Toggle Main Menu Toggle Search

Open Access padlockePrints

Effects of GABA(B) ligands alone and in combination with paroxetine on hippocampal BDNF gene expression

Lookup NU author(s): Dr Ahmad Khundakar


Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Brain-derived neurotrophic factor (BDNF) has been suggested as a target for antidepressant treatment and chronic antidepressant drug administration shows a 'biphasic effect' on BDNF mRNA in rat hippocampus (transient decrease followed by an increase). In comparison, following acute administration only, an inhibitory action on BDNF gene expression is detected. The present study aimed to understand the mechanism behind the acute inhibitory action on BDNF gene expression by investigating the possible involvement of γ-aminobutyric acid (GABA) receptors in mediating this effect. Rats were injected with either saline, the GABA(A) selective compound 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), the benzodiazepine flunitrazepam or the GABA(B) selective compound baclofen. BDNF mRNA levels were measured 4h later using in-situ hybridization. Baclofen (10mg/kg, i.p.), but not THIP (10mg/kg, i.p.) or flunitrazepam (10mg/kg, i.p.), administration resulted in significant inhibition of BDNF mRNA expression in the cornu ammonis 3 and dentate gyrus but not in the cornu ammonis 1 region of the hippocampus. The inhibitory effect of baclofen on hippocampal BDNF mRNA expression was significantly attenuated by pre-treatment the selective GABA(B) antagonists, CGP 46381 and CGP 55845 (10mg/kg, i.p.). The inhibitory action by the selective serotonin re-uptake inhibitor (SSRI) paroxetine on hippocampal BDNF mRNA was also attenuated by CGP 46381. Our findings suggest a role for GABA(B), but not GABA(A), receptor-mediated mechanisms in the inhibitory regulation of basal hippocampal BDNF gene expression. Our results indicate that GABA(B) receptor activation may play a role in the antidepressant drug-induced inhibition of BDNF gene expression in the hippocampus.

Publication metadata

Author(s): Khundakar A, Zetterström T

Publication type: Article

Publication status: Published

Journal: European Journal of Pharmacology

Year: 2011

Volume: 671

Issue: 1-3

Pages: 33-38

Print publication date: 14/09/2011

ISSN (print): 0014-2999

ISSN (electronic): 1879-0712

Publisher: Elsevier BV


DOI: 10.1016/j.ejphar.2011.09.001

PubMed id: 21930121


Altmetrics provided by Altmetric