Toggle Main Menu Toggle Search

Open Access padlockePrints

Angular momentum transport through magnetic accretion curtains inside disrupted discs

Lookup NU author(s): Dr Christopher Campbell

Downloads

Full text for this publication is not currently held within this repository. Alternative links are provided below where available.


Abstract

The structure of accretion curtain flows, which form due to disc disruption by a strongly magnetic star, is considered. It is shown that a sub-Alfvenic, magnetically channelled flow is consistent with matching the magnetic field across the curtain base where it meets the disrupted inner region of the disc. The resulting angular velocity distribution in the curtain flow is calculated, together with the consequent angular momentum transfer rate to the star. It is shown that the transition of material from the diffusive disc flow to the channelled curtain flow results in some angular momentum being fed back into the disc. This is consistent with the total angular momentum balance, and can result in a significantly smaller accretion torque acting on the star than that given by the standard model which assumes no angular momentum feedback to the disc. The sonic point coordinates are found and a critical stellar rotation rate results below which the sonic point merges with the curtain flow base, due to a reduced centrifugal barrier to the flow. Hence, at these lower rotation rates, little thermal assistance is required for matter to make the transition to a supersonic accretion flow.


Publication metadata

Author(s): Campbell CG

Publication type: Article

Publication status: Published

Journal: Monthly Notices of the Royal Astronomical Society

Year: 2012

Volume: 420

Issue: 2

Pages: 1034-1044

Print publication date: 30/12/2011

ISSN (print): 0035-8711

ISSN (electronic): 1365-2966

Publisher: Wiley-Blackwell Publishing Ltd.

URL: http://dx.doi.org/10.1111/j.1365-2966.2011.20003.x

DOI: 10.1111/j.1365-2966.2011.20003.x


Altmetrics

Altmetrics provided by Altmetric


Share