Browse by author
Lookup NU author(s): Dr Javier Munguia ValenzuelaORCiD
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Cost assessment for rapid manufacturing (RM) is highly dependent on time estimation. Total build time dictates most indirect costs for a given part, such as labour, machine costs, and overheads. A number of parametric and empirical time estimators exist; however, they normally account for error rates between 20 and 35 per cent which are then translated to inaccurate final cost estimations. The estimator presented herein is based on the ability of artificial neural networks (ANNs) to learn and adapt to different cases, so that the developed model is capable of providing accurate estimates regardless of machine type or model. A simulation is performed with MATLAB to compare existing approaches for cost/time estimation for selective laser sintering (SLS). Error rates observed from the model range from 2 to 15 per cent, which shows the validity and robustness of the proposed method.
Author(s): Munguía FJ, Ciurana J, Riba C
Publication type: Article
Publication status: Published
Journal: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
Year: 2009
Volume: 223
Issue: 8
Pages: 995-1003
ISSN (print): 0954-4054
ISSN (electronic): 2041-2975
Publisher: Sage Publications
URL: http://dx.doi.org/10.1243/09544054JEM1324
DOI: 10.1243/09544054JEM1324
Altmetrics provided by Altmetric