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Abstract 

Replacement of the first metatarsophalangeal (MTP) joint is a relatively uncommon procedure 

compared with hip and knee arthroplasty.  A cobalt chrome-on-cobalt chrome MTP prosthesis, 

which had a diamond like carbon (DLC) coating applied to its articulating faces, was obtained for 

ex vivo analysis.  By modelling the ball and socket implant as an equivalent ball-on-plane model 

and employing elastohydrodynamic theory, the predicted lubrication regimes applicable to this 

implant design were determined.  These calculations were undertaken for a 10 to 1500N range of 

loading values and a 0 to 30mm/s range of entraining velocities, for both worn and unworn 
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situations.  Calculations showed that the implant would almost always operate in the boundary 

lubrication regime.  The presence of scratches on the articulating faces of the ex vivo sample further 

implied boundary lubrication.  The DLC coating had been removed from the entire face of the 

phalangeal component and from most of the face of the metatarsal component.  From the latter it 

appeared as if the coating had been scratched and then flaked away parallel to the scratches.  In turn 

this suggested a corrosion based failure of the interface between the DLC coating and the cobalt 

chrome subsurface.   
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1 Introduction 

 

The key joint of the forefoot during gait is the first metatarsophalangeal (MTP) joint.  It is subject to 

high loads and plays an important role in propelling the human form.  Unfortunately the first MTP 

joint can be subject to a number of diseases, such as hallux valgus, hallux rigidus and rheumatoid 

arthritis, all of which can eventually lead to replacement of the natural joint with a prosthesis.   

 

Historically, such prostheses have tended to be single-piece designs manufactured from silicone.  A 

single-stem Swanson implant was one of the first designs to be implanted, but a number of 

problems were encountered, primarily relating to wear of the silicone material [1].  Due to such 

disappointing clinical results this design was replaced by a double-stem Swanson design, which has 

given better results [2-4].  More recently, the Swanson prosthesis has been supplied with a pair of 

titanium grommets which are intended to protect the soft silicone material from damage due to cuts 

from the surrounding bone [5].  Comparable double-stem silicone designs of first MTP prosthesis 
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exist, such as the Gait from Sgarlato labs [6]; the Helal universal joint spacer [7]; the Primus™ 

flexible great toe and the Classic flexible great toe, both produced by Futura™ Biomedical [8].   

 

However, concerns exist over such silicone double-stem designs.  Granberry et al abandoned use of 

the Sutter silicone prosthesis after finding a 29% fracture rate, and their opinion was applied to all 

silicone MTP prostheses [9].  As well as such unease regarding the prosthesis designs there are 

wide concerns about possible material problems due to silicone synovitis [10-12].   

 

Given such concerns, and in an attempt to apply positive experience from larger total replacement 

joints, a number of two-piece articulating designs for the first MTP joint have been proposed [8].  

These include metal-on-polymer designs such as the Kenetik Great Toe Implant and the 

ReFlexion™ [13], and a ceramic-on-ceramic design, the Moje [14].  With such articulating joints, 

wear of the bearing surfaces becomes critical, as it is widely recognized from experience with 

artificial hip joints that prosthetic wear debris can lead to osteolysis and the eventual failure of the 

replacement joint [15].   

 

Metal-on-metal articulations have been used successfully for total hip replacements [16] and the 

same concept has been applied in the application of a first MTP prosthesis.  The particular design 

employed cobalt chrome for both the metatarsal and the phalangeal components.  The stems were 

covered with hydroxyapatite to encourage bony ingrowth.  The articulating faces were covered with 

a diamond-like carbon (DLC) layer, presumably as such layers have been shown to offer a low wear 

combination [17].   

 

A single explant from a cohort of implants was obtained and is shown in Figure 1.  It was removed 

approximately four years after implantation.  At revision there was black staining of the 

surrounding joint synovium and osteolysis of the bone ends.  The explant was analysed and a 
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calculation of the theoretical lubrication regime when new, and at the time of removal of the 

implant, was undertaken using elastohydrodynamic theory.   

 

 

2 Methods and Materials 

 

2.1 Explant analysis 

 

The explant was examined macroscopically by eye and then in greater detail using a ZYGO 

NewView 100 non-contacting profilometer and an environmental scanning electron microscope.  In 

addition, the shape and radii of the articulating faces were determined using a co-ordinate 

measuring machine.   

 

2.2 Calculation of lubrication regimes 

 

Modelling the ball and socket implant as an equivalent ball-on-plane model and employing 

elastohydrodynamic theory [18] allowed the minimum effective film thickness (hmin) to be 

calculated from: 
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Where Rx is the equivalent radius (m), η is the viscosity of the lubricant (Pa s), u is the entraining 

velocity (m/s), E* is the equivalent elastic modulus (Pa), and w is the load (N).  In turn, given that 

Ra is the surface roughness and assigning subscript 1 to the ball (metatarsal component) and 

subscript 2 to the socket (phalangeal component) of the MTP prosthesis under consideration, then 

the lambda ratios were calculated from: 
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This allowed the lubrication regime to be identified, as λ < 1 indicates boundary lubrication, λ > 3 

designates fluid film lubrication, and between these values mixed lubrication is indicated [19].   

 

Before these calculations could be undertaken, the equivalent radius (Rx) was calculated from: 
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Where R refers to the radius of the component and subscript 1 refers to the ball and subscript 2 to 

the socket of the MTP prosthesis.  The equivalent modulus of elasticity was determined from the 

equation: 
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Again, E refers to the Young’s modulus of the component and again subscript 1 refers to the ball 

and subscript 2 to the socket of the MTP prosthesis, similarly for the two Poisson’s ratios.   

 

Clearly, the natural first MTP joint will encounter a range of loads during a lifetime and similarly 

the joint will move at a range of speeds.  In terms of loading, values in the range of 0.8 to 1 x body 

weight have been suggested by researchers [20-21].  For a person of 70kg this would equate to a 

load across the first MTP joint of some 590N [20].  Clearly people of greater weight exist, and 

additionally it has been shown that loading across the first MTP joint can be doubled by the wearing 



 6 

of high heels [22].  Therefore a 10 to 1500N range of loading was chosen for the calculations of 

lubrication regime.   

 

If an ‘average’ speed during gait of 1Hz is taken, for a ‘typical’ first MTP joint of 13mm radius (r) 

[20] moving through an arc of 32° during gait [23] then an average entraining velocity of 14mm/s 

can be calculated from: 

 

u = rω/2                       Equation 5 

 

Where ω is the angular velocity [24].  This value of 14mm/s was taken as a constant when the 

different load calculations were undertaken.  Again allowing for higher frequencies and larger sizes 

of joints gave an estimated upper limit of 30mm/s for the series of calculations involving entraining 

velocity.  The minimum speed was taken as zero and was incremented in 5mm/s steps.  A constant 

load of 590N was assumed.   

 

Roughness measurements of worn and unworn regions of the articulating faces were taken.  These 

values allowed the lambda ratio to be calculated for the prosthesis when new (unworn) and at the 

time of retrieval (worn).  ‘Worn’ and ‘unworn’ sets of calculations were undertaken for the 0 to 

30mm/s range of entraining velocities and the 10 to 1500N range of loading values justified above.   

 

A viscosity of the synovial fluid lubricant of 0.005Pa s was assumed [25].  Other relevant values 

were taken from the literature, and a summary is given in Table 1. 

 

 

3 Results 
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Measurements taken from the CMM showed that the articulating faces of the explant were part 

spherical surfaces.  The phalangeal component of the explant was measured to have a spherical 

diameter of 20.081mm, while that of the metatarsal component was 19.881mm.  Therefore the 

diametral clearance was 0.200mm and the radial clearance was 0.100mm.  The DLC coating had 

been removed from the entire face of the phalangeal component and from most of the face of the 

metatarsal component.  From the latter it appeared as if the coating had been scratched and then 

flaked away parallel to the scratches (Figure 2).  In turn this suggested a corrosion based failure of 

the interface between the DLC coating and the cobalt chrome subsurface, a result noted recently 

elsewhere [17].  Even within the apparently undamaged DLC coating, closer investigation revealed 

relatively deep pits which again were felt to indicate damage due to corrosion.   

 

The DLC coating which remained had a typical roughness value of 0.020µm Ra, while that of the 

surface without the DLC coating was 0.030µm Ra on the metatarsal component and 0.063µm Ra on 

the phalangeal component.  The presence of multi-directional scratches on the articulating faces of 

the metatarsal (Figure 2) and the phalangeal component implied boundary or mixed lubrication.  On 

the phalangeal component, an unusual localized area of damage was seen.  This is shown in Figure 

3 where, in addition, more of the multi-directional scratches can be seen.  The DLC coating was 

found to have a thickness of approximately 0.35µm.   

 

Calculations showed that, for the range of entraining velocities (Figure 4) and loads (Figure 5) 

considered, the worn implant would operate in the boundary lubrication regime (λ < 1) thus 

supporting the results of the visual examination, where the presence of scratches on the articulating 

faces of the explant implied that surface to surface interaction had occurred.  Such surface to 

surface contact would indicate that the lubrication regime was either boundary or mixed, so 

supporting the results of the theoretical calculations.  Therefore surface to surface contact would 

most frequently take place, with little separation due to lubrication between the articulating 
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surfaces.  However, it was also noted that when new it was possible that the implant could have 

operated under the somewhat more favourable condition of mixed lubrication (3 > λ > 1), especially 

at lower loads and under higher entraining velocities.   

 

 

4 Discussion 

 

It has been recognised that replacement of the first MTP joint is a relatively uncommon procedure 

compared with hip and knee arthroplasty.  Part of the reason for this is that available first MTP 

prostheses have not shown clinical results as admirable as those generally achieved by hip and knee 

replacements.  A crucial part of the process of making first MTP implants more successful is to 

learn from explants and so it is hoped that the information offered in this paper adds to the available 

data on retrieved first MTP prostheses.  It should also be recognized that while DLC coatings have 

given low wear results in certain applications [17], their biotribological application may offer more 

challenges, particularly in terms of adhesion between the subsurface and the DLC coating [26].  

Indeed, an earlier paper showed that, in the presence of biological fluids, perforations in the DLC 

coating allowed the fluid to penetrate and slowly corrode the interface between the DLC coating 

and the substrate [27].   

 

In addition, the influence of three-body wear should be recognised.  The black staining of the 

surrounding joint synovium at revision operation was likely due to the myriad parts of the DLC 

coating which had been removed from the articulating faces of the implant.  This hard wear debris 

would likely have contributed to three-body wear and roughened the articulating surfaces and cobalt 

chrome substrate.   

 

Due to the multifaceted nature of calculating the lubrication regimes, there are a number of factors 
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which can have a critical impact.  These include load and entraining velocity, both of which have 

been discussed earlier.  It has been seen that an increase in load and a decrease in entraining 

velocity both have a negative impact on minimum film thickness and thus on lubrication regime.   

 

Values of roughness of the articulating faces have a crucial impact on the lubrication regime that 

can be achieved.  By measuring an unworn surface of the DLC coating remaining on the metatarsal 

component, a value of 0.020µm Ra was found.  This is a viable figure, as values between 0.002 and 

0.006µm Ra have been reported for the femoral heads of total hip prostheses, including those of 

16mm and 22mm diameter which are similar to the 20mm diameter MTP prosthesis in this study 

[28].  Evidence has been taken from similar diameter metal-on-metal hip prostheses, as their 

articulating faces would likely be manufactured by a similar method to that used for the MTP 

prosthesis.  For the phalangeal component, a value of 0.063µm Ra was measured, though this may 

be on the high side as the DLC coating had been removed.  The study by Smith et al just quoted 

further suggests that a value of 0.010µm Ra can be achieved for the concave surface of a 20mm 

nominal diameter phalangeal component [28].   

 

Another critical factor is the clearance between the metatarsal and phalangeal components.  In this 

study, the radial clearance between the worn components was measured to be 100µm.  

Unfortunately there is no manufacturer’s data available to compare this value with.  As the DLC 

coating is relatively thin, of the order of 0.35µm, loss of the coating on both articulating surfaces, 

totalling 0.7µm, is unlikely to have had a great impact on the radial clearance.  Therefore loss of the 

coating would cause an increase in radial clearance from 99.3µm to 100µm.  Given that 

manufacturing tolerances need to be considered, perhaps the prosthesis was manufactured with a 

radial clearance of 100µm.   

 

On the other hand, for a 16mm diameter metal-on-metal hip prosthesis a radial clearance of 30µm 
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has been reported [28].  In addition, tests of metal-on-metal hip prostheses with 22µm and 40µm 

radial clearances have been detailed [29].  Therefore a radial clearance of 30µm was taken and, 

together with roughness values of 0.003 and 0.010µm Ra offered by Smith et al for similar diameter 

head and cup components [28], the calculations were repeated.  With such a clearance and 

roughness values it was found that the lubrication regime could be moved from mixed to fluid film 

for an unworn prosthesis.  Thus the potential for fluid film lubrication of ball-in-socket two-piece 

metal-on-metal first MTP prostheses does exist during part of the gait cycle, if appropriate 

manufacture can be achieved.   

 

Conversely, it should be recognized that when the surfaces of the artificial joint are not articulating, 

for example when a person is at rest, there is likely to be surface to surface contact of the implant as 

there will be zero entraining velocity and the joint will be under a compressive load from the 

muscles acting across the MTP joint.  Therefore other factors in addition to lubrication analysis 

should be considered if designing an MTP implant.   

 

 

5 Conclusion 

 

Theoretical lubrication analysis indicates that, when new, the design of metal-on-metal MTP 

prosthesis could operate under mixed lubrication, particularly at lower loads.  However, analysis of 

the explant showed that surface damage to the articulating faces occurred in vivo, resulting in an 

increase in surface roughness and a diminution in the theoretical lubrication from mixed to 

boundary.  In addition, it was seen that the DLC coating had been removed from the entire 

articulating surface of the phalangeal component and from the majority of the face of the metatarsal 

component.  While scratching of the coating had been a factor in its removal it was felt that 

corrosion at the interface of the coating and the cobalt chrome substrate was a more important 
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cause, based on evidence from the topography of the articulating faces and the work of previous 

researchers investigating the corrosion of DLC coatings in the presence of biologically relevant 

fluids.   
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Figure 1  The metal-on-metal MTP prosthesis.  The metatarsal component is on the left, the 

phalangeal component on the right.  The remaining DLC coating can be seen on the articulating 

face of the metatarsal component 

 

 

Figure 2  Damage to DLC coating on the metatarsal component, image from non-contacting 

profilometer 
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Figure 3  Localized damage to articulating surface of the phalangeal component, image from 

environmental scanning electron microscope 

 

 

Figure 4  Variation of lambda ratio with entraining velocity 
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Figure 5  Variation of lambda ratio with load 
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