Toggle Main Menu Toggle Search

Open Access padlockePrints

Expanding Mg-Zn Hybrid Chemistry: Inorganic Salt Effects in Addition Reactions of Organozinc Reagents to Trifluoroacetophenone and the Implications for a Synergistic Lithium-Magnesium-Zinc Activation

Lookup NU author(s): Emeritus Professor Bill CleggORCiD, Dr Luca Russo


Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Numerous organic transformations rely on organozinc compounds made through salt-metathesis (exchange) reactions from organolithium or Grignard reagents with a suitable zinc precursor. By combining X-ray crystallography, NMR spectroscopy and DFT calculations, this study sheds new light on the constitution of the organometallic species involved in this important synthetic tool. Investigations into the metathesis reactions of equimolar amounts of Grignard reagents (RMgX) and ZnCl2 in THF led to the isolation of novel magnesium-zinc hybrids, [{(thf)(2)(mu-Cl)(3)ZnR}(2)] (R = Et, tBu, nBu or o-OMe-C6H4), which exhibit an unprecedented structural motif in mixed magnesium-zinc chemistry. Furthermore, theoretical modelling of the reaction of EtMgCl with ZnCl2 reveals that formation of the mixed-metal compound is thermodynamically preferred to that of the expected homometallic products, RZnCl and MgCl2. This study also assesses the alkylating ability of hybrid 3 towards the sensitive ketone trifluoroacetophenone, revealing a dramatic increase in the chemoselectivity of the reaction when LiCl is introduced as an additive. This observation, combined with recent related breakthroughs in synthesis, points towards the existence of a trilateral Li/Mg/Zn synergistic effect.

Publication metadata

Author(s): Armstrong DR, Clegg W, Garcia-Alvarez P, Kennedy AR, McCall MD, Russo L, Hevia E

Publication type: Article

Publication status: Published

Journal: Chemistry: A European Journal

Year: 2011

Volume: 17

Issue: 30

Pages: 8333-8341

Print publication date: 07/06/2011

ISSN (print): 0947-6539

ISSN (electronic): 1521-3765

Publisher: Wiley - V C H Verlag GmbH & Co. KGaA


DOI: 10.1002/chem.201100866


Altmetrics provided by Altmetric


Funder referenceFunder name
Royal Society
FP2010-RG-268329European Union