
CS-TR-686, Department of Computing Science, University of Newcastle upon Tyne, 1999.

1

An asynchronous communication
mechanism using self-tim ed circuits

F. Xia, A. Yakovlev, D. Shang, A. Bystrov, A. Koelmans and
D.J.Kinniment

COMPUTING SCIENCE

TECHNICAL REPORT SERIES

No. CS-TR-686
October, 1999

CS-TR-686, Department of Computing Science, University of Newcastle upon Tyne, 1999.

2

Contact:
fei.xia@ncl.ac.uk
http://www.cs.ncl.ac.uk/research/projects/comfort.html

Copyright © 1999 University of Newcastle upon Tyne
Published by the University of Newcastle upon Tyne,
Department of Computing Science, Claremont Tower, Claremont Road,
Newcastle upon Tyne, NE1 7RU, UK

CS-TR-686, Department of Computing Science, University of Newcastle upon Tyne, 1999.

3

An asynchronous communication mechanism using self-t imed
circuits

F. Xia*, A. Yakovlev, D. Shang, A. Bystrov, A. Koelmans and D.J.Kinniment
University of Newcastle upon Tyne

Indexing terms: Asynchronous data communications, concurrent systems, arbiters, metastabilit y, speed
independent circuits, Petri nets, STGs.

1 Abstract

An asynchronous data communication mechanism (ACM) using self-timed circuits is presented.
Mutual exclusion elements are used to concentrate potential metastabilit y to two discrete points so that it
can be resolved entirely within the mechanism itself. Self-timed circuits allow the minimisation of the
interface between the reader and writer processes and the mechanism. Initial analysis shows that this VLSI
solution is more robust with regard to steering logic metastabilit y, and can potentially run faster than
similar solutions under fundamental mode assumptions. It is therefore more suitable for use in on-chip
multi -processing systems.

2 Introduction

Data communication between processes running in different processors has been extensively studied,
especially in distributed and real-time systems. The minimal form of this problem concerns the passing of
data between two distributed single-thread processes. One provides the data, which is used by the other.
This is schematically shown in Figure 1.

process 1 process 2data

Figure 1 Passing data between two processes.

In distributed systems, processors may not always share a common clock. When the two processes in
Figure 1 are not synchronised, some kind of intermediate data repository, usually in the form of shared
memory, is often needed between them to facilit ate the data passage. This is schematically shown in
Figure 2.

process 1 process 2data repository
(shared memory)

Figure 2 Passing data via shared memory.

An asynchronous data communication mechanism (ACM) is a scheme which manages the transfer of
data between two processes not necessarily synchronised for the purpose of data transfer. It is assumed
that the data being passed consists of a stream of individual items of a given type. It is also assumed that
the processes in question are single thread cycles, one providing an item of data during each cycle, the
other making use of an item of data during each cycle. The provider of data is known as the “writer” of the
ACM and the user of data is known as the “reader” of the ACM.

Many ACMs have been proposed in the literature. Since shared memory may have access conflicts
when the processes are not synchronised, much work has been done to find techniques whereby such
conflicts are avoided and the shared memory is made “regular” and “atomic” [1]. For instance, an obvious
way to protect shared memory is to put it into an explicit critical section for each process [2].

Using critical sections, however, may not be acceptable in real-time systems because the
unpredictable waiting time makes it impossible to estimate the precise temporal characteristics of a
process. It also makes the writer temporally dependent on the reader and/or vice versa. Such dependence
may be in conflict with real-time requirements specified for the reader and/or the writer.

For instance, in the Pathfinder mission to Mars, where shared memory used for data communications
was managed by a complex arrangement of critical sections, priorities and interrupts, the long critical
sections on the shared memory conflicted with the real-time requirements of subsystems, causing
occasional system failures [3].

* Contact: fei.xia@ncl.ac.uk

CS-TR-686, Department of Computing Science, University of Newcastle upon Tyne, 1999.

4

In certain applications, reference data needs to be passed from one process to another. Such data may
be generated irregularly and used irregularly, with the writer and reader processes mainly preoccupied
with other activities. For instance, in the robot simulation system of [4], the robot processes pass their
location data to each other and this data is used as reference. At the time of use, only the latest item of
such data is of relevance, any previous non-used items having been superseded by it. In other words, when
a robot process needs to know where another robot is located, only present location is of interest. On the
other hand, for a simulation of multiple robots in a workspace to be realistic, the robot processes must be
temporally independent from each other permanently, even when data is being passed from one to another.
An ACM between two such processes would need to keep only the latest item of data from the writer, and
cannot employ critical sections in the data access.

Such techniques as the multiple “slot” (or “ track”) mechanisms described in [5], [6] and [7] realise
regular and atomic registers in the data path between asynchronous concurrent processes by employing
“safe” bit registers to convey the values of bit-size control variables. They avoid conflicts on data memory
without resorting to explicit critical sections. These solutions, however, make fundamental mode
assumptions on the operations of the control variables. In other words, they shift the problem of
synchronisation from the data memory to the control logic, which typically consists of bit-sized shared
variables. The general scheme of these data communication mechanisms is shown in Figure 3.

writer

data in shared memory

control variables

reader

Figure 3 ACM using shared memory and control var iables.

Fundamental mode assumptions on control variable operations do not hold when such shared
variables become metastable, which is possible in the total absence of synchronisation between the
processes.

The non-blocking FIFO described in [8] also avoids critical sections in data access. However, the
FIFO arrangement introduces latency which is not suitable for reference data applications.

This paper presents an ACM solution, implemented entirely in VLSI circuits, that provides a flexible
choice to potential users between minimal critical sections on bit control variables and full temporal
independence between the access processes. Improved handling of metastabilit y using arbiters and the
employment of self-timed, speed independent (SI) circuits make this possible. It is envisaged that this
solution can become an element in a hardware library which supports data communications between
processor or other IP cores implemented on the same chip [9]. It will be especially useful in systems
where there are hard real-time requirements.

3 Background studies

A particular ACM solution from the literature has been chosen as a basis of the new design. This is
briefly described. The basic properties of ACMs, some of which have been studied in various published
work, are collectively introduced. Metastabilit y on control variables is also discussed in some detail .

3.1 The 4-slot ACM algor ithm

Of the multiple slot or track ACMs that provide fully asynchronous operations, by far the simplest
and easiest to implement in hardware is the Simpson’s 4-slot mechanism found in [5]. This mechanism is
adapted here to produce our hardware ACM.

Writer Reader

wr: d[n,][ns] := input r0: r := l

w0: s[n] :=][ns r1: v := s

w1: l := n || n := r rd: output := d[r, v[r]]
Figure 4 Simpson’s 4-slot mechanism.

Figure 4 shows the algorithm of the 4-slot mechanism. Here the writer and reader processes are single
thread loops with three statements each. The mechanism maintains the storage of four data slots d[0, 0] to
d[1, 1] and the control variables n, l, r, s[0..1], and v[0..1], which are either single bits or vectors of two
single bits. This is shown schematically in Figure 5. The statements wr and rd are the data accesses and
the other statements are used by the writer and reader to chose slots and indicate such choices to the other
side.

CS-TR-686, Department of Computing Science, University of Newcastle upon Tyne, 1999.

5

d[0,0]
d[0,1]

d[1,0]

d[1,1]

writer reader
n, l, r, s, and v

control
variables

data
storage

Figure 5 Schematic of the 4-slot mechanism.

3.2 Properties of ACMs

The most significant properties of ACMs are listed below:

1. Asynchronism: An ACM should not require the reader and writer processes to be synchronised to
each other permanently. If an ACM provides a complete temporal divide between the reader and
writer processes as shown in Figure 6, so that the reader and writer processes are entirely temporally
independent from each other, it is said to be fully asynchronous or synchronisation free.

ACMwriter cycles reader cycles

temporal divide

Figure 6 ACM providing temporal independence to processes.

2. Data coherence: Data coherence is violated if at any time both writer and reader access the same data
storage location in the shared memory. In the slot-type mechanisms, this means that the writer and the
reader should not access the same slot simultaneously. A writer cycle may include a data coherence
violation if the writer access conflicts with a reader access at the same slot. The same may be said of a
reader cycle. Data coherence can thus be quantitatively described by the rate of cycles not containing
violations to total cycles, from either the writer or the reader side. Data coherence is completely
maintained if the writer and reader do not access the same slot simultaneously at all , in which case the
data coherence rate is 1.

3. Data freshness: Data freshness describes how up to date any item of data that the reader obtains from
the ACM is. In slot-type mechanisms, the latest data item is always found in the slot which the writer
accessed during its last cycle. Data freshness is normally checked just before a reader access and/or at
the beginning of a reader cycle. In this paper, the definition of data freshness by Simpson in [10] is
used.

4. Data sequencing: Data sequencing is violated if the reader obtains data items in reverse order to that
in which they were written into the ACM by the writer. Data sequencing can be described
quantitatively by its violation rate.

5. Data loss: Data loss occurs when some items written into the ACM by the writer are not eventually
obtained by the reader. Data loss can be described quantitatively by the rate of its occurrence.

6. Data re-reading: Data re-reading occurs when the reader obtains an item which it has obtained during
an earlier cycle. Data re-reading can also be described quantitatively by the rate of its occurrence.

No realisable ACM can completely fulfil all the properties listed above. For instance, if an ACM is
fully asynchronous, data loss would be inevitable if the writer is faster than the reader and data re-reading
would be inevitable if the reader is faster than the writer. A classical finite capacity buffer (i.e. a k-place
FIFO) does not provide full asynchronism, because the writer is blocked when the buffer is full . On the
other hand, the non-blocking FIFO in [8] achieves full asynchronism by specifying data loss and data re-
reading when necessary. In addition, the inherent latency of FIFOs means that data freshness suffers in any
FIFO design.

The 4-slot mechanism has been shown to maintain full data coherence and data freshness in [10],
[15], [11] and [12] when the ACM is operating in fully asynchronous mode and when the fundamental
mode assumptions about the writer and reader statements hold.

CS-TR-686, Department of Computing Science, University of Newcastle upon Tyne, 1999.

6

3.3 Metastabili ty

The slot-type ACMs avoid critical sections in data slots by synchronising a data slot to an access
process during the entire period of access (e.g. statement wr or rd in the 4-slot ACM). If during this access
the other access process wants to start accessing the data area, it is directed to another slot. In effect,
critical sections exist in individual slots but not globally. The steering is effected by careful use of control
variables. In the 4-slot ACM these are binary variables which are only changed one bit at any time. In
addition, for each of these bits either the writer is in charge of changing it and the reader only references
in value, or vice versa. Since a bit is the smallest granularity possible in a digital system, it was reasoned
that the 4-slot solution is maximising the atomicity of the data transfer.

Ultimately, a bit control variable needs to be implemented in hardware using a bit register in order for
the solution to be fully asynchronous in the sense of hard real-time. Such a register may be implemented
with D-type or transparent binary latch circuitry. For instance the latch in Figure 7 may be used to carry
out the inter-process assignment statement, cl: y := NOT x, where both x and y are bit variables.

cl Q
_
QD Process 2

Process 1

x

yclock/control

Figure 7 Concurrent processes communicating via a latch.

No fully asynchronous communication scheme can avoid the possibilit y of metastabilit y [13]. In the
slot-type mechanisms, potential metastabilit y happens at the bit registers implementing control variables.
For instance, in the case of the reader statement r0 in Figure 4, the clock signal for the statement (r0)
comes from the reader process, while the input signal (l) is set by the writer process during statement w1.
If no synchronisation is permitted between the reader and writer processes, r0 may arrive at the same time
as or very close to a change of value of l, resulting in potential metastabilit y at r.

If this metastabilit y has not settled when the value of r is used in statement rd, more than one data slot
may be accessed during rd, resulting in a data coherence failure and non-atomic data transfer.

The conventional method to deal with this problem is to make fundamental mode assumptions by
specifying that both the writer and reader processes must have enough delay between the acquisition of the
value of a control variable, where metastabilit y is possible, and the use of it. This delay ensures that any
metastabilit y would have settled with a reasonably high probabilit y by the time it is used.

In the case of Figure 4, the reader process must thus be implemented so that the time span between r0
and rd is large enough for any metastabilit y at r to settle and that between r1 and rd is large enough for
any metastabilit y at v to settle. Similar requirements must be put on the writer process. The 4-slot ACM
operates correctly if all metastable signals have settled when they are used, regardless of the actual value
they have settled to [14, 15]. On the other hand, if metastabilit y has not settled when the control variable
is used, data coherence is sacrificed to maintain full temporal independence of the access processes. This
is because the timing of the various statements has nothing to do with the actual completion or the lack
thereof of the previous statements. There is therefore no option of further waiting and no warning that data
coherence may have been violated.

This method puts littl e extra time/speed burden on the writer and reader processes in practice if the
ACM hardware is much faster than the individual statements in the writer and reader processes. In the
case of these being statements in software in conventional microprocessors and the ACM control variables
being implemented with simple latches built on at least similar VLSI technology to that of the processors,
this is usually the case.

Added insurance can be obtained by copying the control variables into the processors where the
access processes run before using. Repeated copying between the internal registers of the processors and
their cache RAM increases the probabilit y of settling of any metastable value.

In the case of a general hardware library element potentially used to transfer data between IP cores
implemented on the same chip, however, these assumptions can no longer be made. With the ACM having
essentially the same hardware speed to the access processes it is serving, metastable control variable
values would settle with a similar speed whether they are maintained entirely inside the ACM or partly in
the client processors. In effect, the time period between the referencing of a control variable value and its
use may be the minimal amount of time needed by the hardware implementing the intervening statements.
This makes it desirable or even necessary to deal with the issue of metastabilit y within the ACM hardware
and not pass the problem to client processors.

CS-TR-686, Department of Computing Science, University of Newcastle upon Tyne, 1999.

7

4 ACM design and implementation

An ACM based on the 4-slot solution has been designed and implemented in VLSI circuits. SI
techniques are employed to simpli fy the external interfaces connecting to the access processes, and
provide the possibilit y of preserving data coherence even if metastabilit y occurs, when the requirement on
temporal independence can be relaxed at the level of control circuits in the ACM. Arbiters are used to
concentrate possible metastabilit y to two points in the system, making it easy to implement the SI circuits
for the algorithm statements.

4.1 Statement buffering

The algorithm of Figure 4 implies that the ACM interfaces with each access process three times in
each cycle. In practice, buffer devices can be employed to manage the three interfaces while the access
processes interface with the extended ACM only once per cycle. This idea is shown in Figure 8.

writer wr

4-slot mechanism
reader

w0

w1

r0

r1

rd

(a) statements managed by access processes
writer

wr

4-slot
mech.

reader

w0

w1

r0

r1

rd

(b) statements managed by statement buffers

write
statement

buffer

read
statement

buffer

write
read

extended mechanism

Figure 8 Statement management buffers simpli fying the interfaces.

It must be noted that implementations according to Figure 8 (b) manage the time delays to deal with
possible metastabilit y in control variables within the statement buffers. This means that these delays are
part of the extended ACM rather than the access processes. Assuming fundamental mode operations, these
delays are essentially open-loop and fixed. If the buffers are made using the same hardware technology as
the basic ACM the time delays become significant and they must be carefully considered when analysing
the temporal behaviour of the access processes.

Considering the case of multiple processors on the same chip, both the client processors where the
reader and the writer processes execute and the ACM may be implemented on the same chip. This implies
that such issues as metastabilit y in the control variables tend to require hardware solutions, and the system
response time requirements may not allow fixed delays for each statement just to cope with possible
metastabilit y.

4.2 Overall ACM design

The ACM design include statement circuits which are entirely SI, with the sequential arrangements of
the statements managed by a series of handshake protocols instead of via fundamental mode assumptions.
The overall structure of this ACM is shown in Figure 9.

writer

wr start
statement
hardware
(arbiters,
latches,
selection
elements)

reader

write
statement
control

read
statement
control

ACM control part

ACM data path
(four data slots)

start

wr done

w0 start

w0 done

w1 start

w1 done

start

r0 start

r0 done

r1 start

r1 done

rd start

rd done

done done(steering)

Din Dout

Figure 9 Basic structure of modified 4-slot ACM with SI circuits.

CS-TR-686, Department of Computing Science, University of Newcastle upon Tyne, 1999.

8

The system includes reader and writer interface control logic, statement circuits (both control
variables and data slot selection and indication) and arbiters. Four phase hand shake bundled data protocol
is used for Din, start, and done on the writer side and Dout, done, and start on the reader side. The signal
sequencing of the write statement control is specified in STG form in Figure 10. This ensures the
statement sequencing specified by algorithm of Figure 4. The read statement control has essentially the
same STG.

The issue of timing non-interference between the reading and writing sides is more complicated than
for a design with fundamental mode assumptions and will be discussed in detail l ater.

start+

wr start+ wr done+ wr start- wr done-

w0 start+ w0 done+ w0 start- w0 done-

w1 start+ w1 done+ w1 start- w1 done-

done+start-done-

Figure 10 STG specification of wr ite statement control.

4.3 Arbiter circuits used to localise metastabili ty

Implementing fixed delays based on the metastabilit y characteristics of the hardware technology is
not eff icient as the delays must be present whether metastabilit y (which is a very low probabilit y event)
has happened or not. In comparison, it is possible to use SI circuits so that waiting/delay is only invoked
when metastabilit y occurs. This would provide, on average, a much higher performance [16].

The capabilit y of finding out whether metastabilit y, if any, has settled, is required in such a self-timed
design. This is obtained by using arbiters with metastabilit y detectors, sometimes known as metastabilit y
resolvers [17]. In such circuits, the outputs of the metastabilit y detector will not change until any internal
metastabilit y has settled. This can indeed prevent metastabilit y from passing on to subsequent circuits.

In the context of the 4-slot mechanism, if all possible metastabilit y is confined within such circuits, a
completely self-timed, and potentially SI solution may be obtained where metastable signals are never
used. Here we take the definition of SI from [18], i.e. a circuit is considered SI if its responses are not
dependent on the relative delays at the outputs of all gates, as long as they are finite.

There are three possible metastabilit y points in the algorithm in Figure 4, owing to shared variable
conflicts. One is the setting of the r variable mentioned above, another is the setting of the n variable in
statement w1, and the last is the setting of the v variable in statement r1. The first two points involve
possible simultaneous happening of the w1 and r0 statements and the last the simultaneous happening of
the r1 and w0 statements.

If two statements being carried out simultaneously causes a metastable signal, then by protecting
these statements with an arbiter the metastabilit y could be avoided. This method is employed here.

Specifically, from [5], one possible implementation of the statements r0 and w1 is shown in Figure
11, which is essentially a “shifting register” . If the clock pulses w1 and r0 are generated by an arbiter of
the type found in [17] so that they are never near enough in time, there will be no metastabilit y at either r
or n. In this case, any metastabilit y would be moved to the arbiter, and only when it has settled would one
of the clock pulses be generated.

r

w1 r0
n l

Figure 11 A simple implementation of statements w1 and r0.

This is schematically shown in Figure 12, where the statement starting signals w1 and r1 must go
through an arbiter before actuating the statement hardware.

Since arbiters require waiting for the side that lost arbitration, the temporal relation between two
processes arbitrated by such an element does not conform to full asynchronism. However, any delay is at
the bit control variable level, not data slot level.

CS-TR-686, Department of Computing Science, University of Newcastle upon Tyne, 1999.

9

Gw1

r

w1

Gr0

n l

r0
arbiter

Figure 12 Mutual exclusion between w1 and r0.

4.4 Self-t imed circuits for the statements

In this design, we use SI circuits in the read and write statement buffers so that the statement
sequences are secured by control elements to obtain functional equality with the fundamental mode
assumptions. This means that any statement may start only when the preceding one has finished. It is
therefore important that each statement be implemented with hardware providing a start/done handshake
interface to its environment, as specified in Figure 10.

The control variable assignment statements w0, w1, r0 and r1 are implemented by SI latch circuits
within the ACM which contain completion signals. These latch circuits are reported in [19]. They fully
support the start/done handshake interface protocol. The circuit implementation of statement w1 is given
in Figure 13 as an example here.

Gw1

n lr

w1 done

rs asrm am

sm

TL TL

D D

Figure 13 Implementation of statement w1.

In Figure 13, the control variable assignments are done through a couple of SI transparent latches
(Figure 14). Each of the latches is controlled by a handshake decoupling element (the D element found in
[20]) which is also SI. Consequently, the entire statement is now purely sequential with every event
triggered by the previous event.

D, D̂
(dual
rail)

Q,Q̂
(dual
rail)

req done

TL

Figure 14 SI transparent latch circuit used in control var iable statements.

The data slot access statements wr and rd are implemented with SI circuits which also contain
completion signals. The overall design of the hardware implementation of wr is shown in Figure 15. That
of rd is similar.

In this implementation, we have incorporated circuits for the data slots in order to demonstrate the
operations of the design. Here it is assumed that the data item being transmitted is a single byte and the
slot accessing statements take one clock cycle to accomplish. In real applications, the data path is usually
the client’s province and of flexible size.

The slot steering logic consists of simple selection elements implemented in purely combinational
logic. There are no hazards or SI violations because when the signal wr comes, the values of n and s are
entirely stable, having been set during the previous w0 and w1, which are guaranteed to have been
completed by now according to Figure 10.

The completion of wr is drawn from the data path in this implementation, which is conservative in
terms of SI considerations. If the data items being transmitted are large in size, however, such completion
may turn out to be overly complex and performance inhibiting. In that case the external protocol can be
modified and this completion signal specified to be the responsibilit y of the writer. Then it will be simple
to implement using normal processor to memory communications assumptions.

CS-TR-686, Department of Computing Science, University of Newcastle upon Tyne, 1999.

10

Figure 15 Hardware for statement wr.

4.5 Statement control elements

The write statement control element is specified by the STG in Figure 10. In order to retain an
element of regularity and extendibilit y, a circuit known as David’s element or David’s cell [20], is chosen
as the building block with which to assemble this circuit.

The David’s cell consists of a flip-flop and a NOR (or NAND depending on the implementation of
the flip-flop) gate and is completely SI. A control circuit managing four consecutive handshakes needs
four David’s cells connected in series. By organising the initial condition so that only one of the cells has
an output of (0,1) and the others have (1,0), the circuit shown in Figure 16 produces an STG shown in
Figure 17.

Figure 16 Wr ite statement control logic using David’s cells.

start+

start1+ done1+

done+start-done-

Q1- Q̂1+ Q0+Q̂0- start1- done1-

start2+ done2+ Q2- Q̂2+ Q1+Q̂1- start2- done2-

start3+ done3+ Q̂3+Q3- Q̂2+ start3- done3-Q̂2-

Q0-Q̂0+Q̂3-Q3+

Figure 17 STG of the circuit in Figure 16.

CS-TR-686, Department of Computing Science, University of Newcastle upon Tyne, 1999.

11

In Figure 17, the Q’s and Q̂ ’s are the output signals of the flip-flops within the David’s cells and are

not directly made use of by the control logic. They serve the same purpose as the CSC signals from a
Petrify solution. From the STG, it is clear that this circuit can be used for both the write and read
statement control logic blocks by using the startn and donen signals (n ∈ { 1, 2, 3}) for the appropriate
statement handshakes.

5 Differences in temporal relations between fundamental mode and SI solutions

The fundamental mode 4-slot solutions proposed in [5] provide full asynchronism for the reader and
writer. They are however dependent on the fundamental mode assumption, that the switching processes in
the hardware implementation settle between adjacent statements.

In the SI solution, there is certainly not an absolute temporal division between the reading and writing
sides within the ACM, because of the waiting required by the arbiters. It is worth noting, however, that
such waiting only happens during control variable setting statements and the data slot access statements
wr and rd are not affected directly. In other words, by retaining the 4-slot ACM algorithm, the broad idea
of realising atomic data transfer by using safe bit registers is retained. In effect, critical sections are moved
from data slots to bit variables.

Temporal independence, when required, is required between the reader and writer processes and not
between the internal read and write sides of the ACM. From Figure 9, it is clear that there are two pairs of
handshakes where such temporal divisions can be maintained in the new design. These are the global read
and write start/done interfaces. For instance, rather than the more rigid protocol normally associated with
the handshake, the writer can be specified to follow the more flexible protocol outlined below:

• Initiate writing by issuing start to the write side of the ACM;
• Wait for done from the ACM;
• In the absence of done, wait for a predetermined maximum time period;
• Continue its own cycle, knowing whether done or the expiration of the maximum time period has

happened.

This allows the writer client to decide whether to operate in fundamental mode or SI fashion. While
still realising the potential of speeding up the response provided by the SI solution, it also allows an upper
bound for the complete ACM write cycle to be specified, therefore effectively decoupling temporally the
writer process from the reader one. A similar arrangement can be employed at the reader side.

Such a maximum waiting period can be easily obtained by finding the normal time expenditure of all
statements and then assuming that metastabilit y happens at one of the points of arbitration (It is trivial to
show that in a single cycle of operation only one of the points of arbitration could be activated, assuming
that both the read and write sides of the ACM are implemented using the same hardware technology and
built on the same chip.) and then the own side loses the arbitration. The statement timing can be obtained
through simulations, since the entire ACM is designed in hardware “ in house”. The metastabilit y settle
time can be estimated by the method outlined in [21], where it is demonstrated that 5ns is suff icient time
for all metastabilit y to have settled firmly in modern CMOS technology with “practically” probabilit y 1.

6 Circuit implementation and analysis

The overall ACM design has been put through the VLSI design flow using Cadence tools. Top-level
simulations, both analogue and digital, have been carried out. The simulations show that the functional
behaviour of the circuit is as expected. Analogue simulations have established that metastabilit y does not
propagate throughout the system, but is contained within the arbiters. Digital simulations have revealed
the important properties listed in 3.2. Stochastic Petri net analysis has been used to study the circuit’s
response characteristics.

6.1 Analogue simulation results

Analogue simulations have been run with the Spectre simulator from within the Cadence toolkit.
Apart from studying the entire circuit under a number of possible operating conditions, effort has been
concentrated on the behaviour of arbiters and the entire system when the statements r1 and w0 occur
simultaneously. The result of this study is given below. Similar close scrutiny was given to the case when
the statements r0 and w1 occur simultaneously, with similar conclusions.

Figure 18 shows the transient response of the handshake signals associated with the statements r1 and
w0 when metastabilit y has been generated within the arbiter between these statements, because the
requests are close in time. The metastable response within the arbiter (at signals net7 and net9, between 4
and 5 ns) only delays the response of the rest of the system and is never propagated out of the arbiter. The
arbiter is also shown to have successfully created mutual exclusion between the two statements.

CS-TR-686, Department of Computing Science, University of Newcastle upon Tyne, 1999.

12

Figure 18 Analogue simulation waveforms with metastabili ty within arbiter.

Figure 19 shows the general handshake operations on the writer side. Similar results have been
obtained for the reader side. This conforms with the specifications given in Figure 10.

Figure 19 Analogue simulation waveforms showing general handshake operations.

min time (ns) max time (ns)

w0 3.67 7.27

w1 5.97 9.15

r0 2.18 9.14

r1 2.59 7.38

Table 1 Time taken by reader and wr iter control var iable statements.

From analogue simulations, the time taken by each statement in the ACM design has also been found.
These are given in Table 1. It can be seen from Table 1 that the control variable statements for the writer
side take less than 10 ns to execute if there is no arbitration conflict with those of the reader. The longest

CS-TR-686, Department of Computing Science, University of Newcastle upon Tyne, 1999.

13

possible time needed for these two writer statements, if there is no metastabilit y, is 13.24 ns, when w0
loses arbitration to r1. The reader control variable statements take between less than 5 ns and 11.73 ns to
execute.

The statements wr and rd depend on the way in which the data path is organised. The following
timing information has been obtained from simulations based on our single byte data path implementation.
The entire cycle of the writer statement buffer, incorporating statements wr, w0 and w1, takes from 20.31
ns to 23.24 ns to complete. The cycle of the reader statement buffer, with statements r0, r1 and rd, takes
11.76 ns to 18.73 ns to complete. The writer cycle is slower because the double assignment in statement
w0 takes two clock cycles to complete.

6.2 Studying the time response with stochastic Petr i net techniques

Using the timing information obtained from the analogue simulations, we established stochastic Petri
net models for the ACM, and ran these models through the tool PEI v1.0 [22]. We assumed exponential
distribution for the length of time taken by the reader and writer outside the ACM access in each cycle
(called “reader extra-ACM delay” and “writer extra-ACM delay” in this paper) and investigated the
behaviour of the mechanism both with a faster reader and slower writer and vice versa. Many data points
were collected, and the resulting mean times taken by the ACM statement cycles were used to generate the
diagram shown in Figure 20.

1 3 .0

1 4 .0

1 5 .0

1 6 .0

1 7 .0

1 8 .0

1 9 .0

2 0 .0

2 1 .0

2 2 .0

0 .0 0 .5 1 .0 1 .5 2 .0 2 .5 3 .0 3 .5 4 .0 4 .5 5 .0

re a d e r_ e x tra -A C M /w r ite r_ e x tra -A C M

A
C

M
 t

im
e

(n
s)

w rite r

re a d e r

Figure 20 ACM cycle times

The probabilit y of either the reader ACM cycle or the writer ACM cycle encountering arbitration in
one of its statements changes with the relative frequency of the reader and writer cycles. This relative
frequency depends mostly on the extra-ACM delays of the two sides. In order to obtain a more complete
picture, we have changed the mean time taken by the reader and writer processes outside their ACM
access statements and used the ratio between these times as the horizontal axis in generating Figure 20. It
can be seen from the results that the ratio does not have a very large influence on the ACM cycle times
which are nearer to their minimum than maximum possible values. This is to be expected as the
probabilit y of encountering arbitration is not high and the consequence of losing arbitration is not
quantitatively large.

6.3 Digital simulation results

Digital simulations have been run from the Cadence toolkit on the circuit. In order to maximally
reveal the properties listed in 3.2, a writer process was created in VERILOG code which sends byte type
data for 255 cycles, with the data increasing in value from 1 to 255. The data received at the reader end is
then collected for analysis. The writer and reader processes are programmed so that their extra-ACM
delays take exponentially distributed time lengths with mean values varying from 10 to 500 ns.

From these simulations, no data coherence and freshness violations have been observed. This is true
even when, owing to the stochastic nature of the reader and writer extra-ACM delays, one side goes many
cycles with the other side stuck. This is to be expected because this ACM design is a faithful
implementation of the 4-slot mechanism which has been verified analytically to maintain these properties
if the fundamental mode assumptions hold. This ACM design, by dealing with the issue of metastabilit y
explicitly and using SI circuits, makes sure that no statement gets started without its preceding one having

CS-TR-686, Department of Computing Science, University of Newcastle upon Tyne, 1999.

14

completed. From the state-transition system point of view this is functionally equivalent to the
fundamental mode assumptions holding in the original 4-slot mechanism.

In addition, no data sequencing violation has been revealed from the simulations.

Data loss and data re-reading rates have been shown to be dependent on the relative speed of the
writer and reader processes. The results are shown in Figure 21 and Figure 22.

0

0.2

0.4

0.6

0.8

1

1.2

10 50 90 130 170 210 250 290 330 370 410 450 490

writer extra-ACM delay

d
at

a
lo

ss
 r

at
e reader extra-ACM delay

from 10 to 500ns

Figure 21 Data loss rates in relation to the mean values of wr iter and reader extra-ACM delays.

0

0.2

0.4

0.6

0.8

1

1.2

10 50 90 130 170 210 250 290 330 370 410 450 490

writer extra-ACM delay

d
at

a
re

-r
ea

d
in

g
 r

at
e

reader extra-ACM
delay from 500 to 10

ns

Figure 22 Data re-reading rates in relation to the mean wr iter and reader extra-ACM delays.

From these diagrams, it is clear that data loss increases if the writer becomes faster and data re-
reading increases when the reader becomes faster. Since each simulation run consisted of 255 writer
cycles, when the reader is faster it may include many thousands of reader cycles and when the reader is
slower it may include only a few reader cycles. This is the main reason that the diagrams are not shaped
similarly to each other. The qualitative results are however consistent.

The data value sequences for Din and Dout from a simulation run is selectively shown in Figure 23
and Figure 24. Data coherence, freshness, sequencing, loss and re-reading properties can all be obtained
by observing such sequences. For instance, the loss of data items 22 and 23 can be observed in Figure 24,
and the re-reading of data items 01 and 04 can be observed in Figure 23. The second reading of data value
04, while data value 05 has clearly been available for some time, does not violate data freshness according
to the definition found in [10]. According to this definition, when the statements r0 and r1 overlap with
the statements w0 and w1, the reader is allowed to obtain the latest but one item of data in the ACM. This
is because the location of the slot where the latest data item resides is indicated by the writer through w0
and w1 and obtained by the reader during r0 and r1. When these statements overlap in time the ACM
should not be expected to always pass the latest data item.

CS-TR-686, Department of Computing Science, University of Newcastle upon Tyne, 1999.

15

time (ns)
400.0 450.0 500.0 550.0 600.0 650.0 700.0

Din

Dout

00 01 02 03 04 05 06

00 01 00 01 00 03 00 04 00 04 00 06

Figure 23 Din and Dout value sequence at the beginning of a simulation.

time (ns)
2700.0 2750.0 2800.0 2850.0 2900.0 2950.0 2994.758

Din

Dout

20 21 22 23 24 25

00 21 00 24 00 24

Figure 24 Din and Dout value sequence in the middle of a simulation.

7 Current work, conclusion and discussion

Layout detaili ng is being carried out and further analogue simulations with the help of parameters
extracted from layout information will be the next step. The target of this work is the eventual fabrication
of testable ACM circuits for further, hardware-based, testing and prototyping.

This version of the 4-slot ACM, within its local boundary, is not fully asynchronous by virtue of the
unpredictable waiting introduced by the arbiters. However, unlike the original fundamental mode 4-slot
system proposed in [5], which may forcibly ensure full asynchronism by relaxing the requirement on data
coherence when metastabilit y occurs, this implementation gives the client (the designer of the writer and
reader processes) the choice of either sacrificing timing independence or data coherence by defining the
overall protocol between the reader and the read statement buffer and the writer and the write statement
buffer (Figure 9).

If a choice is made to give temporal independence priority over data coherence, then the new ACM
would perform similarly to the original design in terms of data coherence violation rates. This is because
the statistical profile of metastabilit y is unchanged, and the arguments of settling metastabilit y in repeated
copying inside processors do not apply when both ACM and the client processors are on the same chip.

In addition, the client designer may choose not to lose data coherence when the done signal is not
forthcoming but still be able to preserve timing integrity for the access process. Since at this point the
access process has the information that metastabilit y has occurred within the ACM, it may be specified to
not carry out the access during the present cycle but either throw out the current item of data (for the
writer) or use the item of data acquired during the last cycle (for the reader). In this case data freshness [5]
is sacrificed. This is not a real sacrifice because when data coherence is not maintained data freshness
becomes automatically meaningless.

The new option of letting the ACM run as fast as it can should produce significant speed gains simply
because metastabilit y is such a rare event.

In essence, this design eliminates critical sections on the data slots by using the 4-slot ACM as the
basis and shifts critical sections to bit control variables by arbiters and SI statement circuits, and gives
clients the choice of whether to make full use of these minimised critical sections.

In order to be more confident of our design, further work is planned to quantitatively analyse the
behaviour of the two ACM designs to see how they compare in time response, temporal independence,
and other areas.

8 Acknowledgements

The authors would like to thank A.A.Madalinski for running the PEI tool, A.Xie and P.A.Beerel for
kindly making PEI available and providing advisory support about it, and E.Campbell , I.G.Clark,
A.C.Davies, and D.A.Fraser for valuable discussions. This work is part of the Comfort project at the
University of Newcastle supported by the EPSRC grant GR/L93775.

CS-TR-686, Department of Computing Science, University of Newcastle upon Tyne, 1999.

16

1 Lamport L., “On interprocess communication” , Parts I and II , Distributed Computing, Vol.1986,
No.1, pp.77-101, Springer-Verlag, 1986.

2 Lynch, N.A., “Distributed Algorithms” , Morgan Kaufmann Publishers, Inc., San Francisco,
Cali fornia, 1996.

3 Wilner, D., “Vx-Files: What Really Happened on Mars?” , Keynote Speech, The 18th IEEE Real-
Time Systems Symposium San Francisco, Cali fornia, December 2-5, 1997.

4 Xia, F., Velastin, S.A., and Davies, A.C., “A parallel simulation of multiple mobile robots using the
DORIS design method” , Proceedings, 1994 IEEE international conference on robotics and
automation. San Diego, CA, USA, 2482-2487, 1994.

5 Simpson, H.R., “Four-slot fully asynchronous communication mechanism”, IEE Procs., Vol. 137, Pt.
E, No. 1, pp.17-30, January 1990.

6 Tromp, J., “How to construct an atomic variable”, Proc. 3rd Int. Workshop on Distributed
Algorithms, Nice, LNCS, Springer Verlag, pp.292-302, 1989.

7 Kirousis, L.M., “Atomic multi reader register” , Proc. 2nd Int. Workshop on Distributed Computing,
Amsterdam, LNCS-312, pp.278-296, Springer Verlag, 1987.

8 Yakovlev, A., Kinniment, D.J., Xia, F. and Koelmans, A.M., “A FIFO buffer with non-blocking
interface”, IEEE Computer Society TCVLSI Technical Bulletin, pp. 11-14, Fall 1998.

9 Craft, D., “ Improved CMOS core interconnect approach for advanced SoC applications” , IP'99
Europe, Edinburgh UK, November 1999.

10 Simpson, H.R., “Correctness analysis of class of asynchronous communication mechanisms” , IEE
Proceedings, Vol. 139, Pt. E, No. 1, pp.35-49, January 1992.

11 Semenov, A. and Yakovlev, A., “Contextual Net Unfolding and Asynchronous System
Verification” , Technical Report, TR572, Department of Computing Science, University of
Newcastle upon Tyne, 1997.

12 Xia, F. and Clark, I.G., “Complementing role models with Petri nets in studying asynchronous data
communications” , 19th International Conference on Application and Theory of Petri Nets, Hardware
Design and Petri Nets Workshop, pp.66-85, Lisbon, Portugal, June 23, 1998.

13 Marino L.R. “General theory of metastable operation” , IEEE Trans. Comput., C-30(2):107-115,
February 1981.

14 Simpson, H.R., “Correctness analysis for class of asynchronous communication mechanisms” , IEE
Procs., Vol. 139, Pt. E, No. 1, pp.35-49, January 1992.

15 Xia F., Clark I.G., and Davies A.C., “Petri-net based investigation of synchronisation free
interprocess communication in shared-memory real-time systems” , Proceedings, Second UK
Asynchronous Forum, Newcastle upon Tyne, UK, July 1-2, 1997.

16 Kinniment D.J., Gao B., Yakovlev A.V., and Xia F., “Towards asynchronous A-D conversion” ,
Proceedings, Fourth International Symposium on Advanced Research in Asynchronous Circuits and
Systems (ASYNC'98), March-April 1998, San Diego, CA, IEEE Computer Society Press.

17 Seitz, Ch., “ Ideas about arbiters” , Lambda, vol.1 pp 10-14, First Quarter 1980

18 Muller, D.E. and Bartky, W.C., "A theory of asynchronous circuits", Annals of Comput. Lab.,
Harvard University, pp. 204-243, 1959.

19 Bystrov, A., Shang, D., Xia, F. and Yakovlev, A., “Self-timed and speed independent latch circuits” ,
6th UK Asynchronous Forum, The University of Manchester, Manchester, UK, July 12-13, 1999.

20 Varshavsky, V. et al, Self-Timed Control of Concurrent Processes, Kluwer Academic Publishers,
P.O. Box 17,3300 AA Dordrecht, The Netherlands, 1990 (Russian Edition: Nauka, Moscow,1986).

21 Kinniment, D.J., “Measurements on a high speed arbiter” , Technical Report Series, TR677,
Department of Computing Science, University of Newcastle, 1999.

22 Xie, A. and Beerel, P.A., “Performance analysis of asynchronous circuits and systems using
stochastic timed Petri nets” (invited paper), Proc. of 2nd Workshop on Hardware Design and Petri
Nets, pp. 35-62, June 1999.

