways
outlined in Sections 4.2 and 4.3. It affords the developer of a policy a quick way to
test (prior to deployment) that certain access requests are permitted or denied.
In addition it can be used to compare policies before and after an alteration, to
confirm the extent of any change.

5 Related Work

There is a large body of work in the development and analysis of access control
policies. The work most closely related to our own takes the approach of model
checking. We identify three strands whose aims are closely aligned with our own.

In [10] the authors propose a simple propositional access control language
called RW. An access control system written in RW includes a set of agents, a set
of propositional variables and two possible actions R and W, which allow agents
to read and overwrite the values of propositional variables. In [20] it is shown
how access control systems written in RW may be model checked with respect
to a goal, where a goal involves a combination of reading and manipulation
propositional variables. In [19] it is shown how access control systems written in
RW may translated into XACML.

In providing a translation from XACML to VDM-SL, we are able to consider
policies already written in XACML. This is in keeping with a long term aim
of our work, which is to provide tools which make the benefits of model based
specification and testing available and useful to developers.

In [6] the authors present Margrave — a tool for analysing policies written
in XACML. Margrave transforms XACML policies into Multi-Terminal Binary
Decision Diagrams (MTBDDs) and users can verify policies against properties
using these representations.

In [11], Alloy [12] is used to verify access control policies. The authors develop
a language for describing access control policies. Partial orderings are defined
over these policies. Properties of policies are encoded as propositions over these
partial orderings. These may be checked by translating both policies into the
Alloy language and using the Alloy Analyzer to check for refinement between
the policies.

The testing approach advocated in this paper can be complementary to a
model checking approach. Offering the developer the facility to check a XACML
policy against a range of carefully selected test cases, including pathological ones,
will be a relatively easy way to provide a developer with a first level of confidence
in their policy. Our work leaves open the possibility of model checking (and of
machine assisted proof) because, although we are using an executable abstract
model, it does have a formal semantics. Model checking VDM-SL specifications
is an area we hope to consider, and in this we hope to benefit from each of the
strands of work outlined above.
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6 Conclusions and Further Work

We have presented a formal approach to modelling and analysing access con-
trol policies. We have used VDM, a well-established method, as our modelling
notation. This has allowed us to use VDMTools to analyse the resultant formal
models. We have shown that rigorous testing of access control policies is possi-
ble within VDMTools, also that policies may be compared with each other and
checked for internal consistency.

Ongoing work is seeking to represent rules that are dependent on context.
This will require extending the VDM-SL model with environmental variables and
allowing rules to query these variables. In general, this will make the modelling of
very fine grained policies possible. For example, we could model policies which
permitted dynamic role activation and deactivation, by keeping track of the
active roles of a user. Modelling attribute based access control, where decisions
are made on the basis of attributes of the users and resources, rather than user
and resource identifiers, is another related line of research.

With larger policies, testing all possible requests may become time consum-
ing. Further work will look at techniques and tools for developing economical test
suites for access control policies, perhaps by focusing on the significant resources
or actions. It is also possible that resources may be categorised, similar to the
way that roles categorise people. If all resources in a category were treated in
the same way by a policy, our tests need only consider a representative resource
from each combination of categories. We expect to benefit from work combining
formal methods and testing, such as that reported in [9] and [17].

Following the approach of role based access control, the rules we have con-
sidered so far all contain a role as the Subject-set in the target. However in the
XACML specification the Subject-set of a rule can be an arbitrary set of sub-
jects. If this is the case, then in general every possible combination of subject,
resource and action would need to be tested, rather than just a single represen-
tative from each role combination.

It may be possible to validate access control policies against workflow de-
scriptions. For example a BPEL description of a workflow contains information
about resource accesses necessary by some user or role as part of a particular
task. We can use this information to generate tests for the VDM-SL description.
This will allow us to check that the policies that govern access to those resources
allow a particular workflow to proceed to completion. It may be possible to use
these tests to generate a least-privilege access control policy.

Automating the translation from VDM-SL to XACML would allow a devel-
oper to make changes to VDM-SL specifications and then generate the corre-
sponding XACML.
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