Browse by author
Lookup NU author(s): Dr Kheng-Lim GohORCiD
Full text for this publication is not currently held within this repository. Alternative links are provided below where available.
Scaling relationships have been formulated to investigate the influence of collagen fibril diameter (D) on age-related variations in the strain energy density of tendon. Transmission electron microscopy was used to quantify D in tail tendon from 1.7- to 35.3-mo-old (C57BL/6) male mice. Frequency histograms ofD for all age groups were modeled as two normally distributed subpopulations with smaller (DD1) and larger (DD2) mean Ds, respectively. Both DD1 and DD2increase from 1.6 to 4.0 mo but decrease thereafter. From tensile tests to rupture, two strain energy densities were calculated: 1) uE [from initial loading until the yield stress (σY)], which contributes primarily to tendon resilience, and 2) uF[from σY through the maximum stress (σU) until rupture], which relates primarily to resistance of the tendons to rupture. As measured by the normalized strain energy densities uE/σY and uF/σU, both the resilience and resistance to rupture increase with increasing age and peak at 23.0 and 4.0 mo, respectively, before decreasing thereafter. Multiple regression analysis reveals that increases in uE/σY(resilience energy) are associated with decreases in DD1 and increases in DD2, whereas uF/σU (rupture energy) is associated with increases in DD1 alone. These findings support a model where age-related variations in tendon resilience and resistance to rupture can be directed by subtle changes in the bimodal distribution of Ds.
Author(s): Goh KL, Holmes DF, Lu Y-H, Purslow PP, Kadler KE, Bechet D, Wess TJ
Publication type: Article
Publication status: Published
Journal: Journal of Applied Physiology
Year: 2012
Volume: 113
Issue: 6
Pages: 878-888
Print publication date: 26/07/2012
Date deposited: 28/09/2014
ISSN (print): 8750-7587
ISSN (electronic): 1522-1601
Publisher: American Physiological Society
URL: http://dx.doi.org/10.1152/japplphysiol.00258.2012
DOI: 10.1152/japplphysiol.00258.2012
Altmetrics provided by Altmetric