Toggle Main Menu Toggle Search

Open Access padlockePrints

Convergence of Pyramidal and Medial Brain Stem Descending Pathways Onto Macaque Cervical Spinal Interneurons

Lookup NU author(s): Professor Stuart Baker

Downloads

Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Abstract

Riddle CN, Baker SN. Convergence of pyramidal and medial brain stem descending pathways onto macaque cervical spinal interneurons. J Neurophysiol 103: 2821-2832, 2010. First published March 24, 2010; doi: 10.1152/jn.00491.2009. We investigated the control of spinal interneurons by corticospinal and medial brain stem descending tracts in two macaque monkeys. Stimulating electrodes were implanted in the left pyramidal tract (PT), and the right medial longitudinal fasciculus (MLF), which contains reticulospinal, vestibulospinal, and some tectospinal fibers. Single unit discharge was recorded from 163 interneurons in the intermediate zone of the right spinal cord (segmental levels C-6-C-8) in the awake state; inputs from descending pathways were assessed from the responses to stimulation through the PT and MLF electrodes. Convergent input from both pathways was the most common finding (71/163 cells); responses to PT and MLF stimulation were of similar amplitude. Interneuron discharge was also recorded while the animal performed a reach and grasp task with the right hand; the output connections of the recorded cells were determined by delivering intraspinal microstimulation (ISMS) at the recording sites. Convergent input from MLF/PT stimulation was also common when analysis was restricted to cells that increased their rate during grasp (14/23 cells) or to cells recorded at sites where ISMS elicited finger or wrist movements (23/57 cells). We conclude that medial brain stem and corticospinal descending pathways have largely overlapping effects on spinal interneurons, including those involved in the control of the hand. This may imply a more important role for the brain stem in coordinating hand movements in primates than commonly assumed; brain stem pathways could contribute to the restoration of function seen after lesions to the corticospinal tract.


Publication metadata

Author(s): Riddle CN, Baker SN

Publication type: Article

Publication status: Published

Journal: Journal of Neurophysiology

Year: 2010

Volume: 103

Issue: 5

Pages: 2821-2832

Print publication date: 01/05/2010

ISSN (print): 0022-3077

ISSN (electronic): 1522-1598

Publisher: American Physiological Society

URL: http://dx.doi.org/10.1152/jn.00491.2009

DOI: 10.1152/jn.00491.2009


Altmetrics

Altmetrics provided by Altmetric


Actions

Find at Newcastle University icon    Link to this publication


Share