Browse by author
Lookup NU author(s): Professor Ian Calder, Dr Jennifer Hazelton
The Hydrological Land Use Change model was used to assess the range of water resource impacts associated with four potential energy tree species (Eucalyptus nitens, Eucalyptus gunnii, Nothofagus sp., and Fraxinus excelsior) at eight United Kingdom locations under present and future, Environment Agency Rainfall and Weather Impacts Generator, climate scenarios generated using UK Climate Impacts Programme 2002 (UKCIP02). Parameter values were derived using expert opinion and interpolation because of limited data. For Fraxinus excelsior, there are questions concerning the unusual, in a world context, published findings that evaporation from a tree crop is less than that from grass. Model predictions indicated that under the present climate all tree species, excepting Fraxinus excelsior, at all sites have greater mean annual evaporation, (8 to 84%) and reduced water yields (-6 to -97%) compared with grass. The predicted increase in tree evaporation arises from parameter values reflecting both increased rainfall interception and higher transpiration due to deeper rooting depths. Under future climate scenarios, (1) "potential annual yield'' (difference between actual rainfall and potential evaporation) will decrease, becoming negative at all studied sites in England and Wales by 2080; ( 2) at drier sites and for species with highest evaporation rates, E. nitens and Nothofagus, evaporation rates will decrease; (3) at wetter sites and for all species, evaporation rates will increase; (4) at all sites and for all species, water yields will decrease; (5) differences between species remain the same, with evaporation rates increasing and water yield decreasing in the order Fraxinus excelsior, grass, E. gunnii, Nothofagus, and E. Nitens; and (6) there is an overall trend through time toward convergence in water yields from trees and grass. If higher water yield predictions for Fraxinus excelsior are proved correct, this would represent an attractive land use option for water and energy production. Field research is required to validate these predictions. Assuming future climate changes match those predicted, soil moisture deficits will occur for longer periods during the year and will become increasingly limiting for evaporation. The monitoring of soil moisture may then provide one of the most sensitive methods of both determining model parameter values and testing predictions of differences in evaporation between species and changes in evaporation over time.
Author(s): Calder IR, Nisbet T, Harrison JA
Publication type: Article
Publication status: Published
Journal: Water Resources Research
Year: 2009
Volume: 45
Pages: W00A17
Date deposited: 30/11/2009
ISSN (print): 0043-1397
ISSN (electronic): 1944-7973
Publisher: American Geophysical Union
URL: http://dx.doi.org/10.1029/2007WR006657
DOI: 10.1029/2007WR006657
Altmetrics provided by Altmetric