Browse by author
Lookup NU author(s): Professor Patrick Briddon
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
P and B diffusion has been modeled in Ge using ab initio methods along with the formation energies and electrical levels of various Px Vy defects expected to be important in the deactivation of P in heavily n-doped Ge. The calculated activation barrier for B diffusion is found to be substantially lower than the measured barrier. However, the exceptionally large pre-exponential factor in the measured diffusivity points to a Meyer-Neldel rule operating and accounting for the discrepancy. The magnitude of the theoretical diffusivity is about a factor 10 lower than observed. For P diffusion, the experimental and theoretical results are in much closer agreement. The formation energy calculations show that all Px Vy clusters are stable with respect to their component defects, and all but P4 V are predicted to introduce acceptor levels into the band gap. A simple analysis of possible formation mechanisms and Coulombic contributions suggests that as in Si, P3 V is the most important compensating center in heavily n-doped Ge. © 2008 Elsevier Ltd. All rights reserved.
Author(s): Janke C, Jones R, Coutinho J, Oberg S, Briddon P
Publication type: Article
Publication status: Published
Journal: Materials Science in Semiconductor Processing
Year: 2008
Volume: 11
Issue: 5
Pages: 324-327
Print publication date: 01/10/2008
ISSN (print): 13698001
ISSN (electronic):
URL: http://dx.doi.org/10.1016/j.mssp.2008.07.002
DOI: 10.1016/j.mssp.2008.07.002
Notes: E-MRS 2008 Spring Conference Symposium J: Beyond Silicon Technology: Materials and Devices for Post-Si CMOS
Altmetrics provided by Altmetric