Toggle Main Menu Toggle Search

Open Access padlockePrints

Thermophilic anaerobes in Arctic marine sediments induced to mineralize complex organic matter at high temperature

Lookup NU author(s): Dr Casey Hubert

Downloads

Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Abstract

Marine sediments harbour diverse populations of dormant thermophilic bacterial spores that become active in sediment incubation experiments at much higher than in situ temperature. This response was investigated in the presence of natural complex organic matter in sediments of two Arctic fjords, as well as with the addition of freeze-dried Spirulina or individual high-molecular-weight polysaccharides. During 50 degrees C incubation experiments, Arctic thermophiles catalysed extensive mineralization of the organic matter via extracellular enzymatic hydrolysis, fermentation and sulfate reduction. This high temperature-induced food chain mirrors sediment microbial processes occurring at cold in situ temperatures (near 0 degrees C), yet it is catalysed by a completely different set of microorganisms. Using sulfate reduction rates (SRR) as a proxy for organic matter mineralization showed that differences in organic matter reactivity determined the extent of the thermophilic response. Fjord sediments with higher in situ SRR also supported higher SRR at 50 degrees C. Amendment with Spirulina significantly increased volatile fatty acids production and SRR relative to unamended sediment in 50 degrees C incubations. Spirulina amendment also revealed temporally distinct sulfate reduction phases, consistent with 16S rRNA clone library detection of multiple thermophilic Desulfotomaculum spp. enriched at 50 degrees C. Incubations with four different fluorescently labelled polysaccharides at 4 degrees C and 50 degrees C showed that the thermophilic population in Arctic sediments produce a different suite of polymerhydrolysing enzymes than those used in situ by the cold-adapted microbial community. Over time, dormant marine microorganisms like these are buried in marine sediments and might eventually encounter warmer conditions that favour their activation. Distinct enzymatic capacities for organic polymer degradation could allow specific heterotrophic populations like these to play a role in sustaining microbial metabolism in the deep, warm, marine biosphere.


Publication metadata

Author(s): Hubert C, Arnosti C, Brüchert V, Loy A, Vandieken V, Jørgensen BB

Publication type: Article

Publication status: Published

Journal: Environmental Microbiology

Year: 2010

Volume: 12

Issue: 4

Pages: 1089-1104

Print publication date: 01/04/2010

ISSN (print): 1462-2912

ISSN (electronic): 1462-2920

Publisher: Wiley-Blackwell

URL: http://dx.doi.org/10.1111/j.1462-2920.2010.02161.x

DOI: 10.1111/j.1462-2920.2010.02161.x


Altmetrics

Altmetrics provided by Altmetric


Funding

Funder referenceFunder name
Max Planck Society
Natural Sciences and Engineering Research Council of Canada
OCE-0323975U.S. National Science Foundation
OCE-0848703U.S. National Science Foundation
P20185-B17Austrian Science Fund
RIS 3298; KOP 56Alfred Wegener Institute

Share