Browse by author
Lookup NU author(s): Dr James Bathurst
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Existing bed-load transport formulas may overestimate the transport rate in mountain rivers by two orders of magnitude or more. Recently published field data sets provide an opportunity to take a fresh look at the bed-load transport relationship and it is hypothesized that the overestimate is due to a failure to account for the effect of a coarse surface layer of bed material inhibiting the release of fine subsurface material. Bed-load transport is determined as g(s)=ap(q-q(c)) where q=water discharge per unit width; q(c)=critical value for initiation of bed material movement; rho=water density; and a=coefficient. The g(s)/q relationship is typically piecewise linear, characterized by two transport phases with, respectively, low and high rates of change. Twenty-one flume and 25 field data sets were used to quantify the relationship for Phase 2. The flume data confirm the dependence of a on S-1.5, where S=channel slope, in agreement with earlier studies. The field data additionally show that a varies inversely with the degree of bed armoring, given by the ratio of surface to subsurface bed material size. The finding is consistent with the hypothesis and suggests the need to account for the bed material supply limitation in the bed-load transport formula. However, the available data are not entirely sufficient to rule out an alternative dependency, or codependency, on flow resistance. The critical conditions for initiation of Phase 2 transport are also quantified as a function of bed material size and channel slope. The resulting set of equations allows a more accurate estimation of Phase 2 bed-load transport rates. However, the equations are empirical and should be restricted for use within the range of conditions used in their development, to determine mean rather than instantaneous transport rates and to determine bulk transport rates, not transport by size fraction.
Author(s): Bathurst JC
Publication type: Article
Publication status: Published
Journal: Journal of Hydraulic Engineering - ASCE
Year: 2007
Volume: 133
Issue: 11
Pages: 1192-1205
ISSN (print): 0733-9429
ISSN (electronic): 1943-7900
URL: http://dx.doi.org/10.1061/(ASCE)0733-9429(2007)133:11(1192)
DOI: 10.1061/(ASCE)0733-9429(2007)133:11(1192)
Altmetrics provided by Altmetric