Toggle Main Menu Toggle Search

Open Access padlockePrints

Stochastic transport of particles in straining flows

Lookup NU author(s): Dr David Swailes, Dr Yasmine Ammar, Emeritus Professor Mike Reeks, Dr Yannis Drossinos


Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Important features associated with the segregration of particles in turbulent flow are investigated by considering the statistical distribution (phase-space number density) of particles subject to the combined effects of straining flow and stochastic forcing. A Fokker-Planck model is used to obtain results for the phase-space distributions of particles that are entrained into straining flow fields. The analysis shows that, in marked contrast to the zero strain case, nonsingular steady-state distributions are generated, and also confirms that the diffusional effect resulting from stochastic forcing is sufficient to offset the otherwise singular distributions that would result from the indefinite accumulation of particles along stagnation lines. The influence of particle inertia (Stokes number) on the form of the resulting distributions is considered and several significant results are observed. The influence of strain rate on the attenuation of particle kinetic stresses is quantified and explained. The development of large third-order velocity moments is observed for Stokes numbers above a critical value. The mechanism underlying this phenomenon is seen to be a generic feature of particle transport in flows where vortex structures induce local counterflows of particles. The system therefore provides an ideal test for closure models for third-order moments of particle velocities, and here the standard Chapman-Enskog approximation is assessed.

Publication metadata

Author(s): Swailes DC, Ammar Y, Reeks MW, Drossinos Y

Publication type: Article

Publication status: Published

Journal: Physical Review E

Year: 2009

Volume: 79

Issue: 3

ISSN (print): 1539-3755

ISSN (electronic): 1550-2376

Publisher: American Physical Society


DOI: 10.1103/PhysRevE.79.036305


Altmetrics provided by Altmetric


Funder referenceFunder name
Paul Scherrer Institute, Switzerland