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Background. The histone variant histone H2A.X comprises up to 25% of the H2A complement in mammalian cells. It is rapidly
phosphorylated following exposure of cells to double-strand break (DSB) inducing agents such as ionising radiation. Within
minutes of DSB generation, H2AX molecules are phosphorylated in large chromatin domains flanking DNA double-strand
breaks (DSBs); these domains can be observed by immunofluorescence microscopy and are termed cH2AX foci. H2AX
phosphorylation is believed to have a role mounting an efficient cellular response to DNA damage. Theoretical considerations
suggest an essentially random chromosomal distribution of X-ray induced DSBs, and experimental evidence does not
consistently indicate otherwise. However, we observed an apparently uneven distribution of cH2AX foci following X-irradiation
with regions of the nucleus devoid of foci. Methodology/Principle Findings. Using immunofluorescence microscopy, we
show that focal phosphorylation of histone H2AX occurs preferentially in euchromatic regions of the genome following X-
irradiation. H2AX phosphorylation has also been demonstrated previously to occur at stalled replication forks induced by UV
radiation or exposure to agents such as hydroxyurea. In this study, treatment of S-phase cells with hydroxyurea lead to
efficient H2AX phosphorylation in both euchromatin and heterochromatin at times when these chromatin compartments were
undergoing replication. This suggests a block to H2AX phosphorylation in heterochromatin that is at least partially relieved by
ongoing DNA replication. Conclusions/Significance. We discus a number of possible mechanisms that could account for the
observed pattern of H2AX phosphorylation. Since cH2AX is regarded as forming a platform for the recruitment or retention of
other DNA repair and signaling molecules, these findings imply that the processing of DSBs in heterochromatin differs from
that in euchromatic regions. The differential responses of heterochromatic and euchromatic compartments of the genome to
DSBs will have implications for understanding the processes of DNA repair in relation to nuclear and chromatin organization.
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INTRODUCTION
Up to 25% of the histone H2A complement in mammalian cells

consists of the histone variant H2AX [1,2]. Compared to histone

H2A1, this molecule has a unique C-terminal tail containing the

phosphorylation target sequence for members of the phosphati-

dylinositol 39-kinase like kinase (PIKK) family of serine/threonine

protein kinases. This family includes ataxia telangiectasia mutated

(ATM), ataxia telangiectasia and Rad3 related (ATR) and DNA-

dependent protein kinase (DNA-PK)[3,4]. Histone H2AX is

rapidly phosphorylated at Ser139 following treatments that induce

DNA double-strand breaks (DSBs) or cause replication stress. At

DSBs generated by ionizing radiation for example, H2AX

becomes phosphorylated over megabase chromatin regions

flanking the breaks [1]. This phosphorylation is dependent largely

on ATM, with some redundancy with DNA-PK [5,6]. The

resulting local concentrations of phosphorylated H2AX (cH2AX)

can be detected at interphase by immunofluorescence microscopy,

and are termed cH2AX foci. UV exposure or treatment with

replication inhibitors such as hydroxyurea lead to ATR-dependent

H2AX phosphorylation at sites of arrested replication forks [7].

Similarly, replication-dependent DSBs induced by topoisomerase I

inhibitors lead to ATR-dependent H2AX phosphorylation [8].

cH2AX is believed to form a platform for the recruitment and/or

retention of DNA repair and signaling molecules at sites of DNA

damage. At least one of these components, MDC1, binds directly

to the phosphorylated C-terminal tail of histone H2AX. The

precise physiological role of H2AX phosphorylation is not yet fully

understood, but cells derived from H2AX2/2 mice display

moderate radiosensitivity [9,10] and a G2/M checkpoint defect

[11]. This is consistent with the notion that by concentrating

signaling molecules at sites of damage, cH2AX amplifies the DNA

damage signal. It has also been suggested that phosphorylation of

H2AX helps anchor chromosomal ends together, reducing the

chances of DSBs leading to illegitimate recombination events [12].

Phosphorylation of histone H2AX can be seen as one of

a number of histone posttranslational modifications that delineate

specific functions in particular segments of chromatin. Other such

modifications include trimethylation of histone H3 lysine 9 and

histone H4 lysine 20, that are characteristic of constitutive

heterochromatin [13,14,15]. This compartment of the genome is

gene-poor and remains condensed during interphase. It is

composed largely of repeated elements found in centromeric and

pericentromeric regions in most eukaryotes and in the short arms

of the human acrocentric chromosomes. DNA replication occurs

towards the end of S-phase in heterochromatic regions, whereas

euchromatic regions generally replicate in early to mid S-phase. In

addition, it is well established that heterochromatic regions are

associated with the non-histone chromatin protein, HP1
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[16,17,18,19,20]. Since heterochromatin and euchromatin repre-

sent different chromatin environments, it is possible that

differences exist in their susceptibility to DNA damage, or in the

detection or processing of DSBs. A number of previous papers

have examined the frequency of chromosomal abnormalities (CAs)

involving euchromatic versus heterochromatic regions following

ionizing radiation, as a proxy for DNA damage and repair. No

consistent pattern emerges from the literature, possibly because of

differences in the species or cell type used or the means by which

CAs were examined. Notably though, when Puerto et al (2001)

[21] compared the human constitutive heterochromatic 1cen-

1q12 region with the similarly sized euchromatic 17cen-p53 region

they found no difference in the initial number of c-radiation

induced chromosome breaks, leading to the conclusion that

chromatin configuration does not affect radiosensitivity. Histone

H2AX phosphorylation is a well established marker of DSBs, and

in this study we have found that following ionising radiation,

cH2AX foci, are under-represented in heterochromatin in

mammalian cells.

RESULTS

Ionizing radiation-induced cH2AX foci are largely

excluded from heterochromatin
We previously noticed an apparently uneven distribution of

cH2AX foci across the nucleus of X-irradiated MCF7 breast

carcinoma cells, nuclei often containing islands free of cH2AX

foci. We suspected that these c-H2AX-free islands might include

heterochromatic regions. To test this hypothesis we carried out

immunofluorescence analysis for cH2AX and the heterochromatin

protein HP1a in X-irradiated MCF7 cells (Fig. 1). HP1 is a highly

conserved component of heterochromatin [13,18,19,20], and

HP1a has been reported to be concentrated in discrete nuclear

regions in interphase HeLa cells, often embedding centromeres, as

expected for heterochromatin [22]. Similarly, in the present study,

HP1a staining was concentrated in several large nuclear domains

in MCF7 cells (Fig. 1b, e, h, k&n). Prior to irradiation, cH2AX

staining revealed one or two foci in most cells, as reported

previously [23,24](Fig. 1m). When cells were fixed 30 minutes

after irradiation (2Gy), nuclei contained an average of 50 cH2AX

foci per cell. These foci were distributed throughout the nuclei, but

with apparent islands where foci were absent (Fig. 1d, g, j, p).

When the cH2AX and HP1a signals were overlaid, it could be

seen that the bright HP1a signals corresponded to some of the

islands free of cH2AX signal (Fig. 1 third column). Line traces

through selected cells emphasized this inverse correlation between

cH2AX and HP1a staining. The images shown were obtained

using methanol fixation, but similar results were obtained when

cells were fixed with paraformaldehyde and then permeabilised.

Approximately 64% of nuclei displayed no overlap between

cH2AX foci and any HP1a-bright region. Cells where fewer than

half of the HP1a regions contained at least one cH2AX focus

made up 89% of the asynchronous cell population (see Table 1).

Similar results were obtained when cH2AX foci were compared

with another heterochromatin marker, Histone H3 trimethylated

at lysine 9 (H3K9Me3, Fig 1p–r). This phenomenon was not

limited to IR-generated DNA damage, as cH2AX foci appearing

during treatment of MCF7 cells with the topoisomerase II poison

etoposide were also largely excluded from HP1a-staining regions

(Fig. 2). In this case, 60% of cells displayed no overlap between

cH2AX and HP1a, while cells where less than half of the HP1a-

bright regions contained at least one cH2AX focus made up 89%

of the population. Similar results to those described above for

MCF7 cells were also observed in mouse fibroblasts (not shown).

cH2AX-free islands are not simply due to nucleoli
Nucleoli have a relatively low DNA density, and so it follows that

a low frequency of DSBs would be expected per unit volume

following X-irradiation. Furthermore, nucleoli are often bordered

by regions of dense chromatin as judged by staining with dyes such

as DAPI or TO-PRO-3. In human cells this can have the

appearance of a perinucleolar rim (see Fig. 3a and Wu et al 2005

[14], for example) that partially overlaps with HP1a (see Fig. 3c,

d&g). Thus, we were concerned that the apparent exclusion

cH2AX foci from HP1a-staining heterochromatic regions might in

fact reflect a low frequency of cH2AX foci formation within

nucleoli. However, when the relative distribution of cH2AX foci

and the nucleolar marker nucleolin was compared to that of

cH2AX and HP1a, the cH2AX foci-free islands were primarily

occupied by HP1a-staining heterochromatin and not nucleolin.

Examples of these staining patterns are shown in Fig. 3a–h.

H2AX can be phosphorylated in replicating

heterochromatin
UV irradiation or exposure to the replication inhibitor hydroxy-

urea (HU) results in phosphorylation of histone H2AX at sites of

replication. This occurs through signaling from stalled or collapsed

replication forks and is dependent on ATR [7,25]. A feature of

heterochromatin is its replication towards the end of S-phase.

[14,26,27]. Thus, exposure of late S-phase cells to hydroxyurea

would be expected to result in phosphorylation of H2AX in

replicating heterochromatic regions. When asynchronous MCF7

cells were exposed to HU for 1 hour before fixation, cH2AX was

either: (i) absent apart from one or two distinct foci, (ii) present

throughout the nucleus in fine speckles or (iii) was clustered into

large regions in the interior of the nuclei with smaller foci around

the nuclear periphery (Fig. 4a–c respectively). These patterns are

consistent with (i) non S-phase cells, (ii) cells in early S-phase (S-E)

and lastly (iii) cells in which heterochromatic DNA is replicating in

late S-phase (S-L). This interpretation was confirmed using MCF7

cells synchronized by serum starvation and release into medium

containing 20% serum [28](Fig. 5,b, f, j). Notably, in S-L cells, the

large cH2AX clusters coincided with the HP1a staining (Fig. 4d–i).

The colocalisation of cH2AX and HP1a was examined by line

traces drawn across selected nuclei, confirming the heterochro-

matic origin or the strongest cH2AX signals. In cells displaying the

fine speckled S-phase cH2AX pattern (S-E pattern), the speckles

were excluded from the HP1a staining regions (Fig 4. j–l).

Similarly, treatment with the DNA crosslinking cytotoxic drug

cisplatin led to phosphorylation of histone H2AX during S-phase,

with cH2AX appearing in heterochromatic regions of late S-phase

cells after 1 hour exposure to cisplatin (Fig. 4 m–r&Fig. 5c, g, k).

Thus, H2AX is phosphorylated at sites of replication stress

induced by agents such as HU and cisplatin even when those sites

are within heterochromatin. Notably, when a late S-phase-

enriched population of MCF7 cells were X-irradiated (Fig 5l),

cH2AX foci appeared similar in overall distribution to those

induced in G1–enriched cells (Fig 5d), but the proportion of cells

exhibiting cH2AX foci overlapping HP1a domains was greater

than for G1 cells (see Table 2). This suggests that during

replication heterochromatic H2AX is generally more amenable

to phosphorylation.

DISCUSSION
We have analyzed the distribution of cH2AX foci in relation to

heterochromatin and euchromatin in the cell nucleus. cH2AX foci

induced by IR were largely absent from nuclear regions containing

the heterochromatin markers HP1a or H3K9Me3 in MCF7 cells.

Euchromatic cH2AX
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Figure 1. cH2AX foci induced by ionizing radiation are absent from HP1a-staining nuclear domains. MCF7 cells were fixed 30 minutes after X-
irradiation (2Gy, panels a–l & p–r) and were processed for immunofluorescence for cH2AX (green) and either HP1a or H3K9Me3 (red). Panels m–o, non-
irradiated cells. DNA was stained with DAPI. Panels a, d, g, j, m & p, cH2AX; panels b, e, h, k & n, HP1a; Panel q, H3K9Me3; panels c, f, I, l, o & r merged
images. Overlapping red and green signals appear yellow. The top row shows a group of cells with typical appearance. Individual nuclei are shown
magnified in rows 2–6. For the nuclei shown in rows 2–4, line traces were generated (shown on the right) with the line drawn through the brightest HP1a
regions. For cH2AX, HP1a and H3K9Me3, images were first adjusted using levels such that fainter interfocal nuclear fluorescence was not included.
doi:10.1371/journal.pone.0001057.g001

Euchromatic cH2AX
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To our knowledge, this differential nuclear distribution of IR-

induced cH2AX foci has not been reported previously, although

re-examination of images presented in certain papers (for example

[29]) shows an apparently similar pattern in mouse cells, where

heterochromatin can easily be recognized as bright DAPI staining

regions. Also consistent with the findings reported here, Kar-

agiannis et al [30] reported that satellite 2 and alpha satellite-

containing chromatin is resistant to the induction of cH2AX by

ionizing radiation according to ChIP analysis [30]. Notably, these

satellite sequences are constituents of centromeric heterochroma-

tin. In addition, this phenomenon appears to be conserved

through evolution. Kim et al [31] reported during the preparation

of this manuscript, that in the budding yeast Saccharomyces cerevisiae

the heterochromatic silent HML and HMR loci are resistant to

cH2AX formation following the introduction a targeted DSB.

Several possible reasons can be postulated for the apparent

preference of H2AX phosphorylation for the euchromatic fraction

of the genome. (i) Fewer DSBs are generated in heterochromatin,

(ii) histone H2AX is absent or at low abundance in heterochro-

matin, (iii) epigenetic or other features of heterochromatin prevent

the phosphorylation of H2AX over a large enough chromatin

Figure 2. cH2AX foci generated by etoposide treatment do not
appear in HP1a-staining regions in MCF7 cells. MCF7 cells were
incubated in medium containing etoposide and processed as in
Figure 1. Panels a–c, two hour exposure to 5 mM etoposide. Panels
d–i, 24 hour exposure to 1 mM etoposide. Panels j–l, untreated cells.
Cells were fixed immediately after etoposide treatment.
doi:10.1371/journal.pone.0001057.g002

Table 1. Distribution of cH2AX foci in relation to HP1a staining
in MCF7 cells treated with DNA damaging agents.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Treatment

At least one HP1a domain
coincides with a cH2AX focus
(mean6SD)

.50% of HP1a domains
coincide with a cH2AX focus
(mean6SD)

IR (2Gy) 35.767.4 11.163.6

Etoposide 3965.9 11.663.9

Correlation between HP1a and H2AXc signals was determined by eye from
overlaid immunofluorescence images. In each case more than 50 nuclei were
scored from 2 separate images.
doi:10.1371/journal.pone.0001057.t001..
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Figure 3. Spatial relationship between cH2AX foci, HP1a-staining heterochromatic regions and nucleoli. Panel b–d and f–h were obtained from
a single nucleus fixed 30 minutes after X-irradiation (2Gy) and processed for cH2AX and HP1a immunofluorescence. Panels, a & e were obtained from
a separate irradiated nucleus processed for nucleolin and cH2AX immunofluorescence. Panel a, DAPI; b, cH2AX; c, HP1a; d, DAPI; e, merged DAPI
(blue) and nucleolin (red), cH2AX (green) images; f, cH2AX (green)/DAPI (blue); g, HP1a (red)/DAPI (blue); h, cH2AX/HP1a/DAPI. In panels e–h, the red
and green chanels were reduced to binary images, retaining as much detail as possible, before overlaying on the DAPI image. DAPI staining was
carried out under optimum conditions to reveal nuclear structure.
doi:10.1371/journal.pone.0001057.g003

Euchromatic cH2AX
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Figure 4. Replication stress can induce phosphorylation of histone H2AX in heterochromatin. Panels a–l, subconfluent asynchronous MCF7 cells
were exposed to hydroxyurea (2 mM) for one hour immediately prior to fixation and processing for cH2AX (green) and HP1a (red)
immunofluorescence. Panels a–c, representative nuclei displaying non-S phase, early to mid S-phase (S-E) and late S-phase (S-L) cH2AX staining
respectively. Panels d–f & g–I, single S-L nuclei; j–l, single S-E nucleus. Panels d, g, j, cH2AX; e, h, k, HP1a; f, i, l, merged cH2AX/HP1a images. Line traces
are presented on the right. Lines were drawn across the nucleus through heterochromatic (HP1a staining) regions in each case, including the DAPI
channel. Panels m–r, subconfluent MCF7 cells were exposed to cisplatin (50 mM) for one hour, 38 hours after release from serum starvation. Cells
were fixed immediately after cisplatin treatment and processed for cH2AX immunofluorescence. Panels m & p, cH2AX; n & q, DAPI; o & r merged
cH2AX (green)/DAPI (red) images.
doi:10.1371/journal.pone.0001057.g004

Euchromatic cH2AX
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domain to generate a detectable focus, or these features restricts

access of ATM and DNA-PK, (iv) DSBs rapidly migrate to the

periphery of heterochromatic regions or cause local decondensa-

tion and loss of heterochromatin features.

Starting with the first possibility, there is no consistent evidence

that IR induces fewer DSBs in heterochromatin than in

euchromatin. Since no intermediates other than free radicals

generated following energy deposition and their interaction with

the DNA molecule are involved [32,33,34], it appears theoretically

unlikely that heterochromatin would be very refractory to DSB

generation by IR. However, differences in free radical scavenging

capacity between chromatin compartments could result in

different sensitivities to IR. Notably, Warters and Lyons [35]

showed that decondensation of chromatin in isolated nuclei by

hypotonic treatment resulted in a 4.5-fold increase in the

sensitivity of DNA to DSB induction as estimated by gel

electrophoresis. This was presumably due to reduced protection

of DNA from radical damage in decondensed chromatin

associated with a reduced local concentration of histones and

other proteins and molecules that scavenge free radicals. A

considerable body of published work exists that compares the

frequencies of radiation induced CAs originating in heterochro-

matin versus euchromatin, (see for example [36] and references

within), but there is no consensus as to whether radiation induced

CAs occur with higher or lower than expected frequencies in

heterochromatin. Notably though, a recent study has shown no

difference in the frequency of c-radiation-induced chromosome

breaks between the largest block of heterochromatin in the human

genome (1cen-1q12) and a similarly sized euchromatic region [21].

On balance, it seems unlikely that the lack of cH2AX foci in

heterochromatin could be fully accounted for by a lower sensitivity

to DSB induction in these regions.

If the abundance of the H2AX histone variant was markedly

lower in heterochromatin, heterochromatic DSBs would not lead

to a sufficient local concentration of phospho-H2AX molecules to

Figure 5. G1 and S-phase H2AX phosphorylation. MCF7 cells were serum starved (0.05% FCS) for 24 hours before release into medium containing
20% FCS. Cells were fixed at different times such that fixed cell populations were predominantly in G1, early S (S-E) or late S-phase (S-L). (6.5 hr, 24 hr
and 38 hr respectively). HU or cisplatin were added to the cells, to 2 mM or 50 mM respectively, at the indicated times prior to fixation. Irradiated cells
were fixed 30 minutes after irradiation.
doi:10.1371/journal.pone.0001057.g005

Table 2. Distribution of X-ray induced cH2AX foci in relation
to HP1a staining during G1 versus late S-phase.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Phase

At least one HP1a domain
coincides with a cH2AX focus
(mean6SD)

.50% of HP1a domains
coincide with a cH2AX focus
(mean6SD)

G1 29.264.1 16.962.4

Late-S 82.263.2* 71.7616.1*

MCF7 cells were serum starved (0.05% FCS) for 24 hours before release into
medium containing 20% FCS. Cells were X-irradiated (2Gy) at different times
and fixed 15 minutes later, such that fixed cell populations were predominantly
in G1 or late S-phase. (6.5 hr, 38 hr respectively). Correlation between HP1a and
H2AXc signals was determined by eye from overlaid immunofluorescence
images. Mean numbers of nuclei exhibiting the described coincidence of HP1a
and H2AXc signals were derived from at least two fields containing in excess of
100 nuclei.
*p,0.001 (t-test).
doi:10.1371/journal.pone.0001057.t002..
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generate cH2AX foci that are detectable by immunofluorescence.

However, this does not appear to be the case, as exposure of cells

to HU during replication leads to the appearance of abundant

cH2AX in heterochromatin (see Figs 4&5). Other histone

modifications such as histone H3 lysine 9 trimethylation, the

presence of heterochromatin-specific proteins such as HP1a, or

structural features of heterochromatin may prevent access of ATM

and/or DNA-PK to H2AX molecules, or may limit the extent of

the domain over which H2AX is phosphorylated. However, ATR,

which is responsible for H2AX phosphorylation following

replication inhibition [7], appears to have access to heterochro-

matin at least during S-phase. Thus, ongoing replication may leave

heterochromatin more amenable to DSB-induced H2AX phos-

phorylation. In support of this notion, a greater number of nuclei

exhibit at least some overlapping cH2AX and HP1a signals when

cells were irradiated in late S phase compared to G1 (Table 2),

suggesting that transient decondensation of heterochromatin or

depletion of heterochromatin proteins during replication allows

H2AX phosphorylation. Further support for the role of the

condensed nature of heterochromatin or its specific epigenetic and

protein binding complement in preventing H2AX phosphoryla-

tion following IR comes from the use of histone deacetylase

inhibitors. Prolonged exposure to low concentrations of the histone

deacetylase inhibitor TSA results in reorganization of heterochro-

matin, characterized by increased acetylation, loss of HP1 proteins

from heterochromatin and the movement of pericentromeric

heterochromatin regions to the nuclear periphery [37]. Notably,

Karagiannis et al [30] reported an IR-induced increase a-satellite-

derived cH2AX only when cells were first exposed to TSA

(0.2 mM, 72 hr). The alternative hypothesis (iv above) that the

occurrence of a DSB in a heterochromatic region does result in

efficient H2AX phosphorylation, but that this is coupled to local

decondensation and loss of heterochromatic features seems less

likely, particularly considering the data reported by Karagiannis et

al. However, this possibility cannot be completely discounted in

the light of data showing local chromatin decondensation at the

sites of DSBs [38].

Thus, we conclude that DSBs-inducing agents fail to efficiently

generate cH2AX foci in heterochromatin. The evidence discussed

above suggests that this is due to the epigenetic or packaging

properties of heterochromatin, preventing efficient H2AX phos-

phorylation. Since cH2AX is regarded as forming a platform for

the recruitment or retention of other DNA repair and signaling

molecules at DSBs, this implies that the processing of DSBs in

heterochromatin differs from that in euchromatic regions. The

differential response of heterochromatic and euchromatic com-

partments of the genome to DSBs will have implications for

understanding the processes of DNA repair in relation to nuclear

and chromatin organization.

MATERIALS AND METHODS

Cell Culture
MCF7 cells were cultured as monolayers in RPMI 1640 medium

supplemented with 10% (v/v) FCS, 100 units/mL penicillin and

100 mg/mL streptomycin. For immunofluorescence analysis, cells

were grown on glass coverslips inside 6-well plates.

Cell irradiation and drug treatment
Cells were typically cultured on glass coverslips to 50–70%

confluence and X-irradiated at 2.9 Gy/min at 230 KV, 10 mA.

Cells were immediately returned to the incubator for the described

length of time before washing with PBS and processing for

immunofluorescence. Drug treatments were carried out as

described in the figure legends.

Immunofluorescence microscopy
Coverslips were washed in PBS and cells were fixed in methanol at

220uC for 5 minutes before washing three times for 10 minutes

each in PBS. Blocking was carried out overnight in KCM+T

buffer [120 mM KCl, 20 mM NaCl, 10 mM Tris-HCl, pH 7.5,

0.5 mM EDTA, 0.1% (v/v) Triton X-100] containing 10% (w/v)

dried milk powder and 2% (w/v) BSA. Primary and secondary

antibody incubation was carried out in blocking buffer and washes

were performed using KCM+T. Primary antibodies used were:

mouse monoclonal anti-cH2AX (Upstate), affinity purified rabbit

anti HP1a [39] and affinity purified rabbit anti-H3K9Me3 (anti

Me9H3) [13]. Secondary antibodies used were Alexa FluorH 594

goat anti-rabbit IgG and Alexa FluorH 488 goat anti-mouse IgG

(Molecular Probes). Cells were counterstained with DAPI before

mounting. For Figs 1, 2 and 4a–i, DAPI was used at 1.5 mg/ml

and was not washed out, resulting in uniform nuclear staining.

Images were obtained using Olympus BH2-RFCA fluorescence

microscope fitted with a xenon lamp and a 406 objective

(DplanApo 40UV). Separate 16-bit grayscale images were

recorded for DAPI, Alexa 488 and Alexa 594 using a Hamamatsu

ORCAII BT-1024 cooled CCD camera. Image Pro Plus software

(Media Cybernetics) was used for image capture and generation of

line traces. Subsequent image handling was carried out in Adobe

Photoshop CS2.
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