Toggle Main Menu Toggle Search

Open Access padlockePrints

Analysis of the sulfate-reducing bacterial and methanogenic archaeal populations in contrasting Antarctic sediments

Lookup NU author(s): Emeritus Professor T. Martin Embley FMedSci FRSORCiD


Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


The distribution and activity of communities of sulfate-reducing bacteria (SRB) and methanogenic archaea in two contrasting Antarctic sediments were investigated. Methanogenesis dominated in freshwater Lake Heywood, while sulfate reduction dominated in marine Shallow Bay. Slurry experiments indicated that 90% of the methanogenesis in Lake Heywood was acetoclastic. This finding was supported by the limited diversity of clones detected in a Lake Heywood archaeal clone library, in which most clones were closely related to the obligate acetate-utilizing Methanosaeta concilii. The Shallow Bay archaeal clone library contained clones related to the C(1)-utilizing Methanolobus and Methanococcoides and the H(2)-utilizing Methanogenium: Oligonucleotide probing of RNA extracted directly from sediment indicated that archaea represented 34% of the total prokaryotic signal in Lake Heywood and that Methanosaeta was a major component (13.2%) of this signal. Archaea represented only 0.2% of the total prokaryotic signal in RNA extracted from Shallow Bay sediments. In the Shallow Bay bacterial clone library, 10.3% of the clones were SRB-like, related to Desulfotalea/Desulforhopalus, Desulfofaba, Desulfosarcina, and Desulfobacter as well as to the sulfur and metal oxidizers comprising the Desulfuromonas cluster. Oligonucleotide probes for specific SRB clusters indicated that SRB represented 14.7% of the total prokaryotic signal, with Desulfotalea/Desulforhopalus being the dominant SRB group (10.7% of the total prokaryotic signal) in the Shallow Bay sediments; these results support previous results obtained for Arctic sediments. Methanosaeta and Desulfotalea/Desulforhopalus appear to be important in Lake Heywood and Shallow Bay, respectively, and may be globally important in permanently low-temperature sediments.

Publication metadata

Author(s): Embley TM; Purdy KJ; Nedwell DB

Publication type: Article

Publication status: Published

Journal: Applied and Environmental Microbiology

Year: 2003

Volume: 69

Issue: 6

Pages: 3181-3191

ISSN (print): 0099-2240

ISSN (electronic): 1098-5336

Publisher: American Society for Microbiology


DOI: 10.1128/AEM.69.6.3181-3191.2003

Notes: Journal Article


Altmetrics provided by Altmetric