Toggle Main Menu Toggle Search

Open Access padlockePrints

Microstructure and performance of novel Ni anode for hollow fibre solid oxide fuel cells

Lookup NU author(s): Dr Alan Thursfield, Professor Ian Metcalfe

Downloads

Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Abstract

Nickel anodes were deposited on hollow fibre yttria-stabilised zirconia (YSZ) electrolyte substrates for use in solid oxide fuel cells (SOFCs). The hollow fibres are characterised by porous external and internal surfaces supported by a central gas-tight layer (300 μm total wall thickness and 1.6 mm external diameter). The YSZ hollow fibres were prepared by a phase inversion technique followed by high temperature sintering in the range 1200 to 1400 °C. Ni anodes were deposited on the internal surface by electroless plating involving an initial catalyst deposition step with PdCl2 followed by Ni plating (with a NiSO4, NaH2PO2 and sodium succinate based solution at 70 °C). Fabrication and nickel deposition parameters (nature of solvents, air gap, temperature, electroless bath composition) and heat treatments in oxidising/reducing environments were investigated in order to improve anode and electrolyte microstructure and fuel cell performance. A parallel study of the effect of YSZ sintering temperature, which influences electrolyte porosity, on electrolyte/anode microstructure was performed on mainly dense discs (2.3 mm thick and 15 mm diameter). Complete cells were tested with both disc and hollow fibre design after a La0.2Sr0.8Co0.8Fe0.2O3-δ (LSCF) cathode was deposited by slurry coating and co-fired at 1200 °C. Anodes prepared by Ni electroless plating on YSZ electrolytes (discs and hollow fibres) sintered at lower temperature (1000-1200 °C) benefited from a greater Ni penetration compared to electrolytes sintered at 1400 °C. Further increases in anode porosity and performance were achieved by anode oxidation in air at 1200-1400 °C, followed by reduction in H2 at 800 °C. © 2009 Elsevier B.V. All rights reserved.


Publication metadata

Author(s): Grande F, Thursfield A, Kanawka K, Droushiotis N, Doraswami U, Li K, Kelsall G, Metcalfe I

Publication type: Article

Publication status: Published

Journal: Solid State Ionics

Year: 2009

Volume: 180

Issue: 11-13

Pages: 800-804

ISSN (print): 0167-2738

ISSN (electronic): 1872-7689

Publisher: Elsevier BV

URL: http://dx.doi.org/10.1016/j.ssi.2008.12.038

DOI: 10.1016/j.ssi.2008.12.038


Altmetrics

Altmetrics provided by Altmetric


Share