CS-TR-686, Department of Computing Science, University of Newcastle upon Tyne, 1999

UNIVERSITY OF
NEWCASTLE

COMPUTING SCIENCE

An asynchronous communication
medanism using sdf-tim ed circuits

F. Xia, A. Yakovlev, D. Shang, A. Bystrov, A. Koelmans and
D.J.Kinniment

TECHNICAL REPORT SERIES
No. CS-TR-686
October, 1999

CS-TR-686, Department of Computing Science, University of Newcastle upon Tyne, 1999

Contad:
fel.xia@ncl.acuk
http://www.cs.ncl.ac.uk/reseach/projeds/comfort.html

Copyright © 1999University of Newcastle upon Tyne

Published by the University of Newcastle upon Tyne,

Department of Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, UK

CS-TR-686, Department of Computing Science, University of Newcastle upon Tyne, 1999

An asynchronous communication medanism using self-timed
circuits

F. Xia, A. Yakovlev, D. Shang, A. Bystrov, A. Koelmans and D.J.Kinniment
University of Newcastle upon Tyne

Indexing terms: Asynchronous data cmmunicaions, concurrent systems, arbiters, metastability, speed
independent circuits, Petri nets, STGs.

1 Abstract

An asynchronous data communicaion mechanism (ACM) using self-timed circuits is presented.
Mutual exclusion elements are used to concentrate potential metastability to two discrete points that it
can be resolved entirely within the mecdhanism itself. Self-timed circuits allow the minimisation of the
interfacebetween the reader and writer processes and the mechanism. Initial analysis siows that this VLS
solution is more robust with regard to steaing logic metastability, and can potentialy run faster than
similar solutions under fundamental mode assumptions. It is therefore more suitable for use in on-chip
multi -processng systems.

2 Introduction

Data coommunication between processes running in different procesors has been extensively studied,
espedaly in distributed and red-time systems. The minimal form of this problem concerns the passng of
data between two distributed single-thread processes. One provides the data, which is used by the other.
Thisis <hematicdly shownin Figure 1.

Figure 1 Pasdng data between two processes.

In distributed systems, processors may not always sare a @mmon clock. When the two processesin
Figure 1 are not synchronised, some kind of intermediate data repaository, usualy in the form of shared
memory, is often needed between them to fadlitate the data passage. This is <hematicdly shown in

Figure 2.
datarepaository
processl (shared memory) process?2

Figure 2 Passng data via shared memory.

An asynchronous data communication mechanism (ACM) is a scheme which manages the transfer of
data between two processes not necessarily synchronised for the purpose of data transfer. It is assumed
that the data being passed consists of a stream of individual items of a given type. It is also assumed that
the processes in gquestion are single thread cycles, one providing an item of data during ead cycle, the
other making wse of an item of data during eat cycle. The provider of datais known as the “writer” of the
ACM and the user of datais known asthe “reader” of the ACM.

Many ACMs have been propased in the literature. Since shared memory may have accss conflicts
when the processes are not synchronised, much work has been done to find techniques whereby such
conflicts are avoided and the shared memory is made “regular” and “atomic” [1]. For instance, an obvious
way to proted shared memory isto put it into an explicit criticd sedion for ead process[2].

Using criticd sedions, however, may not be accetable in red-time systems becaise the
unpredictable waiting time makes it impossble to estimate the predse temporal charaderistics of a
process It also makes the writer temporally dependent on the reader and/or vice versa. Such dependence
may be in conflict with red-time requirements edfied for the reader and/or the writer.

For instance, in the Pathfinder misson to Mars, where shared memory used for data communicaions
was managed by a complex arrangement of criticd sedions, priorities and interrupts, the long critica
sedions on the shared memory conflicted with the red-time requirements of subsystems, causing
occasional system failures[3].

Contad: fei.xia@ncl.acuk

CS-TR-686, Department of Computing Science, University of Newcastle upon Tyne, 1999

In certain applicaions, reference data needs to be passed from one processto another. Such data may
be generated irregularly and used irregularly, with the writer and reader processes mainly preoccupied
with other adivities. For instance, in the roba simulation system of [4], the roba processs pass their
location data to ead other and this data is used as reference At the time of use, only the latest item of
such dataiis of relevance, any previous non-used items having been superseded by it. In other words, when
aroba processneeds to know where another roba is locaed, only present locaion is of interest. On the
other hand, for a simulation of multiple robas in a workspaceto be redigtic, the roba processes must be
temporally independent from ead other permanently, even when data is being passed from one to another.
An ACM between two such processes would need to keep only the latest item of data from the writer, and
cannot employ criticd sedionsin the data acces

Such techniques as the multiple “dot” (or “tradk”) medchanisms described in [5], [6] and [7] redise
reguar and atomic registers in the data path between asynchronous concurrent processes by employing
“safe” bit registersto convey the values of hit-size @ntrol variables. They avoid confli cts on data memory
without resorting to explicit criticd sedions. These solutions, however, make fundamental mode
asamptions on the operations of the ntrol variables. In other words, they shift the problem of
synchronisation from the data memory to the wntrol logic, which typicdly consists of bit-sized shared
variables. The general scheme of these data communication mechanismsis siown in Figure 3.

G

’ control variables ‘

datain shared memory
Figure 3 ACM using shared memory and control variables.

Fundamental mode asumptions on control variable operations do not hold when such shared
variables beaome metastable, which is possble in the total absence of synchronisation between the
processs.

The non-blocking FIFO described in [8] aso avoids criticd sedions in data acces However, the
FIFO arrangement introduces latency which is not suitable for reference data gpli cations.

This paper presents an ACM solution, implemented entirely in VLSI circuits, that provides a flexible
choice to pdentia users between minimal criticad sedions on bit control variables and full temporal
independence between the accss processes. Improved handling of metastability using arbiters and the
employment of self-timed, spead independent (SI) circuits make this possble. It is envisaged that this
solution can beamme an element in a hardware library which supparts data communicaions between
procesor or other IP cores implemented on the same dip [9]. It will be espedally useful in systems
where there ae hard red-time requirements.

3 Background studies

A particular ACM solution from the literature has been chosen as a basis of the new design. This is
briefly described. The basic properties of ACMs, some of which have been studied in various published
work, are mlledively introduced. Metastahility on control variablesis aso discussed in some detail .
3.1 The4-dot ACM algorithm

Of the multiple dot or tradk ACMs that provide fully asynchronous operations, by far the simplest
and easiest to implement in hardware is the Simpson’s 4-slot mechanism found in [5]. This mechanism is
adapted here to produce our hardware ACM.

Writer Reader
wr: d[n, §n]] :=inpu ro:r:=I
wo: §[n] := gn] rl:v:=s
wl l:=njn:=r rd: output := d[r, v[r]]

Figure 4 Simpson’s 4-dot mecdhanism.

Figure 4 shows the dgorithm of the 4-dot mecdhanism. Here the writer and reader processes are single
thread loops with three statements ead. The medhanism maintains the storage of four data slots d[0, O] to
d[1, 1] and the control variables n, I, r, §0..1], and v[0..1], which are dther single bits or vedors of two
single bits. Thisis $iown schematicdly in Figure 5. The statements wr and rd are the data acceses and
the other statements are used by the writer and realer to chose slots and indicae such choices to the other
side.

3.2

CS-TR-686, Department of Computing Science, University of Newcastle upon Tyne, 1999

O e
n,I,r,s,andv\

> control
do,g variables
d[0,1]
d1,qg _—| data
d[1,1] - storage

Figure 5 Schematic of the 4-slot mechanism.
Propertiesof ACMs
The most significant properties of ACMs are listed below:

Asynchronism: An ACM should not require the reader and writer processs to be synchronised to
ead other permanently. If an ACM provides a complete temporal divide between the reader and
writer processes as $rown in Figure 6, so that the reader and writer processes are entirely temporally
independent from ead other, it is sid to be fully asynchronous or synchronisation free

NS g W

Figure 6 ACM providing temporal independenceto processes.

writer cycles reader cycles

ey
it

Data mherence Data wherenceis violated if at any time both writer and reader accessthe same data
storage location in the shared memory. In the dot-type mecdhanisms, this means that the writer and the
reader should not accessthe same slot simultaneously. A writer cycle may include adata wherence
violation if the writer accessconflicts with areader accessat the same dot. The same may be said of a
reader cycle. Data mherence can thus be quantitatively described by the rate of cycles not containing
violations to total cycles, from either the writer or the reader side. Data wherence is completely
maintained if the writer and reader do not accessthe same slot simultaneoudly at all, in which case the
data mherencerateis 1.

Data freshness Data freshnessdescribes how up to date aty item of data that the reader obtains from
the ACM is. In dot-type mechanisms, the latest data item is always found in the slot which the writer
accessd duringitslast cycle. Data freshnessis normally chedked just before areader accessand/or at
the beginning of a reader cycle. In this paper, the definition of data freshnessby Simpson in [10] is
used.

Data sequencing: Data sequencing is violated if the reader obtains data items in reverse order to that
in which they were written into the ACM by the writer. Data sequencing can be described
quantitatively by its violation rate.

Data loss Data loss occurs when some items written into the ACM by the writer are not eventually
obtained by the reader. Data losscan be described quantitatively by the rate of its occurrence

Datare-reading: Data re-reading occurs when the reader obtains an item which it has obtained during
an ealier cycle. Datare-reading can also be described quantitatively by the rate of its occurrence.

No redisable ACM can completely fulfil all the properties listed above. For instance, if an ACM is

fully asynchronous, data losswould be inevitable if the writer is faster than the reader and data re-reading
would be inevitable if the reader is faster than the writer. A clasdcd finite cgadty buffer (i.e. a k-place
FIFO) does not provide full asynchronism, becaise the writer is blocked when the buffer is full. On the
other hand, the non-blocking FIFO in [8] achieves full asynchronism by spedfying data lossand data re-
reading when necessary. In addition, the inherent latency of FIFOs means that data freshness siffersin any
FIFO design.

The 4-dot mechanism has been shown to maintain full data wherence ad data freshnessin [10],

[15], [1]] and [12] when the ACM is operating in fully asynchronous mode and when the fundamental
mode assumptions about the writer and reader statements hold.

CS-TR-686, Department of Computing Science, University of Newcastle upon Tyne, 1999

33 Metastability

The dot-type ACMs avoid criticd sedions in data slots by synchronising a data sot to an access
processduring the entire period d access(e.g. statement wr or rd in the 4-slot ACM). If during this access
the other access process wants to start accessng the data aeg it is direded to another slot. In effed,
criticd sedions exist in individual sots but not globally. The steaingis effeded by careful use of control
variables. In the 4-dot ACM these ae binary variables which are only changed one bit at any time. In
addition, for eat of these bits either the writer is in charge of changing it and the reader only references
in value, or viceversa. Since abit is the smallest granuarity possble in a digital system, it was reasoned
that the 4-dlot solution is maximising the aomicity of the data transfer.

Ultimately, a bit control variable needsto be implemented in hardware using a bit register in order for
the solution to be fully asynchronous in the sense of hard red-time. Such a register may be implemented
with D-type or transparent binary latch circuitry. For instance the latch in Figure 7 may be used to cary
out the inter-processassgnment statement, cl: y := NOT x, where both x and y are bit variables.

D Q | : Process2

Process1 | ¢l — clock/control Q[Ly

Figure 7 Concurrent processes communicating via alatch.

No fully asynchronous communicaion scheme cal avoid the posshility of metastability [13]. In the
dlot-type medchanisms, potential metastability happens at the bit registers implementing control variables.
For instance in the cae of the reader statement rO in Figure 4, the dock signal for the statement (r0)
comes from the reader process while the input signal (1) is set by the writer processduring statement wi.
If no synchronisation is permitted between the reader and writer processes, rO may arrive & the same time
asor very closeto a change of value of |, resulting in potential metastability at r.

If this metastability has not settled when the value of r is used in statement rd, more than one data slot
may be accesed during rd, resultingin a data mwherencefailure axd non-atomic data transfer.

The conventional method to ded with this problem is to make fundamental mode asaumptions by
spedfyingthat both the writer and reader processes must have enoughdelay between the aquisition of the
value of a mntrol variable, where metastability is possble, and the use of it. This delay ensures that any
metastabilit y would have settled with a reasonably high probability by the timeit is used.

In the cae of Figure 4, the reader processmust thus be implemented so that the time span between rO
and rd is large enough for any metastability at r to settle and that between r1 and rd is large enough for
any metastability at v to settle. Similar requirements must be put on the writer process The 4-slot ACM
operates corredly if all metastable signals have settled when they are used, regardiessof the adual value
they have settled to [14, 15]. On the other hand, if metastability has not settled when the @ntrol variable
is used, data wherenceis saaificed to maintain full temporal independence of the accesprocesss. This
is because the timing of the various gatements has nothing to do with the a¢ual completion or the lack
thereof of the previous gatements. There is therefore no option of further waiting and no warning that data
coherence may have been violated.

This method puts littl e extra time/speed burden on the writer and reader processs in pradice if the
ACM hardware is much faster than the individual statements in the writer and reader processs. In the
case of these being statements in software in conventional microprocesors and the ACM control variables
being implemented with simple latches built on at least similar VLS| technology to that of the processors,
thisis usualy the cae.

Added insurance can be obtained by copying the control variables into the procesors where the
accessprocesses run before using. Repeaed copying between the interna registers of the processors and
their cadhe RAM increases the probability of settling of any metastable value.

In the cae of a genera hardware library element potentially used to transfer data between IP cores
implemented on the same chip, however, these assumptions can no longer be made. With the ACM having
esentially the same hardware speel to the acces processes it is frving, metastable control variable
values would settle with a similar speed whether they are maintained entirely inside the ACM or partly in
the dient procesrs. In effed, the time period between the referencing of a antrol variable value and its
use may be the minimal amount of time needed by the hardware implementing the intervening statements.
This makes it desirable or even necessary to ded with the issue of metastability within the ACM hardware
and not passthe problem to client processors.

CS-TR-686, Department of Computing Science, University of Newcastle upon Tyne, 1999

4 ACM design and implementation

An ACM based on the 4-dot solution has been designed and implemented in VLS| circuits. Sl
techniques are amployed to simplify the externa interfaces conneding to the acces processes, and
provide the possbility of preserving data wherence even if metastability occurs, when the requirement on
temporal independence can be relaxed at the level of control circuits in the ACM. Arbiters are used to
concentrate possble metastability to two pdntsin the system, making it easy to implement the Sl circuits
for the dgorithm statements.
4.1 Statement buffering

The dgorithm of Figure 4 implies that the ACM interfaces with ead access processthreetimes in
ead cycle. In pradice, buffer devices can be anployed to manage the three interfaces while the acces
processs interfacewith the extended ACM only once per cycle. Thisideais siownin Figure 8.

O :
_WB-~| 4-slot mechanism ?
w rd

(a) statements managed by accessprocesses

4-dot
mech.

reader

extended mechanism
(b) statements managed by statement buffers
Figure 8 Statement management buffers smplifying the interfaces.

It must be noted that implementations acarding to Figure 8 (b) manage the time delays to ded with
possble metastability in control variables within the statement buffers. This means that these delays are
part of the extended ACM rather than the accesprocesses. Asauming fundamental mode operations, these
delays are esentialy open-loop and fixed. If the buffers are made using the same hardware technology as
the basic ACM the time delays become significant and they must be caefully considered when analysing
the temporal behaviour of the accesprocesses.

Considering the cae of multiple procesors on the same dip, both the dient processors where the
reader and the writer processes exeaute and the ACM may be implemented on the same chip. Thisimplies
that such issues as metastability in the aontrol variables tend to require hardware solutions, and the system
response time requirements may not alow fixed delays for ead statement just to cope with possble
metastability.

4.2 Overall ACM design

The ACM design include statement circuits which are entirely Sl, with the sequential arrangements of
the statements managed by a series of handshake protocols instead of via fundamental mode asumptions.
The overall structure of this ACM is siown in Figure 9.

. Din ACM data path Dout
writer t (four dataslots) /A reader

dore | start \\&steeri n;),// Slart| dore
Y Y

wr start r0 start
/ statement \ read
e Wr done ?:rrgi\;vearlrse r0 dore Satement
wo start] rl start

statement
control

Y

latches, []

WO dore seledion rl dore
w1l start elements)

w1l dore

ACM cortrol part

Figure 9 Basic structure of modified 4-dot ACM with S circuits.

CS-TR-686, Department of Computing Science, University of Newcastle upon Tyne, 1999

The system includes reader and writer interface ontrol logic, statement circuits (both control
variables and data slot seledion and indication) and arbiters. Four phase hand shake bundled data protocol
isused for Din, start, and done on the writer side and Dout, dore, and start on the reader side. The signal
sequencing of the write statement control is gedfied in STG form in Figure 10. This ensures the
statement sequencing spedfied by algorithm of Figure 4. The read statement control has esentialy the
same STG.

The isaue of timing ron-interference between the reading and writing sides is more compli cated than
for adesign with fundamental mode asumptions and will be discussed in detail | ater.

start+-e+——e—— dorne- -« start- -«—dore+

¢

wr start+ - wr done+ - wr start- == wr done-
r _
WO start+—= w0 done+ - w0 start- —» wo/done

-

w1l start+— w1l done+—-= w1 start- - wi done- J

Figure 10 STG spedfication of write statement control.
4.3 Arbiter circuits used to locali se metastabili ty

Implementing fixed delays based on the metastability charaderistics of the hardware technology is
not efficient as the delays must be present whether metastability (which is a very low probability event)
has happened or not. In comparison, it is passble to use SI circuits that waiting/delay is only invoked
when metastability occurs. Thiswould provide, on average, a much higher performance[16].

The caability of finding out whether metastability, if any, has sttled, is required in such a self-timed
design. This is obtained by using arbiters with metastability detedors, sometimes known as metastability
resolvers [17]. In such circuits, the outputs of the metastability detedor will not change until any internal
metastability has sttled. This canindeed prevent metastability from passng on to subseguent circuits.

In the mntext of the 4-slot mechanism, if al posgble metastahility is confined within such circuits, a
completely self-timed, and padentially Sl solution may be obtained where metastable signals are never
used. Here we take the definition of SI from [18], i.e. a drcuit is considered Sl if its responses are not
dependent on the relative delays at the outputs of al gates, aslong asthey are finite.

There ae three posdble metastability points in the dgorithm in Figure 4, owing to shared variable
conflicts. One is the setting of the r variable mentioned above, another is the setting of the n variable in
statement wl, and the last is the setting of the v variable in statement r1. The first two pdnts involve
posshble simultaneous happening of the wl and rO statements and the last the simultaneous happening of
therl and w0 statements.

If two statements being carried out simultaneously causes a metastable signal, then by proteding
these statements with an arbiter the metastability could be avoided. This method is employed here.

Spedficdly, from [5], one posshble implementation of the statements rO and wl is wown in Figure
11, which is essntially a “shifting register”. If the dock pulses wl and r0O are generated by an arbiter of
the type found in [17] so that they are never nea enoughin time, there will be no metastability at either r
or n. In this case, any metastability would be moved to the abiter, and only when it has ttled would one
of the dock pulses be generated.

wil Y {V ro

- - | o r

]

Figure 11 A simpleimplementation of statementsw1 and rO.
This is <hematicdly shown in Figure 12, where the statement starting signals wl and r1 must go
throughan arbiter before aduating the statement hardware.
Since abiters require waiting for the side that lost arbitration, the temporal relation between two

processes arbitrated by such an element does not conform to full asynchronism. However, any delay is at
the bit control variable level, not data dot level.

CS-TR-686, Department of Computing Science, University of Newcastle upon Tyne, 1999

wl ' ' ro

Gwl T

Figure 12 Mutual exclusion between wl and rO.
4.4 Sdf-timed circuitsfor the statements

In this design, we use Sl circuits in the read and write statement buffers that the statement
sequences are seaured by control elements to oltain functional equality with the fundamental mode
asaumptions. This means that any statement may start only when the precealing one has finished. It is
therefore important that ead statement be implemented with hardware providing a start/done handshake
interfaceto its environment, as gedfied in Figure 10.

The ntrol variable assgnment statements w0, wl, rO and r1 are implemented by Sl latch circuits
within the ACM which contain completion signals. These latch circuits are reported in [19]. They fully
suppart the start/done handshake interfaceprotocol. The drcuit implementation of statement wl is given
in Figure 13 as an example here.

wl done Gwl
Y sm \
ol ol
my *am I *as |
L n]
r_> TL p L —p

Figure 13 Implementation of statement wl.

In Figure 13, the wntrol variable assgnments are done through a wuple of Sl transparent latches
(Figure 14). Each of the latches is controlled by a handshake deaupling element (the D element found in
[20]) which is aso Sl. Consequently, the entire statement is now purely sequential with every event
triggered by the previous event.

rail)
Figure 14 Sl transparent latch circuit used in control variable statements.
The data dot access satements wr and rd are implemented with Sl circuits which also contain

completion signals. The overall design of the hardware implementation of wr is sown in Figure 15. That
of rdis smilar.

In this implementation, we have incorporated circuits for the data dots in order to demonstrate the
operations of the design. Here it is asaumed that the data item being transmitted is a single byte and the
dot accessng statements take one dock cycle to acomplish. In red applications, the data path is usually
the dient’sprovince ad of flexible size

The slot steaing logic consists of simple seledion elements implemented in purely combinational
logic. There ae no hazads or Sl violations becaise when the signal wr comes, the values of n and s are
entirely stable, having been set during the previous w0 and wl, which are guaranteed to have been
completed by now acmrding to Figure 10.

The completion of wr is drawn from the data path in this implementation, which is conservative in
terms of S| considerations. If the data items being transmitted are large in size, however, such completion
may turn out to be overly complex and performance inhibiting. In that case the externa protocol can be
modified and this completion signal spedfied to be the responsibility of the writer. Then it will be simple
to implement using rormal processor to memory communications assumptions.

CS-TR-686, Department of Computing Science, University of Newcastle upon Tyne, 1999

s .—Fx CXW—I—.WMW ¢
s1_ .—Fx, cx@erW@ *=
Sel logic Circuits
"B x et " Sel Done@
e

- a—C

n. Pp—m—x_ cx0 Done' AvodoR . @._, P ook
Done2

wr Jp—m—c 0 P 0 m—Ppwow "° b

Done3

e
so P Xm—PP wro

D<@:7> || em——Din Q— el 00<0:7> D<@:7> || enm—Din QF— el 01<0:7>
D_<g:7> [P Din_ Q_—— el DJ_<7:7> D_<g:.7> [P Din_ Q_—— iy D1_<0:7>

wrgo p——s——cikCik_dn ——a——Jp Doneo wrg1 p——m——cikCik_dn ——a—Jp Done

Dlatch Dlatch

D<@:7> || om— Din Qf—) 02<0:7> D<@:7> ||en— Din Q— el D3<0:7>
D_<@:7> | \Din_ Q_— ey 02_<@:7> D_<0:7> [0in_ Q_| ey D>_<0:7>

wr1p p———=——cikCik_dn ——a—Jp Done2 wr11 p——=——cikCik_dn ——a——Jp Done3

Dlatch Dlatch

Figure 15 Hardware for statement wr.
45 Statement control elements

The write statement control element is gedfied by the STG in Figure 10. In order to retain an
element of regularity and extendibility, a drcuit known as David’'s element or David’s cdl [20], is chosen
as the buil ding block with which to assemble this circuit.

The David’s cdl consists of a flip-flop and a NOR (or NAND depending on the implementation of
the flip-flop) gate and is completely SI. A control circuit managing four conseautive handshakes neals
four David's cdls conneded in series. By organising the initial condition so that only one of the cdls has

an output of (0,1) and the others have (1,0), the drcuit shown in Figure 16 produces an STG shown in
Figure 17.

,,,,, David element ___

={BNO3
fa
*
&, NO2

[M
NOZ2,

2
2

stortZ._T}
done2 . $
L =3
‘I
start3
doned . I
I =

Figure 16 Write statement control logic using David' s cdls.

start+-e—e— done-—=— QS+<—Q3_ - QO+<— QO- —=— Start- —e—done+ -e—

startl+-= dorel+—» Ql- —>(A21+—> QO- — Q0+ startl- *&ore]_-

start2+ - dore2+ —»= Q2- —>(A22+—> (51— — Q1+ start2- —>iore2-

start3+—= done3+ —» Q3- —>Q3+—> 62_ —— Q2+—> start3- == dore3-—
Figure 17 STG of the drcuit in Figure 16.

10

CS-TR-686, Department of Computing Science, University of Newcastle upon Tyne, 1999

In Figure 17, the Q's and Q 's are the output signals of the flip-flops within the David's cdls and are

not diredly made use of by the antrol logic. They serve the same purpose @ the CSC signals from a
Petri fy solution. From the STG, it is clea that this circuit can be used for both the write and read
statement control logic blocks by using the startn and doren signals (n O {1, 2, 3}) for the gpropriate
statement handshakes.

5 Differencesin temporal relations between fundamental mode and Sl solutions

The fundamental mode 4-d ot solutions propased in [5] provide full asynchronism for the reader and
writer. They are however dependent on the fundamental mode asaumption, that the switching processesin
the hardware implementation settle between adjacent statements.

In the Sl solution, thereis certainly not an absolute temporal division between the reading and writing
sides within the ACM, because of the waiting required by the abiters. It is worth noting, however, that
such waiting only happens during control variable setting statements and the data slot access $atements
wr and rd are not affeded dredly. In other words, by retaining the 4-slot ACM agorithm, the broad idea
of redising atomic data transfer by using safe bit registersis retained. In effed, critica sedions are moved
from data slots to hit variables.

Temporal independence when required, is required between the reader and writer processes and not
between the internal read and write sides of the ACM. From Figure 9, it is clea that there ae two pairs of
handshakes where such temporal divisions can be maintained in the new design. These ae the global read
and write start/dore interfaces. For instance, rather than the more rigid protocol normally associated with
the handshake, the writer can be spedfied to foll ow the more flexible protocol outlined below:

e Initiate writing by issiing start to the write side of the ACM;

e Wait for dore from the ACM;

¢ Inthe asenceof done, wait for a predetermined maximum time period;

e Continue its own cycle, knowing whether dore or the epiration of the maximum time period has
happened.

This al ows the writer client to dedde whether to operate in fundamental mode or Sl fashion. While
till redising the potential of speading up the response provided by the Sl solution, it also allows an upper
bound for the complete ACM write g/cle to be spedfied, therefore dfedively decupling temporaly the
writer processfrom the reader one. A similar arrangement can be employed at the reader side.

Such a maximum waiti ng period can be eaily obtained by finding the normal time expenditure of all
statements and then assuming that metastability happens at one of the points of arbitration (It is trivial to
show that in asingle g/cle of operation only one of the points of arbitration could be adivated, assuming
that both the read and write sides of the ACM are implemented using the same hardware technology and
built on the same cip.) and then the own side loses the abitration. The statement timing can be obtained
through simulations, since the eitire ACM is designed in hardware “in house”. The metastability settle
time can be estimated by the method autlined in [21], where it is demonstrated that 5ns is sufficient time
for al metastahility to have settled firmly in modern CMOS technology with “pradicdly” probability 1.

6 Circuit implementation and analysis

The overall ACM design hes been put throughthe VLS design flow using Cadence tools. Top-level
simulations, both analogue and digital, have been caried out. The simulations ow that the functional
behaviour of the drcuit is as expeded. Analogue simulations have establi shed that metastability does not
propagate throughout the system, but is contained within the abiters. Digital ssimulations have reveded
the important properties listed in 3.2. Stochastic Petri net analysis has been used to study the drcuit’s
response charaderistics.

6.1 Analogue simulation results

Analogue smulations have been run with the Spedre smulator from within the Cadence todkit.
Apart from studying the eitire drcuit under a number of possble operating conditions, effort has been
concentrated on the behaviour of arbiters and the entire system when the statements r1 and w0 occur
simultaneoudly. The result of this gudy is given below. Similar close scrutiny was given to the cae when
the statements r0 and w1 occur simultaneously, with similar conclusions.

Figure 18 shows the transient response of the handshake signals associated with the statements r1 and
w0 when metastability has been generated within the abiter between these statements, becaise the
requests are dose in time. The metastable response within the abiter (at signals net7 and net9, between 4
and 5ns) only delays the response of the rest of the system and is never propagated out of the abiter. The
arbiter is aso shown to have successully creaed mutual exclusion between the two statements.

11

CS-TR-686, Department of Computing Science, University of Newcastle upon Tyne, 1999

s /12/SH2/12/net7
6.0 <: /12/SH2/12/net9

e | . X X

6.0 ot /12/SH2/Gr1

6p o /12/SH2/GwD

6.0 & /wd_start

6.9 =t /rl_done

6.0 ° /ri_start

Figure 19 shows the general handshake operations on the writer side. Similar results have been
obtained for the reader side. This conforms with the spedfications given in Figure 10.
6.g ~: /wl_done

o b S\ [

60 M /wil_start

S
o A G S T)
[\

6.9 ©! /wd_done

e L [\ [~}

6.g © /wd_start

o b I\ M\ M\

6.g v: /wr_done

ok [\ - [\ . [\

6.p & /wr_start

—1..|zs L \ / \ / \

6.g = /write_done

o b /) A

6. i /write_start

e] . _\J . L .

2.9 19n 20n 3@n 49n 50n 6(I3n
Figure 19 Analogue simulation waveforms siowing general handshake operations.

min time (ns) max time (ns)
wo0 3.67 7.27
wil 5.97 9.15
ro 2.18 9.14
rl 259 7.38

Table 1 Timetaken by reader and writer control variable statements.

From analogue simulations, the time taken by ead statement in the ACM design hes also been found.
These ae givenin Table 1. It can be seen from Table 1 that the control variable statements for the writer
side take lessthan 10 nsto exeaute if there is no arbitration conflict with those of the reader. The longest

12

CS-TR-686, Department of Computing Science, University of Newcastle upon Tyne, 1999

possble time neaded for these two writer statements, if there is no metastability, is 13.24 ns, when w0
loses arbitration to r1. The reader control variable statements take between lessthan 5 nsand 1173 nsto
exeaute.

The statements wr and rd depend on the way in which the data path is organised. The following
timing information has been obtained from simulations based on our sing e byte data path implementation.
The antire gycle of the writer statement buffer, incorporating statements wr, w0 and wl, takes from 20.31
nsto 2324 nsto complete. The g/cle of the reader statement buffer, with statements r0, r1 and rd, takes
1176 nsto 1873 ns to complete. The writer cycle is dower because the double assgnment in statement
w0 takes two clock cyclesto complete.

6.2 Studyingthetime response with stochastic Petri net techniques

Using the timing information obtained from the analogue simulations, we established stochastic Petri
net models for the ACM, and ran these models throughthe tool PEI v1.0 [22]. We a3umed exponential
distribution for the length of time taken by the reader and writer outside the ACM accessin ead cycle
(cdled “reader extra ACM delay” and “writer extrasACM delay” in this paper) and investigated the
behaviour of the medhanism both with a faster reader and slower writer and vice versa. Many data points
were mlleded, and the resulting mean times taken by the ACM statement cycles were used to generate the
diagram shown in Figure 20.

22.0

21.0 ...A...’%A’ P ® o
. < * o *sg s *

Py
2 g

A dE 2& 4 4K 3

20.0

19.0

18.0

& writer
Mmreader

17.0

ACM time (ns)

16.0

15.0 1
gummEmE m ® ®

14.0 =

™ |
13.0 ——f-

0.0 05 10 1.5 2.0 25 3.0 35 40 45 5.0
reader_extra-ACM/writer_extra-ACM

Figure 20ACM cycletimes

The probability of either the reader ACM cycle or the writer ACM cycle encountering arbitration in
one of its gatements changes with the relative frequency of the reader and writer cycles. This relative
frequency depends mostly on the extrasACM delays of the two sides. In order to oltain a more wmplete
picture, we have changed the mean time taken by the reader and writer processes outside their ACM
access $atements and used the ratio between these times as the horizontal axis in generating Figure 20. It
can be seen from the results that the ratio deces not have avery large influence on the ACM cycle times
which are neaer to their minimum than maximum paossble values. This is to be expeded as the
probability of encountering arbitration is not high and the mnsegquence of losing arbitration is not
quantitatively large.

6.3 Digital smulation results

Digital simulations have been run from the Cadence todkit on the drcuit. In order to maximally
reved the properties listed in 3.2, a writer processwas creaed in VERILOG code which sends byte type
datafor 255 cycles, with the dataincreasing in value from 1 to 255 The datareceved at the reader end is
then colleded for analysis. The writer and reader processes are programmed so that their extraaACM
delays take exponentialy distributed time lengths with mean values varying from 10to 500ns.

From these simulations, no data wherence and freshnessviolations have been observed. This is true
even when, owing to the stochastic nature of the reader and writer extrasACM delays, one side goes many
cycles with the other side stuck. This is to be expeded becaise this ACM design is a faithful
implementation of the 4-slot mecdhanism which has been verified analyticdly to maintain these properties
if the fundamental mode asaumptions hold. This ACM design, by deding with the isaue of metastability
explicitly and using Sl circuits, makes aure that no statement gets darted without its preceding one having

13

CS-TR-686, Department of Computing Science, University of Newcastle upon Tyne, 1999

completed. From the state-transition system point of view this is functionaly equivalent to the
fundamental mode asaumptions holdingin the original 4-dlot mecdhanism.

In addition, no data sequencing violation has been reveded from the simulations.

Data loss and data re-reading rates have been shown to be dependent on the relative speed o the
writer and reader processs. The results are shown in Figure 21 and Figure 22.

1.2

reader extra-ACM delay
from 10 to 500ns

v

data loss rate

10 50 90 130 170 210 250 290 330 370 410 450 490

writer extra-ACM delay

Figure 21 Data lossratesin relation to the mean values of writer and reader extra-ACM delays.

1.2

1
0.8 reader extra-ACM /\/
delay from 500 to 10 M

data re-reading rate
o o
~ o

o
(V)

10 50 90 130 170 210 250 290 330 370 410 450 490
writer extra-ACM delay

Figure 22 Data re-reading ratesin relation to the mean writer and reader extra-ACM delays.

From these diagrams, it is clea that data loss increases if the writer becomes faster and data re-
reading increases when the reader beames faster. Since eab simulation run consisted of 255 writer
cycles, when the realer is faster it may include many thousands of reader cycles and when the reader is
slower it may include only a few reader cycles. This is the main reason that the diagrams are not shaped
similarly to ead other. The qualitative results are however consistent.

The data value sequences for Din and Dout from a simulation run is sledively shown in Figure 23
and Figure 24. Data wherence, freshness sequencing, lossand re-reading properties can all be obtained
by observing such sequences. For instance, the lossof data items 22 and 23 can be observed in Figure 24,
and the re-reading of dataitems 01 and 04can be observed in Figure 23. The second reading of data value
04, whil e data value 05 has clealy been avail able for some time, does not violate data freshnessacarding
to the definition found in [10]. According to this definition, when the statements rO and r1 overlap with
the statements w0 and w1, the reader is all owed to oltain the latest but one item of datain the ACM. This
is because the locaion of the slot where the latest data item resides is indicated by the writer through wO
and wl and oltained by the reader during rO and r1. When these statements overlap in time the ACM
should not be expeded to always passthe latest data item.

14

CS-TR-686, Department of Computing Science, University of Newcastle upon Tyne, 1999

. | | | | | | |
Dinpp 01 |1 02 | 03 I 04 : 05 : 06 |
i ' ! i I ; '
Dout | oo b1 0001 | 00 03| 00 o4 oolod | 00 06
| | | l | |
| | | | | | |
time (ns) | | | | | |
400.0 450.0 500.0 550.0 600.0 650.0 700.0
Figure 23 Din and Dout value sequenceat the beginning of a simulation.
o i i i i i i
Din 29 21 | 22 | I 23 | 24 25 |
; ; ; ; ; I '
Dout | o0 |21 | | bo | | |24 o0 pa
| | | | | | |
| | | | | | |
time (n}s) : : | | | |
2700.0 2750.0 2800.0 2850.0 2900.0 2950.0 2994.758

Figure 24 Din and Dout value sequencein the middle of a simulation.

7 Current work, conclusion and discusson

Layout detailing is being caried out and further analogue simulations with the help of parameters
extraded from layout information will be the next step. The target of this work is the eventual fabrication
of testable ACM circuits for further, hardware-based, testing and prototyping.

This version of the 4-slot ACM, within its locd boundary, is not fully asynchronous by virtue of the
unpredictable waiting introduced by the abiters. However, unlike the original fundamental mode 4-slot
system propaosed in [5], which may forcibly ensure full asynchronism by relaxing the requirement on data
coherence when metastability occurs, this implementation gves the dient (the designer of the writer and
reader proceses) the dhoice of either saaificing timing independence or data aherence by defining the
overall protocol between the reader and the read statement buffer and the writer and the write statement
buffer (Figure 9).

If a choiceis made to give temporal independence priority over data mherence, then the new ACM
would perform similarly to the original designin terms of data cwherence violation rates. Thisis becaise
the statistica profil e of metastability is unchanged, and the aguments of settling metastability in repeaed
copyinginside procesors do not apply when both ACM and the dient processors are on the same chip.

In addition, the dient designer may choase not to lose data mherence when the dore signal is not
forthcoming but still be ale to preserve timing integrity for the acces process Since d this point the
accessprocesshas the information that metastability has occurred within the ACM, it may be spedfied to
not carry out the acces during the present cycle but either throw out the aurrent item of data (for the
writer) or use the item of data aquired during the last cycle (for the reader). In this case data freshness|[5]
is |aaificed. Thisis not a red saaifice becaise when data wherence is not maintained data freshness
bewmes automaticdly meaningless

The new option of lettingthe ACM run asfast as it can should produce significant speed gains smply
because metastability is such arare event.
In esence this design eliminates criticad sedions on the data dots by using the 4-slot ACM as the

basis and shifts criticd sedions to hit control variables by arbiters and Sl statement circuits, and gives
clients the choice of whether to make full use of these minimised criticd sedions.

In order to be more cnfident of our design, further work is planned to quantitatively analyse the
behaviour of the two ACM designs to see how they compare in time response, temporal independence,
and other arezs.

8 Acknowledgements

The authors would like to thank A.A.Madalinski for runring the PEI todl, A.Xie and P.A.Bead for
kindly making PEI available axd providing advisory suppat about it, and E.Campbell, 1.G.Clark,
A.C.Davies, and D.A.Fraser for valuable discussons. This work is part of the Comfort projed at the
University of Newcastle supparted by the EPSRC grant GR/L93775

15

10

11

12

13

14

15

16

17

18

19

20

21

22

CS-TR-686, Department of Computing Science, University of Newcastle upon Tyne, 1999

Lamport L., “On interprocess communication”, Parts | and I, Distributed Computing, Vol.1986
No.1, pp.77-101, Springer-Verlag, 1986

Lynch, N.A., “Distributed Algorithms’, Morgan Kaufmann Publishers, Inc., San Francisco,
California, 1996

Wilner, D., “Vx-Files: What Redly Happened on Mars?’, Keynote Speed, The 18th IEEE Red-
Time Systems Sympasium San Francisco, California, December 2-5, 1997.

Xia, F., Velagtin, SA., and Davies, A.C., “A pardld simulation of multi ple mobile robas using the
DORIS design method’, Procealings, 1994 IEEE international conference on robadics and
automation. San Diego, CA, USA, 24822487, 1994

Simpson, H.R., “Four-dot fully asynchronous communication mechanism”, IEE Procs., Vol. 137, Pt.
E, No. 1, pp.17-30, January 199Q

Tromp, J., “How to construct an atomic variable”, Proc. 3rd Int. Workshop o Distributed
Algorithms, Nice, LNCS, Springer Verlag, pp.292-302, 1989

Kirousis, L.M., “Atomic multireader register”, Proc. 2nd Int. Workshop o Distributed Computing,
Amsterdam, LNCS-312, pp.278-296, Springer Verlag, 1987.

Yakovlev, A., Kinniment, D.J., Xia, F. and Koelmans, A.M., “A FIFO buffer with non-blocking
interface”, IEEE Computer Society TCVLSI Technicd Bulletin, pp. 11-14, Fall 1998

Craft, D., “Improved CMOS core interconned approach for advanced SoC applicaions’, P99
Europe, Edinburgh UK, November 1999

Simpson, H.R., “Corredness analysis of class of asynchronous communicaion mecdhanisms’, IEE
Procedlings, Vol. 139 Pt. E, No. 1, pp.35-49, January 1992

Semenov, A. and Yakovlev, A., “Contextual Net Unfolding and Asynchronous System
Verification”, Technicd Report, TR572 Department of Computing Science University of
Newcastle upon Tyne, 1997.

Xia, F. and Clark, 1.G., “Complementing role models with Petri nets in studying asynchronous data

communications’, 19th International Conference on Application and Theory of Petri Nets, Hardware
Design and Petri Nets Workshop, pp.66-85, Lisbon, Portugal, June 23, 1998

Marino L.R. “Genera theory of metastable operation”, IEEE Trans. Comput., C-30(2):107-115,
February 1981

Simpson, H.R., “Corrednessanalysis for classof asynchronous communicaion mecianisms’, IEE
Procs., Vol. 139 Pt. E, No. 1, pp.35-49, January 1992

Xia F., Clark 1.G., and Davies A.C., “Petri-net based investigation of synchronisation free
interprocess communicaion in shared-memory red-time systems’, Proceedings, Second UK
Asynchronous Forum, Newcastle upon Tyne, UK, July 1-2, 1997.

Kinniment D.J., Gao B., Yakovlev A.V., and Xia F., “Towards asynchronous A-D conversion”,
Proceadings, Fourth International Symposium on Advanced Research in Asynchronous Circuits and
Systems (ASYNC'98), March-April 1998 San Diego, CA, IEEE Computer Society Press

Seitz, Ch., “Ideas about arbiters’, Lambda, vol.1 pp 1014, First Quarter 1980

Muller, D.E. and Bartky, W.C., "A theory of asynchronous circuits’, Annals of Comput. Lab.,
Harvard University, pp. 204-243 1959

Bystrov, A., Shang, D., Xia, F. and Yakovlev, A., “Self-timed and speed independent latch circuits’,
6th UK Asynchronous Forum, The University of Manchester, Manchester, UK, July 12-13, 1999
Varshavsky, V. et a, Self-Timed Control of Concurrent Processes, Kluwer Academic Publishers,
P.O. Box 17,3300AA Dordredt, The Netherlands, 1990(Russan Editi on: Nauka, Moscow,1986).
Kinniment, D.J.,, “Meaurements on a high speed arbiter”, Technicd Report Series, TR677,
Department of Computing Science, University of Newcastle, 1999

Xie, A. and Beed, P.A., “Performance analysis of asynchronous circuits and systems using

stochastic timed Petri nets’” (invited paper), Proc. of 2nd Workshop an Hardware Design and Petri
Nets, pp. 35-62, June 1999

16

