Browse by author
Lookup NU author(s): Emeritus Professor Mark ThomasORCiD
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Hydrogen adsorption on porous materials is one of the possible methods proposed for hydrogen storage for transport applications. High pressure experimental studies of a wide range of porous materials have obtained maximum hydrogen excess capacities of 6-8 wt% at 77 K for metal-organic frameworks (MOFs) and porous carbon materials. Grand canonical Monte Carlo (GCMC) simulation studies indicate that higher hydrogen capacities are possible for covalent organic frameworks (COFs). Currently, the maximum isosteric enthalpies of adsorption of similar to 13 kJ mol(-1) at 77 K have been observed experimentally for metal-organic framework materials and this is higher than for COFs, where the maximum predicted from GCMC simulations is similar to 8 kJ mol(-1). Metal-organic framework materials have structural diversity and scope for modi. cation of surface chemistry to enhance hydrogen surface interactions. The synthesis of MOFs with stronger H-2-surface interactions to give similar hydrogen capacities at much higher temperatures than 77 K is required and eventually, materials that have these high capacities at ambient temperatures with rapid adsorption/desorption characteristics are necessary for applications as hydrogen storage materials for transport applications. The current methods envisaged for increasing adsorption at higher temperatures involve modi. cation of the surface chemistry, in particular, the inclusion of open metal centres to increase hydrogen surface site interactions, and utilisation of the framework flexibility are discussed.
Author(s): Thomas KM
Publication type: Article
Publication status: Published
Journal: Dalton Transactions
Year: 2009
Volume: 2009
Issue: 9
Pages: 1487-1505
Print publication date: 01/01/2009
ISSN (print): 1477-9226
ISSN (electronic): 1477-9234
Publisher: Royal Society of Chemistry
URL: http://dx.doi.org/10.1039/b815583f
DOI: 10.1039/b815583f
Altmetrics provided by Altmetric