Browse by author
Lookup NU author(s): Dr Anna Sarkozy, Emerita Professor Katherine Bushby
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Prolonged depolarization of skeletal muscle cells induces entry of extracellular calcium into muscle cells, an event referred to as excitation-coupled calcium entry. Skeletal muscle excitation-coupled calcium entry relies on the interaction between the 1,4-dihydropyridine receptor on the sarcolemma and the ryanodine receptor on the sarcoplasmic reticulum membrane. In this study, we directly measured excitation-coupled calcium entry by total internal reflection fluorescence microscopy in human skeletal muscle myotubes harbouring mutations in the RYR1 gene linked to malignant hyperthermia (MH) and central core disease (CCD). We found that excitation-coupled calcium entry is strongly enhanced in cells from patients with CCD compared with individuals with MH and controls. Furthermore, excitation-coupled calcium entry induces generation of reactive nitrogen species and enhances nuclear localization of NFATc1, which in turn may be responsible for the increased IL-6 released by myotubes from patients with CCD.
Author(s): Treves S, Vukcevic M, Jeannet PY, Levano S, Girard T, Urwyler A, Fischer D, Voit T, Jungbluth H, Lillis S, Muntoni F, Quinlivan R, Sarkozy A, Bushby K, Zorzato F
Publication type: Article
Publication status: Published
Journal: Human Molecular Genetics
Year: 2011
Volume: 20
Issue: 3
Pages: 589-600
Print publication date: 18/11/2010
ISSN (print): 0964-6906
ISSN (electronic): 1460-2083
Publisher: Oxford University Press
URL: http://dx.doi.org/10.1093/hmg/ddq506
DOI: 10.1093/hmg/ddq506
Altmetrics provided by Altmetric