Browse by author
Lookup NU author(s): Dr Greg O'Donnell
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
The ability of the National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) reanalysis (NRA1) and the follow-up NCEP/Department of Energy (DOE) reanalysis (NRA2), to reproduce the hydrologic budgets over the Mississippi River basin is evaluated using a macroscale hydrology model. This diagnosis is aided by a relatively unconstrained global climate simulation using the NCEP global spectral model, and a more highly constrained regional climate simulation using the NCEP regional spectral model, both employing the same land surface parameterization (LSP) as the reanalyses. The hydrology model is the variable infiltration capacity (VIC) model, which is forced by gridded observed precipitation and temperature. It reproduces observed streamflow, and by closure is constrained to balance other terms in the surface water and energy budgets. The VIC-simulated surface fluxes therefore provide a benchmark for evaluating the predictions from the reanalyses and the climate models. The comparisons, conducted for the 10-year period 1988–1997, show the well-known overestimation of summer precipitation in the southeastern Mississippi River basin, a consistent overestimation of evapotranspiration, and an underprediction of snow in NRA1. These biases are generally lower in NRA2, though a large overprediction of snow water equivalent exists. NRA1 is subject to errors in the surface water budget due to nudging of modeled soil moisture to an assumed climatology. The nudging and precipitation bias alone do not explain the consistent overprediction of evapotranspiration throughout the basin. Another source of error is the gravitational drainage term in the NCEP LSP, which produces the majority of the model's reported runoff. This may contribute to an overprediction of persistence of surface water anomalies in much of the basin. Residual evapotranspiration inferred from an atmospheric balance of NRA1, which is more directly related to observed atmospheric variables, matches the VIC prediction much more closely than the coupled models. However, the persistence of the residual evapotranspiration is much less than is predicted by the hydrological model or the climate models.
Author(s): Maurer EP, O'Donnell GM, Lettenmaier DP, Roads JO
Publication type: Article
Publication status: Published
Journal: Journal of Geophysical Research: Atmospheres
Year: 2001
Volume: 106
Issue: D16
Pages: 17841-17862
ISSN (print): 0148-0227
Publisher: American Geophysical Union
URL: http://www.agu.org/journals/ABS/2001/2000JD900828.shtml