Browse by author
Lookup NU author(s): Dr Paola MeynetORCiD, Professor Russell DavenportORCiD, Dr Martin Jones, Professor David WernerORCiD
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Bioremediation and activated carbon (AC) amendment were compared as remediation strategies for sediment from the River Tyne containing 16.4 +/- 7.3 mu g/g polycyclic aromatic hydrocarbons (PAHs) and approximately 5% coal particles by total dry sediment weight. Unamended, nutrient amended (biostimulated) and nutrient and Pseudomonas putida amended (bioaugmented) sediment microcosms failed to show a significant decrease in total sediment PAH concentrations over a one month period. Polyethylene passive (PE) samplers were embedded for 21 days in these sediment microcosms in order to measure the available portion of PAHs and accumulated 4.70 +/- 0.25, 12.43 +/- 1.78, and 23.49 +/- 2.73 mu g PAHs/g PE from the unamended, biostimulated, and bioaugmented,microcosms, respectively. Higher PAH uptake by PE samplers in biostimulated and bioaugmented microcosms coincided with slower degradation of spiked phenanthrene in sediment-free filtrate from these microcosms compared to filtrate from the unamended microcosms. Microbial community analysis revealed changes in the bacterial community directly following the addition of nutrients, but the added P. putida community failed to establish itself. Addition of 2% by dry sediment weight activated carbon reduced PAH uptake by PE samplers to 0.28 +/- 0.01 mu g PAHs/g PE, a greater than 90% reduction compared to the unamended microcosms. (C) 2010 Elsevier Ltd. All rights reserved.
Author(s): Hale SE, Meynet P, Davenport RJ, Jones DM, Werner D
Publication type: Article
Publication status: Published
Journal: Water Research
Year: 2010
Volume: 44
Issue: 15
Pages: 4529-4536
Print publication date: 01/08/2010
ISSN (print): 0043-1354
ISSN (electronic): 1879-2448
Publisher: IWA Publishing
URL: http://dx.doi.org/10.1016/j.watres.2010.06.027
DOI: 10.1016/j.watres.2010.06.027
Altmetrics provided by Altmetric